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PENILAIAN KESAN PARAMETER HIDRAULIK TERHADAP 

KESTABILAN BENTENG TAMBAK SEMASA UJIAN LARIAN ATAS 

RUANG 

                  

                                                                          ABSTRAK  

 

Pembinaan benteng sungai sering dibina disebabkan oleh fungsi dan pontensinya 

dalam melindungi penduduk dan harta benda daripada kegagalan larian atas. Semasa 

kadar alir sungai yang tinggi, paras air boleh melebihi tinggi banteng dan 

menyebabkan kadar air larian atas. Feonomena ini menyebabkan kegagalan yang 

besar terhadap badan banteng disebabkan pengurangan kekuatan ricih tanah. 

Mekanisma ini melibatkan peningkatan kandungan air di dalam butiran tanah dan 

hubungkaitnya dengan pembentukan kegagalan saluran pelanggaran di hiliran dan 

huluan cerun adalah dipengaruhi oleh pelbagai aspek geoteknik dan hidraulik seperti 

kadar alir masuk, sudut cerun benteng, dan jenis tanah yang digunakan untuk 

benteng. Parameter ini perlu diambilkira di dalam kajian ini melalui eksperimen 

fizikal dan pemodelan berangka kegagalan larian atas. Beberapa siri pemodelan 

fizikal 2 dan 3 dimensi telah dijalankan terhadap model benteng homogen dibawah 

kesan parameter perbezaan kadar alir masuk, sudut cerun banteng dan jenis tanah.  

Fasa pertama kajian ini memberi tumpuan kepada pembentukan tekanan air liang dan 

kandungan air volumetrik kepada beberapa kumpulan titik sensor yang teragih 

disepanjang huluan dan hiliran cerun banteng. 12 sensor tensiometer dan domain 

masa reflektometer telah digunakan untuk mengukur magnitud tekanan air liang 

negatif (sedutan air) dan kandungan air volumetrik. Keputusan ujian eksperimen 

fizikal tersebut menunjukkan keberkesanan parameter yang digunakan bergantung 

kepada lokasi kumpulan sensor yang diletakkan dan juga sensor di cerun huluan 
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yang menjadi tepu dengan sangat cepat.  Fasa kedua eksperimen meliputi ujian larian 

atas 2-D untuk menyiasat penyusupan air pada arah menegak dan mendatar semasa 

proses peralihan paras air daripada hujung cerun huluan kepada permulaan puncak 

benteng. Paras air menepu badan benteng dengan lebih pantas pada arah mendatar 

berbanding arah menegak. Peningkatan paras air yang sangat laju juga 

mempercepatkan langkah permulaan kegagalan saluran pelanggaran pada puncak 

dan juga keadaan ketidakstabilan pada cerun huluan dan hiliran. Fasa ketiga pula 

meliputi pembentukan proses hakisan secara menegak dan mendatar semasa 

kegagalan benteng dimana dua kamera digital diletakkan dihadapan badan benteng 

dan juga di cerun hiliran untuk menangkap kegagalan secara hakisan tersebut. Hasil 

keputusan kajian menunjukkan kegagalan dominan di saluran rintis dan juga 

bahagian atas hiliran cerun adalah dalam bentuk hakisan secara menegak dan 

pembentukan kegagalan pada bahagian tengah benteng dan cerun huluan adalah 

disebabkan hakisan secara mendatar. Resapan sementara dan juga analisis kestabilan 

cerun telah dijalankan menggunakan kaedah unsur terhingga 2-D dan juga 

pengukuran bersandar masa dibawah kesan sudut cerun banteng dan jenis tanah.  

Pada masa kini, kaedah pemodelan berangka melalui pemodelan 2-D unsur terhingga 

tidak dapat secara matematik mensimulasi proses hakisan secara fizikal yang 

menyebabkan kegagalan larian atas benteng. Hasil keputusan analisis berangka 

menunjukkan partikel halus menyebabkan peningkatan kandungan air dan juga 

mengurangkan faktor keselamatan benteng. Rekabentuk benteng yang bersesuaian 

dan penyelenggaraan adalah bergantung kepada keadaan persekitaran hidraulik, 

dimensi dan jenis tanah benteng. Cerun bentung yang lebih landai dengan bahan 

banteng tanah tidak berjeleket adalah dicadangkan hasil daripada kajian ini.   
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EVALUATION OF HYDRAULIC PARAMETERS EFFECTS ON THE 

STABILITY OF DIKE EMBANKMENT DURING SPATIAL 

OVERTOPPING TESTS 

 

ABSTRACT 

 

River dike construction has been widely used because of its potential in protecting 

people and properties from overtopping flow. During high discharge of a river, water 

level may exceed a dike crest and causes overtopping flow. This phenomenon has 

caused a large damage on dike body due to the reduction of soil shear strength. This 

mechanism involved an increase in water content within particles and its relationship 

with the development of breach channel failure in downstream and upstream slopes 

are affected by a series of geotechnical and hydraulic aspects, such as inflow 

discharge, dike slope and soil type, caused by overtopping failure. These parameters 

had been investigated in this study through physical experiments and numerical 

modelling during overtopping failure. A series of 3D and 2D physical modelling is 

conducted on a homogeneous dike embankment under the effect of inflow discharge, 

dike slope angle and soil type parameters.  

