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PENENTUAN SERENTAK JENIS PEMODULATAN DAN 

NISBAH ISYARAT-KEPADA-HINGAR DALAM SISTEM 

KOMUNIKASI TANPA WAYAR 

 

ABSTRAK 

Teknik penentuan automatik parameter isyarat boleh menawarkan lebih 

kebolehpercayaan, lebar jalur yang lebih besar, dan keselamatan yang lebih tinggi kepada 

sistem tanpa wayar moden. Walau bagaimanapun, perbandingan prestasi teknik penentuan 

sedemikian tidaklah mudah. Hal ini boleh disebabkan oleh kurangnya set data penanda 

aras dalam komuniti penyelidikan komunikasi tanpa wayar berbanding dengan bidang 

penyelidikan lain. Oleh itu, terdapat keperluan untuk mencadangkan set data berpotensi-

penanda aras yang boleh menjadi pilihan bagi penyelidik dalam domain komunikasi tanpa 

wayar pada masa hadapan, mencetuskan sumbangan pertama dalam tesis ini. Kebanyakan 

penyelesaian terkini bagi teknik penentuan parameter isyarat memberi tumpuan kepada 

menentukan hanya satu parameter tunggal contohnya, jenis modulasi dan menganggap 

parameter lain, seperti nisbah isyarat-kepada-hingar (SNR) diketahui dan bukannya 

menganggarkan pelbagai parameter isyarat secara serentak. Oleh itu, keinginan untuk 

membolehkan keupayaan automatik dalam penentuan serentak pelbagai parameter isyarat 

telah mencetuskan sumbangan kedua dan ketiga yang menangani penerima bukan koheren 

dan koheren. Oleh itu, objektif dalam tesis ini adalah seperti berikut, pertama, untuk 

membangunkan tiga set data untuk penerima yang telah dinyatakan terdahulu dan 

digunakan bagi penentuan secara serentak jenis modulasi dan nisbah isyarat-kepada-

hingar, iaitu Set data berasaskan histogram amplitud tak segerak (AAHs), Set data 1 

berasaskan pensampelan tak segerak dua-dimensi dalam histogram fasa-kuadratur (2D-

ASIQHs) dan Set data 2 berasaskan 2D-ASIQHs. Kedua, untuk membangunkan satu 

skema yang dapat menentukan secara serentak jenis modulasi dan nisbah isyarat-kepada-

hingar dalam penerima tanpa koheren dengan menggunakan satu jenis ciri (ciri-berasaskan 

AAH) di bawah senario pemudaran multipath. Akhir sekali, untuk membangunkan satu 



xvi 

skema yang boleh menentukan secara serentak jenis modulasi dan nisbah isyarat-kepada-

hingar dalam penerima yang koheren dengan menggunakan ciri-ciri 2D-ASIQH di bawah 

pemudaran Rician dan Rayleigh. Bagi pembentukan set data, ketiga-tiga set data 

dibangunkan di bawah saluran pemudaran multipath dan digunakan untuk mengesahkan 

skema penentuan yang dicadangkan dalam sumbangan kedua dan ketiga. Skema 

penentuan serentak berasaskan AAH membolehkan penerima pintar generik untuk 

mengenalpasti pelbagai modulasi yang dimiliki oleh kategori modulasi yang berbeza dan 

menunjukkan bahawa keupayaan pengenalpastian boleh dikembangkan lagi kepada jenis 

isyarat yang lain. Skema ini juga boleh menganggarkan secara serentak nilai-nilai SNR 

dengan tepat. Skema penentuan serentak berasaskan 2D-ASIQH menangani penerima 

koheren untuk menentukan sembilan jenis modulasi dan pelbagai jenis SNR secara 

serentak. Ciri-ciri yang paling penting diekstrak menggunakan analisis komponen utama 

(PCA) dan kemudian dijadikan input kepada mesin vektor sokongan (SVM) untuk proses 

pembelajaran automatik. Dalam hasil simulasi, sampel set data mencerminkan histogram 

sampul-1D dan imej berasaskan fasa-kuadratur yang mengandungi pelbagai jenis 

modulasi dan SNR dengan kombinasi gandaan dan penundaan jalur yang berlainan. Dari 

segi ketepatan pengenalpastian modulasi dan purata kesilapan penganggaran SNR, skema 

berasaskan AAH yang dicadangkan masing-masing mencapai 99.83% dan 0.79 dB. Begitu 

juga, skema berasaskan 2D-ASIQH yang dicadangkan masing-masing mencapai 99.06% 

dan 1.10 dB. Hasil yang diperoleh menunjukkan bahawa skema yang dicadangkan 

mengatasi kerja terkini yang sedia ada. 

  



xvii 

SIMULTANEOUS DETERMINATION OF MODULATION 

TYPES AND SIGNAL-TO-NOISE RATIOS IN WIRELESS 

COMMUNICATION SYSTEMS 

 

ABSTRACT 

Signal parameters determination techniques can offer more reliability, larger bandwidth, 

and higher security to the modern wireless systems. However, the performance 

comparison of such determination techniques is not straightforward. This can be attributed 

to the lack of having benchmarks datasets in the wireless communication research 

community as compared to other research fields. Hence, there is a need to propose 

potentially-benchmark datasets that can be a future choice for researchers in the wireless 

communication domain, motivating the first contribution in this thesis. Most of the up-to-

date solutions of signal parameters determination techniques focus on determining only 

one single parameter for example modulation type and assuming the other parameters e.g. 

signal-to-noise ratio (SNR) are known rather than on determining multiple signal 

parameters jointly. Hence, the desire to enable an autonomous capability of simultaneous 

determination of multiple signal parameters has motivated the second and third contributions 

that tackle the non-coherent and coherent receivers, respectively. Therefore, the objectives 

in this thesis are as follows, firstly, to construct three datasets for the aforesaid receivers to 

be utilized for joint determination of modulation types and signal-to-noise ratios, namely 

asynchronous amplitudes histograms (AAHs)-based Dataset, two-dimensional 

asynchronous sampling in-phase-quadrature histograms (2D-ASIQHs)-based Dataset 1 

and 2D-ASIQHs-based Dataset 2. Secondly, to develop a scheme that can simultaneously 

determine the modulation type and signal-to-noise ratio in non-coherent receivers by using 

one features’ type (AAHs-based features) under a multipath fading scenario. Lastly, to 

develop a scheme that can simultaneously determine the modulation type and signal-to-

noise ratio in coherent receivers by employing 2D-ASIQHs features under Rician and 

Rayleigh fading. For datasets formation, the three datasets are developed under multipath 
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fading channels and used to validate the proposed determination schemes in the second 

and third contributions. The simultaneous determination AAHs-based scheme enables a 

generic intelligent receiver to recognize various modulations that belong to different 

categories and reveals that the recognition capability can be extendable further to other 

more signal types. The scheme can also simultaneously estimate the SNR values 

accurately. The simultaneous determination 2D-ASIQHs-based scheme tackles the 

coherent receivers to jointly determine nine modulation types and a wide range of SNRs. 

The most significant features are extracted using principal component analysis (PCA) and 

then fed to a support vector machine (SVM) tool for the automatic learning process. In the 

simulation results, the samples of the datasets reflect 1D-envelope histograms and in-

phase-quadrature-based images which comprise various modulation types and SNRs with 

different combinations of path gains and delays. In term of modulation recognition 

accuracy and mean SNR estimation error, the proposed AAHs-based scheme attains 

99.83% and 0.79 dB, respectively. Similarly, the proposed 2D-ASIQHs-based scheme 

achieves 99.06% and 1.10 dB, respectively. The obtained results showed that the proposed 

schemes outperform the existing state-of-the-art work.  



1 

CHAPTER ONE 

INTRODUCTION 

 

1.1 Motivation 

Advanced technologies of wireless communications systems have been lately 

emerged. Recently, a tremendous demand for more secure, reliable, efficient, high-

quality and cost-effective wireless and mobile applications and services has been 

witnessed. Future wireless applications and services are envisaged to lead to 

continuous growth of demand for high data rates, quality of service (QoS) and 

mobility. Tackling the aforementioned demands is always a critical concern and a 

challenging mission for the designers of any modern wireless network in both societies 

of academia and industry.  Due to such a scenario in the wireless telecommunication 

industries, researchers and communication designers have to develop advanced 

wireless communication systems that can meet the needs of the aforementioned 

societies. For instance, many wireless companies are developing fifth-generation 

wireless communications system (5G) as the next generation of the wireless system to 

be implemented in the world. The 5G cellular networks target to attain improvement 

in the capacity of the communication network by 1000 times (Liu et al., 2016, Zhang 

et al., 2016). Moreover, they aim to increase the entire throughput of the cellular cell 

25 times of that of the current’s fourth-generation (4G) networks and 10 times the data 

rates, energy and spectral efficiencies (Bogucka et al., 2015). However, with the rapid 

growth of telecommunication systems, it seems that there are many challenges which 

still cannot be addressed by the current 4G cellular system and even would be 
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challenging in the upcoming 5G enabling technologies (Wang et al., 2014) such as 

enhancing the QoS of the wireless schemes, securing wireless communication, 

reducing implementation complexity, and providing accurate channel state estimation. 

Automatic determination techniques of signals’ parameters, such as modulation type, 

signal-to-noise ratio (SNR), bit-rate, transmitted signal power, etc., can be a suitable 

and potential platform that provides solutions to the abovementioned challenges in the 

modern wireless networks. This is because these automatic determination schemes, 

such as automatic modulation recognition (AMR) techniques and SNR estimation 

methods, can offer more reliability, larger bandwidth space, and higher security to 

these modern wireless networks. This is by exempting the transmitters involved in 

these networks from: 1) preserving a space in the bandwidth for sending modulation 

and SNR knowledge, 2) broadcasting such crucial secretive information over wireless 

mediums which are vulnerable to penetration at any time. Instead, the automatic 

determination schemes enable the receivers to carry the responsibility to automatically 

determine these parameters successfully. 