The first phase focused on the development of pore water pressures and volumetric 

water contents for groups of points distributed along the upstream and downstream 

slopes of the dike embankment. Twelve tensiometer and time-domain reflectometer 

sensors were used to measure the magnitudes of negative pore water pressures (matric 

suction) and volumetric water contents. Physical experimental tests showed that a 

high inflow discharge resulted in a rapid increase in the amount of water content and a 

decrease in matric suction inside soil particles due to a high water velocity, whereas a 
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gentle slope and coarse sand soil increased the rate of water saturation. The second 

phase of the experiment involved a 2D overtopping test to investigate the water level 

infiltration in vertical and horizontal directions during the transition of the water level 

from the toe of the upstream slope to the beginning of the dike crest. The dike body 

was more rapidly saturated by the horizontal water level than by the vertical water 

level. The velocity of the two water levels increased the initiation of the breach 

channel failure in the crest and the instability state in the upstream and downstream 

slopes. The third phase included the progression of vertical and horizontal erosion 

processes during the dike breach failure. Two digital cameras were installed in front 

of the dike body and the downstream slope to capture the mechanism of failure caused 

by erosion. The dominant failure in the pilot channel and the upper part of 

downstream slope was vertical erosion, and the progression of breach failure in the 

middle of the dike and the upstream slope occurs because of horizontal erosion. 

Transient seepage and slope stability analyses (FOS) were performed using 2D finite 

element methods and time-history measurements under the effect of dike slope angle 

and soil type. The numerical model was limited by its inability to mathematically 

incorporate all physical processes governing an overtopping breach failure. The 

Numerical analysis revealed that a steep slope and fine particles increased the pore 

water pressure and reduced the FOS. Appropriate dike design and maintenance were 

dependent on surrounding hydraulic conditions, dimensions and soil types. A gentle 

slope and noncohesive materials with fine particles were preferable. 
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               CHAPTER ONE 

     INTRODUCTION 

 

 

1.1 Background  

 

The dike is defined as a raised structure constructed from earth or other 

suitable material. A major benefit of river dike embankment construction is by 

ensuring the protection of lands from overtopping failure. The construction of river 

earth dikes can provide other benefits, such as drinking and irrigation, energy 

production and recreation purposes. The major effects of dike failure lead to high 

human casualties and substantial economic losses. Dike embankment failure 

worldwide occurs due to insufficient maintenance of dike components, soil properties, 

water discharge, insufficient spillway capacity and earthquakes. The earth-fill 

Bradfield dam in England has collapsed in 1864 due to overtopping failure and has 

caused the deaths of 238 persons. The Machhu Dam in India has been destroyed in 

1979 due to the wave overtopping flow over the dam crest and has caused deaths of 

nearly 2000 people (Gee, 2008). The water level infiltrates the body of dike 

embankment and gradually reduces the resistance of soil materials due to the dike 

positions in preserving water in front of the upstream slope. The water level increases 

the water content and decreases the negative pore water pressure during water 

transmission in the dike crest. The overtopping flow results in the initiation of breach 

in the dike crest and moves down in the downstream slope. Subsequently, the erosion 

is extended in the upstream slope. The behaviour of dike “breach” failure is analysed 

by using either empirical or experimental methods. The empirical methods include 
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different differential equations to approximate the breach channel discharges. The 

experimental tests investigate the mechanism of breach channel failure in small and 

large flumes. Although considerable effort has predicted the characteristic behaviour 

of dike embankments during overtopping failure, the effects of pore water pressure 

and volumetric water content and their correlations with the stability analysis of dike 

embankment and the initiation and advancement of erosion in the downstream and 

upstream slopes remain unclear. In this study, the effects of pore water pressure, 

volumetric water content and the infiltration of seepage flow in increasing the water 

saturation inside the soil particles are investigated. The mechanism of vertical and 

horizontal erosion processes is evaluated by using digital cameras under different 

hydraulic and geotechnical parameters. A slope stability analysis is conducted to 

assess the capability of dike slope to withstand against the gradual increase of water 

level in the upstream slope and dike crest. The input parameters of soil properties of 

cohesion and friction angle, soil water characteristic curve functions (SWCC), 

saturated hydraulic conductivity and dike geometry are required to calculate the 

accurate value of the minimum FOS. The results of the parametric tests are obtained 

in the laboratory. This study mainly evaluates the behaviour of water content 

saturation and the development of erosion, which will be discussed in details in the 

following section. 
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1.2 Problem statement  