 

Recently, many techniques in wireless communication systems for the AMR 

and also for the SNR estimation have been presented in the literature (Azim et al., 

2012, Dobre, 2015, Eldemerdash et al., 2016b, Li et al., 2016, Ming Zhang, 2017, Shah 

et al., 2019, Zhang et al., 2019, Zhu et al., 2015). Modulation type knowledge is crucial 

information that enables the receiver in the wireless networks to correctly recover the 

received signal. It is important that this knowledge is not hacked or detected by third 

parties during the transmission over wireless links which have a broadcasting process in 

nature. Thus, AMR capability can exempt the transmitters from sending this information 

and hence, provide a high level of security to the upcoming wireless communications 
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systems (i.e. 5G). Moreover, AMR can enable the receiver in these modern systems to 

be ready and more aware of the unexpected changes that may occur on the transmitted 

signal such as varying its modulation types, bit rates or SNRs. In addition, AMR 

techniques can enable the modern-generation wireless communication systems (i.e. 5G 

and beyond) to possess a sole generic and intelligent receiver that is able to automatically 

establish the knowledge of various modulations types without receiving any prior 

knowledge from the transmitter. It is rather than possessing a specific receiver for each 

modulation type as the case in our current wireless networks (i.e. 4G). 

 

Furthermore, accurate information of the channel state (i.e. SNR) has a 

significant impact on the wireless communication system as it is vital knowledge to the 

receivers in these systems to notably improve their performance (Li et al., 2016, Riba et 

al., 2010). In addition, SNR estimation enables the receivers to know the quality of the 

transmission channels and optimally decode the received message. Many other functions 

like link adaption (i.e., adaptive modulation and coding) and diversity reception relating 

their procedures to the estimated SNR information (Riba et al., 2010). Most of the 

current SNR estimation techniques rely on pilot sequences information (Socheleau et 

al., 2008) which this information in turn has to be adjusted every time the end-to-end 

terminals sensing new variations in the medium quality ( i.e., SNR values). Also, these 

pilot signals are power and bandwidth consuming. As mentioned earlier, the receivers 

in the future wireless systems (i.e. 5G) are required to track these variations that may 

occur in the network. Thus, the automatic SNR estimation capability will enable the 

receivers in the modern generation wireless networks to blindly estimate the 

instantaneous SNR value without any prior knowledge (i.e., pilot sequence) required. 
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Therefore, the work of this thesis will be the development of schemes that are 

capable of having an accurate modulation type recognition and SNR estimation for 

modern generations of wireless communication systems. 

 

In this thesis, three realistic datasets are promoted to be a potential standard 

choice for the research community. In addition, different low-complexity schemes of 

automatic simultaneous determination of modulation types and SNRs are proposed to 

overcome existing challenges and provide reliable solutions to the research community. 

More details will be deeply discussed in the next section of the problem statement. The 

remainder of this chapter is arranged as follows: Section 1.2 elaborates the problem 

statements. Sections 1.3 and 1.4 outline the thesis objectives and the scope of the 

research, respectively. Eventually, the arrangement of the thesis is presented in Section 

1.5.  

1.2 Problem Statement 

Many signal’ parameters determination techniques are proposed in the literature. 

In order to signify their contrasts, a fair comparison among them has to be made in order 

to decide which signal parameters identification scheme has the best performance 

whether for classification problem (for modulation type) or regression (for SNR). 

However, the performance comparison in term of many criteria such as modulation 

recognition accuracy or computational complexity among the existing methods in 

literature is not straightforward (Dobre et al., 2007, Hazza et al., 2013). This is due to 

the following reasons that control the performance of automatic determination 

techniques of the signal’s parameters. First, each technique has its own assumptions and 

settings. For instance, the modulation types’ pool is not identical as different techniques 
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consider different modulations’ pool. Additionally, their simulations conducted over 

different ranges of SNRs, some algorithms assess the performance at a single/specific 

value of SNR and some other algorithms evaluate their performance over a few values 

or short range of SNRs. Second, each classifier in the existing methods is designed to 

treat specific unknown factors such as data rates, carrier frequencies, phase offsets, 

channel parameters, etc. In other words, these parameters are not identical among the 

existing algorithms and sometimes they are ambiguous or not clearly defined. Third and 

most importantly, the aforementioned two reasons exist because there is a lack of having 

standard or benchmark datasets for the researchers in wireless communication research 

community unlike the scenario followed in computer and image processing domains, 

where the existence of benchmark datasets in their fields allows for direct 

implementation and comparison of their proposed methods. The previous challenges 

will result in unfair performance contrast among the classifiers in the existing work and 

will lead to incorrect inferences on evaluating such identification techniques. 

Consequently, it is timely to propose solutions to the aforementioned challenges and 

address the emerging needs of the research community by the attempt to propose new 

datasets that would be useful to the wireless communication research community. 

 

The transmitters in the next-generations of wireless networks (i.e. cognitive 

radio systems, 5G networks and beyond) are envisaged to vary and adjust some of the 

signal parameters based on the existing status of the transmitting medium (Dobre, 

2015, Eldemerdash et al., 2017). For instance, if the channel condition between the 

transmitter and the receiver is good (i.e. low fading effects), then the transmitter will 

exploit this situation and select some advance modulation schemes which allow for 

transmitting more bits in each symbol (i.e. high data-rates) whereas, if the scenario 
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was adverse and the channel condition is worse due to severe fading impairments, then 

the transmitter needs to adapt itself to the new interim scenario and choose a lower 

modulation type that transmits less data in order to avoid more errors occurring on the 

transmitting symbols due to the new harsh environment. This, in turn, will demand the 

receivers in these systems to adapt to these fluctuations and to be successfully 

equipped with the autonomous determination schemes of various signal parameters 

like the modulation types and SNRs in our case.  