 

The river embankments are constructed to withstand against the water flow in 

rivers or lakes. They are subjected to different types of failures, such as overtopping, 

piping and side slope. These failures increase the rate of water flow seepage inside the 

particles of dike embankment and result in dike slope instability. The overtopping 

failure leads to gradually saturate the soil particles and may cause initiation of erosion 

process inside dike embankment. The erosion process is grouped into four distinctive 

mechanisms: concentrated leak, backward erosion, contact erosion, and suffusion. 

The suffusion mechanism is dependent on type of soil, soil texture while it occurs 

mostly in cohesion less soils such as poorly-graded materials for filter and drain 

layers and cores constructed from glacial tills (Bonelli, 2013). To analyse the effect of 

particle grain size for sand dike, three large-scale experiments were conducted at the 

Delft University of Technology (TUD) under constant head condition. The study 

stated that the larger grain sizes generally increases the erosion rate of sand dikes 

(Visser, 1998).  

However, from series literature review that discuss the physical experimental 

tests, the author concluded that there is lack of understanding of how some important 

geotechnical and hydraulic parameters influence the development of matric suction, 

volumetric water content and the dike breach failure during overtopping failure. 

Examples of these geotechnical and hydraulic aspects include: different inflow 

discharges, different dike slopes angle for the upstream and downstream slope and 

soil types. These aspects are need to be considered in the physical experimental tests 

since they are govern the erosion process and side slope stability during overtopping 

failure.  In this study, the comprehensive and extensive study on the effect of pore 
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water pressure and volumetric water content and their relations with the development 

of water surface levels and the progression of erosion process inside homogeneous 

river dike have been analysed in details under the effects of inflow discharge, dike 

slopes angles and dike materials during spatial overtopping tests. The inflow 

discharges of (20, 30 and 40 l/min) represents the rate of water level in front of 

upstream slope that exposed higher pressure inside dike embankment. The increasing 

and decreasing of upstream and downstream slopes of (1V:2.5H and 1V:3H) has a 

direct relationship with the weight of dike embankment that resist the water pressure 

and the distributions of water flow seepage that saturated soil particles. The presence 

of fine particles of (coarse sand and very silty sand soils) governs the geotechnical 

properties of the non-cohesive dike embankments such as the hydraulic conductivity, 

permeability and porosity and thus control the time of overtopping failure occurrence 

and behaviour of erosion process.  

Numerical models have been employed to simulate the breach failures of dike 

embankment during overtopping failure (Tingsanchali and Chinnarasri, 2001; Volz et 

al., 2012). These models use a series of differential equations in solving the 

nonlinearity behaviour of seepage mechanism at specified boundary conditions. The 

accurate prediction for the FOS is an indicator used for the stability of dike slope 

during water flow seepage (Li et al., 2009). Limit equilibrium and finite element 

methods are the common methods used to evaluate FOS through a numerical model. 

In this study, the numerical modelling was used to determine the development of pore 

water pressure and volumetric water content as well as the critical slip surface or FOS 

during overtopping under the effect of dike slope angle and soil type. The input 

parameters of shear strength and hydrological conditions are required in obtaining an 

accurate result prior to the determination of critical surface. 
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1.3   Objectives  

 

This study conducts a series of physical experimental tests and numerical model, 

which aids in understanding the mechanism of seepage flow and erosion during 

overtopping failure. The thesis objectives can be summarised as follows: 

 

1. To characterize the dike material properties by conducting a series of geotechnical 

laboratories tests. 

 

The representative information for the dike embankment properties are 

essential prior to the physical overtopping test. A series of laboratory tests is required 

to identify the behaviour of a dike model during overtopping failure. Laboratory tests 

include sieve analysis, Atterberg limit, sand replacement method, constant head 

permeability, direct shear test and Dewpoint Potentia Meter tests. The sieve analysis 

and Atterberg limit tests were conducted to determine the soil classification of two 

soils used during overtopping tests. The constant head permeability was performed to 

identify the saturated hydraulic conductivity. The direct shear test was used to 

evaluate the shear strength parameter (cohesion and friction) while the WP4C test was 

used to determine the SWCC results. The results of sieve analysis, Atterberg limit, 

sand replacement method, constant head permeability and Dewpoint Potentia Meter 

tests are important in determining the water content distributions. The magnitudes of 

cohesion, friction and the pore water pressure (PWP), calculated from transient 

seepage analysis, are used to determine the slope stability analysis through the 

numerical model of SLIDE 2018. 
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2.  To investigate the behaviour of dike embankment during spatial overtopping tests 

by incorporating the responses of matric suction, volumetric water content and 

water level distribution on a set of embankment dikes. 

 

The responses of matric suction and volumetric water content are required to 

be understood due to their effectiveness on the behaviour of unsaturated soil during 

overtopping failure. During the transient seepage flow, the volumetric water content 

accumulates due to the water flow that occupies the soil particles in vertical and 

horizontal directions of the upstream and downstream slopes. This condition 

decreases the matric suction and influences the behaviour of unsaturated soil and 

slope stability. Therefore, different geotechnical and hydraulic parameters, such as 

inflow discharge, dike slope angle and soil type and their correlations with the 

advancement of water content inside the dike were analysed. A small flume channel 

composed of PVC materials is constructed for the physical overtopping tests. The 

flume channel is supplied with a flowmeter and a sediment box to simulate the 

reservoir water level in front of the upstream slope and to collect the eroded materials 

at the end of tests. 

 

3.  To evaluate the movement of vertical and horizontal erosion in the upstream and 

downstream slopes by using digital cameras during 2D and 3D spatial overtopping 

tests. 

 

The initiation of breach channel failure occurs due to the overtopping flow the 

dike crest. This event usually decreases the binding forces between the particles and 

leads to the gradual erosion on the downstream and upstream slopes. The effects of 
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fine particles on the progression of erosion are frequently ignored due to their 

complexity behaviour during overtopping. Therefore, the presence of fine particles 

(clay and silt) within the constructed dike were analysed with the use of digital 

cameras to capture the progression of vertical and horizontal erosion. The vertical 

erosion responses are obtained under the effect of inflow discharge, dike slope angles 

and soil types while the horizontal erosion responses are measured under the effect of 

dike slope angle and soil type. The development of breach channel failure is not 

incorporated due to the limitation of numerical modelling. 

 

4.  To assess the distributions of pore water pressure and volumetric water content and 

the stability of dike slope assigned with the transient seepage flow conditions by 

using the conventional limit equilibrium method 

 

The slope model was assigned with transient flow conditions that start from 

the toe of the upstream slope and end at the end of dike crest to evaluate the responses 

of pore water pressure, volumetric water content and FOS analysis. Van Genuchten 

equations were used to estimate the hydraulic conductivity function and volumetric 

water content functions of unsaturated–saturated seepage flow prior to slope stability 

analysis. The FOS of the dike model was obtained by using the conventional limit 

equilibrium method. The determination of FOS is essential in determining the 

influence of geotechnical parameters on slope instability. The effects of dike slope 

angle and dike material were considered in seepage and slope stability analyses. 
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1.4  Scope of the work 

 

 

The dike embankment failures due to the overtopping flow over the dike crest 

are responsible for devastating disasters, which include economical and human losses 

and are of prime importance to our society. The overtopping failure is considered the 

common cause of failure in recent earth and earth-rockfill dams, and the main causes 

of dike failures are increased flood discharges during the previous years and 

insufficient maintenance and repair. Considering the improbability of eliminating the 

overtopping failure, understanding the dam behaviour during an overtopping failure 

remains a challenge. This study addressed the effect of governing hydraulic and 

geotechnical parameters on the mechanism of seepage flow and erosion under a series 

of 2D (Cruwez et al., 2018) and 3D (Altomare et al., 2018) spatial overtopping tests 

conducted at the Laboratory of Hydraulic and Civil Engineering in Universiti Sains 

Malaysia. Prior to the spatial overtopping tests, a series of geotechnical laboratory 

tests, such as sieve analysis, Atterberg limit field density, constant head permeability, 

direct shear test and SWCC test, was conducted to determine the dike embankment 

properties, and the latter was used as input parameters in the numerical analysis. This 

study extensively focused on the effect of inflow discharges, dike slopes angles and 

dike materials and their correlations with the advancement of matric suction, 

volumetric water content, water level infiltration and the widening of breach channel 

failure in the upstream and downstream slopes. Two types of dike soil were used to 

investigate the influence of fine particles (silt and clay) in the non-cohesive 

homogeneous dike embankment during 2D and 3D physical experimental tests. The 

tests were conducted in the small flume channel constructed from PVC materials 

equipped with sensors, digital cameras and flowmeter to simulate the behaviour of 
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dike embankments due to overtopping failure. The sensors, which include a 

tensiometer and a time-domain reflectometer, are used to measure the negative pore 

water pressure and volumetric water content, respectively. The digital cameras were 

used to analyse the distributions of water infiltration levels and the progression of 

erosion processes. To complete the requirements of scientific research and the 

certainty in solving the seepage flow and slope stability problems, 2D seepage and 

slope stability analyses were conducted to determine the progression of pore water 

pressures and factor of safety (FOS) for the 1D dike physical model using the van 

Genuchten equation and limit equilibrium method. Only the effect of dike slope angle 

and dike materials was considered, and the effect of inflow discharge and erosion was 

not evaluated. 