 

The majority of the existing schemes in the literature focuses on identifying one 

signal parameter but either ignoring the other crucial parameters or assuming that they 

are known for e.g. modulation type (Ali et al., 2017, Shah et al., 2019, Sherme, 2012, 

Tayakout et al., 2018, Zhang et al., 2019) or signal-to-noise ratio (SNR) (Hao et al., 

2013, Krishnamurthy et al., 2016, Li et al., 2016, Pauluzzi et al., 2000, Socheleau et al., 

2008), rather than on determining both parameters simultaneously using one technique. 

For instance, the features type exploited in Ali et al. (2017) which was the fourth-order 

cumulants enabled the receiver to recognize only PSK and QAM-based signals and 

was unable to estimate the SNR value, where they assumed the SNR value is known. 

The acquisition of SNR knowledge is very precious in many advanced communication 

technologies such as cognitive systems where cognitive terminals require to sense the 

medium quality from the surrounding systems environment in order to judge which 

channel is the most suitable to connect with. Similarly, the work in (Shah et al., 2019, 

Tayakout et al., 2018) used a combination of many types of features in order to enable 

the receiver in their systems to recognize PSK and QAM-based signals. Their work 

assumed that the SNR parameter is known to the receiver. Furthermore, in Li et al. 

(2016), they exploited frozen bits of polar codes-based features. These features were 
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able to provide the receiver only SNR information. They assumed that modulation type 

is known at the receiver which is essential knowledge for data recovery. The gap in 

the up-to-date methods for the incapability of performing parallel recognition of 

multiple signal parameters at the same time using one sole algorithm, remains deep 

and still requires lots of investigations and developments. To fill this gap, the aspiration 

on the potential capability of simultaneous determination of multiple signal parameters 

has inspired and reinforced the enthusiasm for the proposed schemes and motivated the 

second and third contributions of this thesis. As it will be seen in the literature, vast 

existing research methods focus on identifying one of the above-mentioned parameters 

and neglect or assume the other one is known to the receiver (Ali et al., 2017, Li et al., 

2016, Shah et al., 2019, Sherme, 2012, Tayakout et al., 2018, Zhang et al., 2019). 

However, a very few techniques of parallel determination schemes of signals’ 

parameters are also reported in the literature (Khan et al., 2015) but they still suffer from 

considerable computational complexity and limitations. For instance, they had to change 

the structure of the receiver by using extra samplers in order to obtain enough samples 

from the detected signals. Additionally, the channel effect on these signals was limited 

to AWGN only which is impractical in real-world scenarios. 

 

Receivers in wireless communication systems can be categorized based on the 

detection process into non-coherent and coherent receivers as in Proakis et al. (2012) 

(refer to Appendix B). Both types of receivers are widely exploited in wireless 

communication systems depending on the considered applications (Sklar, 2001, Yong 

Soo Cho, 2010). Majority of the current AMR techniques built their algorithms based 

on the assumption that the received signals are already in the baseband form (Aslam et 

al., 2012, Shah et al., 2019, Sherme, 2012, Tayakout et al., 2018, Zhang et al., 2019), 
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and ignored to analyze the detection environment itself (which precedes the acquisition 

of a baseband signal). This makes a designer of wireless network incapable to decide 

whether such techniques are applicable to coherent or non-coherent based-receiver. It 

remains vague in the literature although both detection-based receivers are used in the 

real-world (Sklar, 2001, Yong Soo Cho, 2010). Therefore, the problem of signal 

parameters determination in this research will be tackled for both types of receivers 

through the second and third contributions in the presented thesis. 

 

The size of modulation types’ pool is a very important factor to consider in AMR 

techniques. It gives a clue on how capable a receiver employed in a wireless network to 

identify different types of detected signals. The existing work in AMR field designed to 

handle only a few types of signals i.e., small variety of modulation types, such as in 

(Aslam et al., 2012, Shah et al., 2019, Sherme, 2012, Tayakout et al., 2018, Yan et al., 

2019). For example, the work in (Ali et al., 2017) was able to recognize only PSK and 

QAM-based signals. Similarly, the work presented in (Shah et al., 2019, Tayakout et 

al., 2018) used a combination of many types of features to recognize PSK and QAM-

based signals. This in turn, will constrain the receivers employed in next-generations 

wireless systems to track the adaptive variations of selecting a suitable modulation which 

occur at the transmitter, and limit their abilities to recognize various types of 

modulations. 

 

Moreover, signal-to-noise ratio (SNR) is also a crucial factor to be considered in 

signal parameters identification techniques and their simulations. Its values indicate the 

strength of the transmitted signals and the level of noise imposed on these signals. 

Furthermore, accurate information of SNR has a profound impact on the wireless 
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communications networks, the acquisition of SNR information is critical to the receivers 

in these systems to notably improve their performance (Li et al., 2016, Riba et al., 2010). 

In addition, it plays a major role in analyzing the performance of AMR techniques. 

Plenty of the current AMR methods training their receivers and calculating their 

modulation recognition accuracies based on few specific values of SNRs (Kim et al., 

2016, Sherme, 2012, Tayakout et al., 2018) which this, in practice, does not reflect the 

actual scenarios in real applications where SNR value varies based on the distortion 

imposed on the power of the propagated signal. A broad range of SNRs from low to high 

values which mimic all the potential variations of the wireless medium quality, is 

considered in the proposed schemes of this thesis. 

 

Channel impairments type is a very essential factor to be considered in AMR 

techniques as it directly affects the accuracies of modulation recognition and SNR 

estimation. Plenty of existing automatic modulation recognition techniques and also 

SNR estimation methods consider only AWGN (which is an ideal channel) in their 

proposed algorithms (Aslam et al., 2012, Khan et al., 2015, Li et al., 2016, Sherme, 2012, 

Yan et al., 2019, Zhang et al., 2019) and ignore the real-world channel impairments (i.e., 

multipath fading channels) which certainly exist and experienced in real-world 

applications. Multipath fading channels impact which causes a severe deterioration on 

the performance of the signal’s parameters determination schemes, has not yet been 

completely and thoroughly solved up to the present. The following Figure 1.1 

illustrates the link between the statement of the existing problems and their 

corresponding solutions proposed in the presented thesis.  
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Figure 1.1: A block diagram describes the link between the existing problems and 

pertaining solutions proposed in this thesis. 

 

where in Figure 1.1, the term AAHs stands for asynchronous sampling amplitudes 

histograms and 2D-ASIQHs refers to two-dimensional asynchronous sampling in-

phase-quadrature histograms. 

 

1.3 Thesis Objectives 

1- To construct three datasets for non-coherent and coherent receivers to be 

utilized for joint determination of modulation types and signal-to-noise ratios. 

2- To develop a scheme that can simultaneously determine the modulation type 

and signal-to-noise ratio in non-coherent receivers by exploiting AAHs 
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features under multipath fading scenario with improved accuracies and reduced 

complexity. 

3- To develop a scheme that can simultaneously determine the modulation type 

and signal-to-noise ratio in coherent receivers by employing 2D-ASIQHs 

features under multipath fading scenario with improved determination 

accuracies. 

1.4 Scope of the Work 

The scope of this thesis is confined to the development of the proposed schemes 

that aim to simultaneously determine the modulation types (based on commonly-

utilized modulations namely, BPSK, 2-ASK, QPSK, 4-ASK, 8-PSK, 4-QAM, 16-

QAM, 32-QAM, 64-QAM-based signals) and the SNRs of the received signals in 

wireless communication systems. MATLAB is used to conduct the simulations and 

analyze the results, and the hardware implementation is out of the thesis’s scope. The 

proposed schemes in this thesis are envisaged to be attractive choices for the new 

generations of wireless communications systems. 

The scope of the artificial intelligent (AI) and features extraction techniques to 

facilitate the determination process (i.e., classification and regression) are limited to 

the support vector machine (SVM) and principal component analysis (PCA) tools 

only, and thereby leaving the use of the other techniques for future research work. This 

thesis does not aim to enhance the AI machine tool itself, rather it exploits them as 

fresh paradigms to support intelligent wireless communication terminals. 
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1.5 Thesis Outlines 

The thesis consists of five chapters. This chapter presents the introduction, 

problem statement, thesis objectives, the research scope and the thesis arrangement. In 

Chapter 2, the background of modern wireless communication and a thorough review 

of the related work of the automatic signals’ parameters determination techniques is 

introduced. In Chapter 3, three methods namely, Datasets formation in which three 

datasets are generated, Simultaneous Determination of Modulation Types and SNRs 

in Non-coherent Receivers: AAHs-based scheme, and Simultaneous Determination of 

Modulation Types and SNRs in Coherent Receivers: 2D-ASIQHs-based scheme, are 

proposed in detail. In Chapter 4, the results of simulations of the proposed schemes 

are presented and compared with the state-of-the-art related recognition algorithms. 

Finally, in Chapter 5, the conclusions are drawn, and the summary of the contributions 

is presented. In addition, future open issues and research directions are highlighted. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Introduction 

The recent decades have witnessed a rapid growth in the advent of wireless 

mobile systems coinciding with increasing demands in our lives. Such advancement 

has attracted a tremendous interest in many societies, such as in academia, civilian and 

military. Future wireless applications and services lead to a growing demand for high-

speed data rates quality of service (QoS) and mobility. The bandwidth exploitation is 

always a critical concern and challenging mission for any modern wireless networks.  

Due to such development in telecommunication industry, researchers and 

telecommunication engineers have to accommodate modern wireless 

telecommunication networks that can satisfy the requirements of above-mentioned 

societies. For example, the fifth-generation (5G) wireless communication system is 

soon going to be implemented in the world. The enhancements in 5G will facilitate the 

targets of achieving energy efficiency, massive multiple-input multiple-output 

(MIMO), channel estimation, user location, etc., (Jiang et al., 2017). The 5G general 

design is depicted in Figure 2.1. 
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Figure 2.1: Overall potential structure of 5G cellular systems (Gupta et al., 2015). 

 

The future next-generation cellular networks aim at accomplishing 

enhancement in the capacity of the telecommunication systems 1000 times (Liu et al., 

2016, Zhang et al., 2016). Furthermore, they target enlarging the total throughput of 

the cellular system’s cell 25 times of today’s 4G systems and 10 times the data rates, 

energy and spectral efficiencies (Bogucka et al., 2015). Nevertheless, with the swift 

progression of telecommunication systems, there are several challenges which are still 

short of being tackled by the 4G networks and even by the upcoming 5G enabling 

technologies (Wang et al., 2014) such as improving the QoS of wireless networks, the 

congestion in their reserved bandwidth, implementation complexity, and accurate 

knowledge of the channel state. 