 

1.5  Research significance  

 

 In this study, the major importance of conducting a series of 2D and 3D spatial 

breach tests is by analysing the mechanism of seepage flow and erosion during 

overtopping failure in non-cohesive dike embankments through the determination of 

the combined effect of pore water pressures and volumetric water content and their 

influence on the initiation and widening of breach channel failure. This phenomenon 

was evaluated in depth under different geotechnical and hydraulic parameters to 

enhance the investigation of geotechnical engineering fields for dike embankment. To 

observe a fundamental process regarding the slope stability failure, a finite element 

numerical method was used to observe the seepage of water level inside the soil 

particles and its consequences in increasing the water content and reducing the shear 

strength of dike slope. The reduction of FOS analysis of dike slopes led to imminent 
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economic and safety risk hazards. Thus, the investigation of slope behaviour failure 

could help the engineers to construct the dikes with proper dimensions and materials.  

 

1.6   Limitations of the study 

  

      Despite the importance of conducting the physical tests and numerical modelling 

for analysing the mechanism of seepage flow and slope stability, the study have some 

limitations. Due to the characteristics of small flume channel and compaction method 

used during overtopping flow tests, it would be useful to conduct the 3D and 2D 

physical experiments in a wide hydraulic flume channel to analyse the behaviour of 

dike embankment model (matric suction and volumetric water content) and compared 

with prototype. Since the pilot channel is constructed in the side-wall of flume 

channel for measuring the responses of tensiometer and TDR sensors, the breach 

channel failure could be cut in the middle of dike embankment for evaluating the 

development of pore water pressure and the stages of erosion process.  

 

1.7  Thesis outlines 

 

Chapter 1: Explain the background of dikes embankments and the potential 

failures affecting them. The features of dike embankment, the inherent dangers in 

terms of economic and human losses due to overtopping failure and the description of 

slope stability analysis are briefly discussed. The scope and objectives of this research 

and the research significance are described. 

Chapter 2: Literature reviews related to research objectives. The detailed 

depiction for the definition of dike embankments, types of dike materials and the 
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historical construction of dikes are illustrated. The literature reviews focus on 

describing the overtopping failure mechanism and constructing a laboratory model 

due to overtopping failure. The fundamental and comprehensive theory for the 

mechanism of unsaturated soil is presented, and the behaviour of seepage flow 

functions is discussed in details. The identified research gap of this study is presented. 

Chapter 3: Discussion on the detailed information of dikes, flume channel 

geometries and the physical experimental test setup for 2D and 3D spatial 

overtopping. The comprehensive methodologies in describing the unsaturated–

saturated seepage flow and slope stability analyses and numerical modelling are 

explained in detail. 

Chapter 4: Presentation of the results of soil classification, laboratory tests and 

the responses of negative pore water pressure, volumetric water contents and water 

level distributions determined by physical tests. The vertical and horizontal erosions 

constructed in the small flume channel are investigated. In addition, FOS analysis is 

performed on the basis of stability analysis. 

Chapter 5: Summaries of the conclusion of the research study with a list of 

references presented at the end of the study. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

 

 

2.1 Introduction 

 

The design and maintenance of dike construction have considerable impact on 

people’s lives and properties (Kakinuma and Shimizu, 2014). These design include 

the observation of the erosion occurrence inside the dike during overtopping failure 

(Mizutani et al., 2013). Overtopping failures occur when water flow over the 

downstream slopes and continues until dike height gradually reduced due to erosion. 

During this process, water velocity increases (Visser, 1998). Dikes is an earthen 

embankment (gravel or sand materials) used to protect endangered regions and their 

population from seasonal floods. The dike body is much smaller than the dam and 

they are used for the protection of sea, river and lake water. The shape of dike 

embankment is trapezoidal with different geometrical dimensions and material 

characteristics provide their water retaining capacity. The most important dike 

elements are crest, outer slope (downstream slope) and inner slope (upstream slope). 