 

Automatic determination techniques of signals parameters are envisaged be a 

suitable and potential platform that provides solutions to the abovementioned 

challenges. Before digging deeply on this, there are some basic concepts need to be 

addressed and explained earlier. Figure 2.2 depicts an overview of the entire structure 

of the literature review reported in this thesis. 
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Figure 2.2: The structure of the literature review. 

 

This chapter starts with a general broad literature on state-of-the-art work for 

automatic identification of digital signal parameters associated. More specifically, it 

shows a categorization of automatic digital modulation identification methods and 

channel state estimation techniques associated with their pros and cons. In addition, 

Section 2.2.3 reports on the existing machine learning techniques employed in the 

research field. In Section 2.2.4, the performance metrics of the techniques are 

presented. Lastly, Section 2.3 summarized the chapter. 

2.2 Automatic Determination of Signal Parameters 

The last few decades have witnessed many techniques for the estimation of 

signals’ parameters such as modulation type, signal-to-noise ratio (SNR), bit-rate, 

transmitted signal power, etc., in wireless communications (Azim et al., 2012, Dobre, 

2015, Eldemerdash et al., 2016b, Ming Zhang, 2017, Zhu et al., 2015). The transmitters 

in future wireless networks are anticipated to vary these parameters according to the 

given channel conditions. This, in turn, will necessitate the receivers employed in these 

networks to be effectively prepared of autonomous estimation of various signal 

parameters. Figure 2.3 illustrates an overview of a basic wireless system including the 

stage of signal parameters determination (SPD). More details can be found in 
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Appendix A.1. The term SPD onwards refers to the identification/determination of 

multiple signal’s parameters, that is, this abbreviation includes the automatic 

modulation recognition (AMR) and SNR estimation.  

 

Figure 2.3: An overview of wireless communication system including SPD model 

 

The design of a determination technique of signal’s parameters usually 

comprises of two stages: 1) pre-processing of the received signal, 2) appropriate 

selection of identification tool as shown in Figure 2.3. 

 

The following literature review aims to present the state-of-the-art existing 

methods. In addition, it targets to provide the reader with comprehensive knowledge 

about the signal’s parameters identification techniques, their distinguished features 

extracted from the signals and utilized for the identification process, and eventually 

the machine learning methods deployed for the automatic identification stage of the 

targeted signal’s parameters. 

 

AMR has recently received a huge prominence over the past few decades. It is a 

crucial phase between detecting and demodulating the received signal in wireless 

communication system. In order to determine a signal’s parameter (i.e., modulation 

type or SNR), two different approaches of signal’s parameters identification schemes 

(SPD) 



17 

can be generally categorized into two categories, namely, Likelihood-Based (LB) 

approach and Feature-Based (FB) approach (Dobre et al., 2007). Each approach has 

its own operating mechanism, its ability to handle certain types of data, its advantages 

and disadvantages. The former approach treats AMR as a hypothesis testing problem 

and provides an optimal solution to AMR in Bayesian sense. Furthermore, LB method 

targets to reduce the probability of misclassification (Xu et al., 2011) as it computes 

the probability of the detected signals. It is worth to mention that, yet LB provides 

optimal identification performance, but typically this computations process is complex 

and exhaustive when lots of considered parameters are unknown (Tayakout et al., 

2018, Wong et al., 2008). Moreover, it necessitates a prior knowledge of many 

parameters of the signal in order to start the identification process of modulation 

(Chavali et al., 2013, Hameed et al., 2009, Wen et al., 2000).  The latter approach (i.e., 

FB) excerpts useful statistical features of detected signals. Although it offers a sub-

optimal solution to the AMR but it enjoys a very good robustness against channel 

impairments and also low computational complexity. Hence the FB approach is 

adopted in this thesis. Figure 2.4 shows the pros and cons of LB and FB approaches. 

 

Figure 2.4: The pros and cons of LB and FB approaches 

 

FB is adopted in this 

thesis 
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On the other hand, there are few existing techniques adopted in the literature 

which propose a fusion model of both FB and LB schemes together for modulation 

formats classification (Huang et al., 2017, Yu et al., 2017). Our major focus in this 

thesis will be given to FB techniques in Section 2.2.2. However, a short overview of 

LB methods is provided briefly in Section 2.2.1 as follows: 

2.2.1 Likelihood-Based (LB) Approach 

A broad survey in Xu et al. (2011) reports on likelihood techniques for 

automatic modulation classification. Likelihood-based approach (LB) works 

efficiently with the machine learning classifiers when it is provided with knowledge 

of channel parameters and complete channel model (Hameed et al., 2009, Ramezani-

Kebrya et al., 2013, Wallayt et al., 2014). In LB framework, there are usually two 

pivotal stages for the modulation identification. Firstly, critical assessment of the 

likelihood for every modulation hypothesis with detected signal. Next, from other 

diverse modulation hypotheses, the likelihood is derived and compared in order to 

finalize the classification decision. Furthermore, decision-making step is empowered 

either through the calculation of ratio test between two hypotheses or finding the 

maximum likelihood (ML) among all potential candidates. The former requires a 

threshold which in turn will necessitate other processing algorithms to optimize the 

threshold while the latter is much less complex to implement and does not involve a 

careful selection of thresholds. The process of computing the probabilities of detected 

signal samples can be referred by the term called likelihood assessment. Considered 

that a pool of modulation candidates 𝔐 and a targeted modulation ℳ ∈ 𝔐 under a 

hypothesis ℋ , the likelihood function can be explicitly expressed as follows (Xu et 

al., 2011, Zhu et al., 2015): 
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Without realizing the waveform sample 𝑟[𝒅] returns to which modulation 

symbol, the likelihood value is computed by taking the mean of the likelihood value 

between the detected waveform sample 𝑟[𝒅] modulated ℳ and every modulation 

symbol 𝐴𝑚, where 𝜎 is the standard deviation and 𝜎2 is the variance. 