The crest of a dike is the highest part of it. Its height is depending on the design water 

levels, the increase of high water levels during the expected lifecycle of the 

construction, the local increases in the water levels and the strength properties of the 

soil that may lead to a settlement (TAW, 1999). The upstream slope is directly related 

with the sea or lake dike whereas it could resist the loading that is caused by the 

waves. The angle of the upstream slope has direct relations with the seepage of water 

flow and slope stability.  
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The presence of downstream slope is also important to overcome the wave of 

overtopping flow or during long period of precipitation. It is also essential in reducing 

the effect of lateral stability especially in cases of very high water levels. Due to the 

construction of dike embankment separate between the river and land, they are 

supposed to different failure modes due to water wave. Foster (2000) investigated 

different failure modes for most popular dike embankment prior to 1986. He stated 

that 136 dikes are failed out of 11.192 with average failure frequency of 1.2%. Other 

studies conducted by ICOLD, for 135 dams with more than 15 m height, imply that 

72% of earthfill dikes and 28% of concrete dame were failed. There are four main 

causes of failure for dike embankment; overtopping, piping, erosion, seismic loading 

and slope instabilities. According to Singh (1996), the most common failure of dikes 

and earthfill dams is overtopping. For the past 300 years, 2,000 human lives have 

been lost from the collapse of earthfill embankments (Tsakiris et al., 2010). The 

embankment breach flow is one of the common problem occur in Bangladesh 

because of the unique topography, river system and rainfall pattern over the year. The 

mean annual rainfall within Bangladesh varies from 1250mm to 5700mm.  

Over the years, the river channels are silted up with sediments composed of fine 

sands and silts causing a block of river flow and thus resulted in overbank flow and 

embankment failure. In Japan, most of the dike breach flood disasters occurred by 

heavy rainfall. In 2000, the heavy rainfall attacked Nagoya metropolitan area, and the 

city perfectly loss the function. In 2004, 10 typhoon hitting Japan islands due to 

heavy rainfall and caused dike breach at many rivers whereas more than 200 people 

were killed (Islam and Tsujimoto, 2012). Flood are common occurrence in Malaysia, 

but the recent monsoon flood from December 2014 to January 2015 was regarded as 

one of the more devastating flood to hit Malaysia in recent decades, with more than 
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10000 flood victims evacuated from their homes (Ismail and Haghroosta, 2014). In 

Sabah, Malaysia, the main factors causing slope failure (including embankment) are 

natural (geology, meteorology, topography and drainage system and human factors 

(lack of proper planning, human activities and communities’ attitude) whereas 

failures in embankment are higher compared with other failures in rock slope (Roslee 

and Tongkul, 2018). .Floods usually occurs in Indonesia due to the local rainfall 

overwhelms the drainage capacity of the local canals and thus cause the local canals 

to overtop. However, the most dangerous overtopping embankment failure of January 

2013 occurred in Jakarta due to the overtopping failure effect on WDC at 

Laturharhari and resulted in sending deluge of upstream water into the city centre 

whereas 41 deaths ensued (Bricker et al., 2014). Erosion is the main cause of dike 

failure (Al-Riffai and Nestor, 2011). Morris et al. (2007) suggested that the 

relationship between matric suction and volumetric water content during overtopping 

failure depends on various geotechnical and hydraulic properties of the dike soil, such 

as water content and dry density. Table 2.1 shows that overtopping failure is the main 

cause of huge losses in people’s lives and finances. The breach channel is extended in 

horizontal and vertical directions up to the upstream slope as shown in Figure 2.1. 

 

 

 

Table 2.1: Selected dike failures due to overtopping flow (Singh and Quiroga, 1988; 

Weiming et al., 2011; Serre at al., 2017) 

 

Fatalities Name Date 

2200 South Fork Dike, Massachusetts  1889 

125 Orós Dike, Brazil  1972 

85600 Banqiao Dike, China 1975 

2000 Machhu II Dike, India 1979 

‹2000 Yangtze River Dike, china 1998 

36 Languedoc Dike, France 1999 

1118  New Orleans dike, USA 2005 

41 Vendée dike, France 2010 
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Figure 2.1: Side view of final breach channel on downstream slope (left) Morris, 

2002b (right) Morris, 2002c 

 

 

The types of dike embankments include river dikes, coastal dikes, earthfill 

dams and rockfill dams. The dangerous of overtopping failure for dike embankment is 

dependent on scale of earthfill dike, dike materials, height of reservoir water level in 

the upstream slope, loss of life and economic loss. Between 1900 and 1969, the 

percentage failure rate for earthfill embankments constructed in Western Europe was 

1.2%, second only to buttress dams, while 74% of construction failures were 

attributed to earthfill dikes in China and other parts of the world (Costa, 1985). Dike 

embankment heights are directly related to potential failure, whereas about 83% of 

dike failures in the US occur in dike embankments lower than 15 m (Zhang, 2009). 