 

In maximum likelihood-based machine learning model, with typical channel 

information, all parameters are mostly have to be known to the receiver such as 

knowledge of SNR and channel coefficients, except the modulation type. Hence, the 

identification task (i.e., decision making ℳ̂) of a modulation type that belongs to a 

limited pool of candidates, can be expressed as a maximum likelihood prediction by 

obtaining the hypothesis ℋℳ  that has a highest likelihood value among all likelihood 

values ℒ(. ) as shown in (2.2) (Zhu et al., 2015). 

 

 ℳ̂ = arg𝑚𝑎𝑥 (ℒ(𝑟[𝒅]|ℋℳ))   (2.2)                               

 

 The policy of recognizing modulation types in LB methods is to maximize the 

likelihoods among several hypotheses of predefined potential modulation types. Three 

types of LB algorithms are reported in the literature, namely, average likelihood ratio 

test (ALRT) (Abdi et al., 2004, Chung-Yu et al., 1995, Hong et al., 2000, Wen et al., 

2000, Zheng et al., 2018), generalized likelihood ratio test (GLRT) (Panagiotou et al., 

2000, Xu et al., 2011) and hybrid likelihood ratio test (HLRT) (Derakhtian et al., 2011, 

Dulek, 2017, Hameed et al., 2009, Xu et al., 2011, Zheng et al., 2018).  

 

 
ℒ(𝑟[𝒅]|ℋ, 𝜎) =

1

2𝜋𝜎2
exp⁡(−

|𝑟[𝒅] − 𝐴𝑚|2

2𝜎2
)   (2.1)                               
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ALRT classifier finds a use in Zheng et al. (2018) to recognize orthogonal 

frequency division multiplexing (OFDM) signals. As ALRT classifier calculates the 

likelihood values of the detected signals, its exponential complexity correlated with 

signal length was reported in Huang et al. (2017). Furthermore, huge arithmetical 

operations are encompassed under the ALRT process, and hence it is not applicable in 

SDR systems Su et al. (2008). To report some solutions to this burden, GLRT-based 

and HLRT estimators were reviewed in (Dobre et al., 2007, Xu et al., 2011). They are 

widely exploited in modulation recognition for maximum likelihood approach. 

Despite this fact, GLRT classifier is still impractical for advanced modulations 

schemes. The authors in Zhu et al. (2014) proposed an enhancement scheme to 

overcome the drawbacks of GLRT by adopting non-parametric likelihood function. 

Their LB classifier aimed to classify between PSK and QAM-based signals. The 

resulted recognition accuracy at 10 dB of SNR for 64-QAM signal was only 71.6% 

despite the use of ideal channel (i.e., AWGN). However, there are several drawbacks 

of likelihood-based approach (i.e., maximum-likelihood), one of the problems found 

in LB classifiers that they generally experience unbearable computational complexity 

and necessitate prior information about SNR (Wong et al., 2008). Furthermore, their 

modulation recognition accuracies are sensitive to the noisy signals and demand a 

perfect synchronization (Zhang et al., 2019). Additionally, they undergo very high 

computational complexity and requires high power (Dobre et al., 2007, Tayakout et 

al., 2018). In contrast to LB approach, FB algorithms provide a near-optimal solution 

but very less computational complexity. 

 

The following section will present the existing work that identifying the 

modulation types using feature-based approach in Section 2.2.2(a). In addition, the 
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techniques that estimate SNRs based on the same approach are presented in Section 

2.2.2(b). 

2.2.2 Feature-Based (FB) Approach 

2.2.2(a) Automatic Modulation Recognition (AMR) 

The transmitters in the next-generations of wireless systems (i.e., cognitive 

radios (CR), 5G networks and beyond) are envisaged to vary and adjust the signal 

parameters such as modulation types or signal and/or noise ratio (SNR) based on the 

present status of the transmitting link (Dobre, 2015, Eldemerdash et al., 2017). Thus it 

is crucial for receivers in the next generation wireless communication systems to be 

adaptive to these changes and able to automatically detect the knowledge of modulation 

type and SNR. Such vital knowledge can empower many tasks at the receivers, for 

instance, assisting the demodulators and predicting possible variations at the 

transmitters’ side such as adaptive schemes of modulations, dynamic power allocation, 

etc. Furthermore, it is not essential to recover the data rather than only its modulation 

type in some practical implementations. For instance, in electronic warfare, an attack 

can be blocked and reversely responded by generating jamming signals with identical 

modulation type if the receiver correctly recognizes the transmitter’s modulation type.  

 

Automatic modulation recognition (AMR) is widely investigated through 

feature-based approach. In FB algorithms, the identification is made based on the 

extraction of single or multiple statistical features from the received signal. There are 

various types of features exploited in the AMR techniques. The features that have been 

widely used in the existing methods are listed as follows: 1) high order cumulants (Ali 

et al., 2017, Eldemerdash et al., 2016a), 2) higher order moments (Lopatka et al., 2000, 
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Tayakout et al., 2018), 3) spectral features (Qian et al., 2010, Shah et al., 2019, Sherme, 

2012, Zhu et al., 2015), 4) cyclostationary (Fehske et al., 2005, Kim et al., 2007, 

Ramkumar, 2009, Sutton et al., 2008), and 5) wavelet transform-based features (Avci 

et al., 2008, Avci et al., 2007, Hassan et al., 2010, Türk et al., 2011). 

 

For instance, high order cumulants (HOCs) features in combination with false-

alarm rate test are considered in (Eldemerdash et al., 2016a) to discern space-time 

block code (STBC) for SC-FDMA signals. In their work, the fourth order statistic 

(which is one form of HOCs) of the detected signals was exploited while the false-

alarm rate decision criterion was needed to recognize the peaks of these statistics. PSK 

and QAM-based modulations were considered in their algorithm. The results in their 

work showed degradation in the identification performance for QAM signals 

compared with PSK signal types. This was attributed to the convergence in the peaks’ 

values of the statistics features for QAM signals. 

 

HOCs features are also adopted in (Abdelbar et al., 2018, Swami et al., 2000) 

in order to identify the modulation types. In Abdelbar et al., 2018 work, they utilized 

a fusion center (FC) unit to assemble the votes from all distributed terminals. Their 

QAM, PSK and ASK signals were impaired by simplistic fading channel i.e., flat 

fading, and the achieved classification accuracy was not very encouraging at low SNR 

range, less than 90% over the range of  0–5.5 dB. The classification accuracy 

approaches 95% at higher range of SNR values i.e. after SNR= 6 dB onwards. One 

drawback of their work is that the terminals or nodes are involved in the decision 

voting independently in different times through repeated exchange of their votes on 

what modulation to decide. This will result in huge processing time and power 
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necessities and impose higher overhead on the cellular communication system. In 

addition, their FC unit utilized a maximum likelihood classifier which will add more 

computational complexity to the classification process as it needs to calculate the 

likelihood function for each received vote and extract the maximum value i.e. final 

decision. Moreover, the adopted HOCs in the work (Abdelbar et al., 2018) assumed 

that SNR estimation is to be perfect/known as their adopted features were unable to 

estimate this parameter. 

 

The utilization of averaged instantaneous amplitude values in conjunction with 

the maximum value of spectral power density was reviewed in (Azzouz et al., 1997) 

for the recognition of analog and digital modulation types. The authors observed that 

the overall recognition accuracy of all considered signals was 93% at SNR = 15dB. 

However, the presented algorithm in (Swami et al., 2000), which exploits high-order 

cumulants to discriminate modulation signals, outperforms the method in (Azzouz et 

al., 1997) due to its robustness to the noise. Despite its robustness, it also offers poor 

recognition performance when the detected signal belongs to high-order modulation 

category, for instance, 16-QAM and above. 

 

In (Wu et al., 2008), the authors proposed a cumulant-based technique to 

identify only PSK and QAM-based signals, and their results showed that for SNR= 10 

dB, the classification accuracies above 90% restricted to modulation order up to 4 (i.e. 

QPSK) while 80% for 64QAM, this is after the necessity of having perfect channel 

information. 
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Obtaining HOCs features is not an easy process as their extraction yield 

unbearable computational complexity (Yan et al., 2019). Another drawback of HOCs 

is that they require a huge number of samples (Tsakmalis et al., 2014). Besides, poor 

performances and high computational complexity were shown in the results of the 

work (Abdelbar et al., 2018, Swami et al., 2000) for higher order QAM modulation 

when adopting these features. Furthermore, cumulants features are not optimal choice 

in non-ideal channels such as fading. This brings motivations to the researchers in 

wireless communication field to exploit and implement artificial intelligent techniques 

aiming to reap great enhancements on the recognition accuracies of AMR techniques 

(Aslam et al., 2012, Du et al., 2018, Hassan et al., 2012, West et al., 2017). 

 

Identification of PSK and QAM signals continues to be investigated in 

(Tayakout et al., 2018, Yang et al., 2007). The scheme presented in (Tayakout et al., 

2018) identified basically PSK and QAM-based signals. The authors used a 

combination of many types of features in order to enable the receiver in their systems 

to recognize PSK and QAM-based signals. These features were the fourth and sixth 

higher order moments and higher order cumulates. Then their considered features were 

utilized to train the support vector machine (SVM) for the automatic recognition of the 

received signals. Their proposed scheme achieved quite a good recognition modulation 

accuracy, it reaches 98.25% at best condition i.e. assuming a perfect channel state 

knowledge. In addition, the communication channel between the transmitter and the 

receiver in their system was impaired by simplistic fading channel i.e. flat fading 

impairment. The proposed scheme in their work however suffered from some 

drawbacks. In their method, they required two-time slots to perform successful AMR. 

Additionally, simulations conducted over single value of SNR between source and 
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