Small reservoir size can also be considered a high risk for embankment breach during 

overtopping failure. The Archus Creek Dam, which is 7 m high, was breached by a 

five-year return period storm which produced only a little amount of precipitation (11 

cm) for a few hours (Newhouse et al. 2010). Overtopping failures also increase the 

potential hazards of dike embankments, with hazards categorised as low, significant 

and high, as shown in Table 2.2 (FEMA, 2004). Breach channel failure increases the 
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possibility of potential hazards. Of the 85,000 dams in the US, more than 15,000 have 

high risk hazards, while approximately 4,000 dams are considered unsafe (ASCE, 

2009). An accurate analysis of potential hazards requires flood mapping and hazard 

mitigation teams and insurance and asset management companies to assist in hazard 

assessment and prevent risks 

 

           Table 2.2: Hazard potential classification System (FEMA, 2004) 

Category Loss of human lives Economic loss 

 

Low Non expected Low; limited to owner 

Significant Non expected Yes 

High  Probable. One or more expected Yes, although not necessary 

for this classification 

 

This chapter provides an overview of the current literature related to the failure 

of dike embankment from overtopping, and it concludes with a description of dikes, 

dike materials and dike construction. Overtopping flow behaviours and regimes are 

highlighted, and two types of planar and spatial breach failures with selected physical 

experimental tests are covered. Finally, the mechanics of seepage flow in unsaturated 

soil, soil water characteristic curve (SWCC), shear strength and slope stability and its 

interaction with dike properties are demonstrated. 

 

2.2  Description of dike construction and overtopping breach 

2.2.1  Dike definition 

 

A dike is an embankment constructed from earth or other suitable materials to 

prevent or reduce the effects of water damage on people and property, control flow in 

conjunction with a floodway and provide power generation and sediment retention 

(Costa, 1985; Foster et al., 2000). Dikes have simple construction designs and are 
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constructed from loosely placed sediments like gravel, sand, silt and clay. Dikes have 

no cores, and surface seals are built into the embankment body that is temporarily 

exposed to high water pressure. Despite their similarities, dike and dams have major 

differences in engineering design and objectives, differences that play important roles 

in determining the main functions of these structures. Dike embankments are shorter 

compared to dams. Earth dams have generally larger upstream–downstream head 

differences compared to dikes (Zhu, 2006) as shown in Figures 2.2. Dikes usually 

have poor foundations because they are constructed on heterogeneous soil often taken 

from the vicinity of a river bed (Schmocker et al., 2011). 

 

                     Figure 2.2: Component parts of dike embankment (Kreuter, 1921) 

 

 

2.2.2   Characteristics of dike materials  

 

 

A dike is usually constructed in a trapezoidal cross-section shape. The dike 

body is composed of earth-filled materials, such as cohesive soil (silt or clay), or non-

cohesive materials (gravel or sand). Most earthfill dams are constructed with 

homogeneous materials, which increase the number of modern dams with impervious 

cores (Jansen et al., 1988). The preferred material for dike embankment construction 
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is fine-grained soil, which is dependent on water content and the degree of 

compaction (Brown, 2004). Dikes can contain a homogeneous material, such as sand, 

or composite materials containing two or three types of soil. The dike body usually 

contains homogeneous sand or gravel or composite materials depending of dike 

design (Dupont et al., 2007; Wu and Wang, 2008). Seepage problems that start on the 

downstream slope of a dike embankment can also be decreased using drainage 

elements, such as toe drains, on the base of the upstream slope (Coleman et al., 2002; 

Pickert et al., 2004). The toe drain should be designed properly with appropriate 

particle gradation to avoid an increase in pore water pressure between different soil 

materials and prevent the migration of fine particles through overtopping failure as 

shown in Figure 2.3.  

 

 

Figure 2.3: Homogeneous dike showing the upstream, downsteam slopes, and 

toe drain (Kunitomo, 2000) 

 

2.2.3     History of dike construction 

 

 

The dikes embankments have been constructed to prevent the occurring of 

overtopping failure (Xu and Zhang, 2009). The first dams were simple earth walls 

created from soil adjacent to rivers and oceans. Dikes, however, have been subjected 

to a series of dangerous failures due to deficiencies in knowledge on hydrology, 
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hydraulics, and geotechnical information (Singh and Scarlatos, 1988). A dike is 

designed based on a location’s record of the highest or most recent flood that 

occurred. Recent developments in river engineering have contributed significantly in 

constructing dikes with appropriate geometrical specifications, therefore increasing 

good services in navigation routes and protecting settlements and agricultural lands 

from flooding, as shown in Figure 2.4 (Albers, T. 2014). 

 

 

                  Figure 2.4 Ancient dike's construction in California, USA, 1928 (Albers, T., 2014) 

 

 

 The first rudimentary dikes were built in Europe during the early Middle Ages, 

particularly in the 9th century on the Rhine River and in the 12th century on the Elbe 

River. In the Netherlands, the first dike was constructed in the 13th century. Large 

dikes with two simple fence walls backfilled with loose soil material were also being 

built in the Netherlands and Germany at the time. Dikes from the Middle Ages have 

varied soil content which originated from local barrow areas. Knowledge on the 

challenges and dangers surrounding dikes and the required engineering steps to 



                      20 

  

counter failures developed during the 18th century. The first book to describe the 

construction requirements of dikes was first published by Albert Brahms (1692–

1758), and it is still used as a reference today. The Linth structure in Switzerland was 

one of the most important water projects in 1784. It served as a diversion for the Linth 

River into Lake Walen and a canal between Lake Walen and Lake Zurich. The 

diversion was useful to overcome flooding, which threatened nearby towns, and 

protect agricultural land. Dike construction increased in the 19th century with the 

development of the steam engine, which revolutionised vehicles and construction 

equipment. Different canal constructions were initiated all around the world, such as 

the Suez Canal, which opened in 1869, and the Panama Canal, which opened in 1914. 

These canals have contributed primarily to water diversion projects. According to 

scientific curriculum and engineering designs, specific guidelines are used in the 

planning of dike construction (USACE 2000a), and the general shape of dikes has not 

changed over the years. Figure 2.5 shows a typical cross section of a dike 

embankment (DWA, 2011) with basic components, such as body, crest and land and 

water berms.  

In the Netherlands, dike geometry characteristics are controlled by three main 

features: geometry of the sea, rivers and lakes. The forms of dike geometry differ 

from site to site and are primary dependent on the loading on these sites. Storms, with 

their short durations and high wave attack degrees, play a major role in shedding 

loads on lake dikes. The parts of a dike, such as its outer slope, crest height and 

revetment, should be designed properly to withstand the external water load. The 

inner slope and berm of river dikes should be well maintained to prevent piping 

failure resulting from long periods of high water loading. 
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                Figure 2.5 Dike's side view of dike embankment, DWA (2011)  

 

 

The revetment along the upstream slope prevents or reduces the effect of 

erosion on the widening dike breach channel. In the Netherlands, the different types 

of revetments are grass, rocks, blocks and asphalt. Dike geometry and classification 

play important roles in the distribution of revetment types. Aside from the usual 

single revetment, a dike can use a combination of two types of revetments, such as 

blocks with filters on clay, grass on clay and asphalt on sand. Design guidelines 

specify the information needed for dike construction (USACE, 1979; USBR, 1988). 

These guidelines also provide information on water level design to determine the 

freeboard and the required dike crest elevation. The dike cross-section is defined 

based on the crest width, dike slope and possible berms and maintenance tracks. 

Seepage control is controlled either by the dike body or by additional elements in the 

construction system, such as spillways (Kirkpatrick, 1977). Once all the above-

mentioned information has been considered, dike stability, hydraulic and structural 

safety and usability should be determined. 
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2.3  Types of dike failure 

 

Increasing the percentage of water content inside dike’s soil particles is 

occurred due to severe failures such as slope instability, earthquake loading, 

overtopping and piping. The causes of these failures is due to downed tree of on levee 

slope, animal burrows, Seepage through pervious levee material, Seepage following 

tree root paths, lack of maintenance, poor construction, poor spillway efficiency, 

earthquake, Corrosion and piping around riser and conduit, and the heavy rain. 

Although earthquake failure is uncommon, it induces an increasing internal pore 

water pressure and reduces the strength of materials and slope stability (Foster et al., 

2000; Zhang et al., 2009). The collapse of soil could be occurred in downstream and 

upstream slopes and can lower the crest significantly. Piping failure is the penetration 

of water level inside dike soil due to the weakness of the upstream slope, 

consequently causing the successive removal of large particles along the base of dike 

embankment (Linsley and Franzini, 1964). A long path of water upstream starts inside 

the dike owing to increasing pore water pressure, and thus, backward particle erosion 

occurs at the toe of the downstream slope, helping to form conduits inside the dike 

(Omer, 2006).  

Slope instability is one of the most common failures that occur inside dike 

embankments for upstream and downstream slopes during transient water flow and 

sudden drawdown. For the latter case, the sudden drop in water prevents water from 

flowing out of particles faster, consequently causing a slow reduction in water 

content. The failure occurs due to reduced soil strength for cohesive and non-cohesive 

dike materials. Therefore, understanding the behaviour of pore water pressure and 

matric suction under different types of soil is essential (Blight, 1997). The effect of 
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rainfall infiltration on the saturation of saturated–unsaturated dike embankment 

models and leading to dike slope collapse has also been studied by researchers (Lumb, 

1962; Mein and Larson, 1973; Sun et al., 1998; Thielen et al., 2005; Huang et al., 

2014; Orlandini et al., 2015; Sumi et al., 2016). (Huang et al., 2014) have studied the 

mechanism of Chiuliao levee failure due to an extreme rainfall event during the 

Typhoon Morakot. They analysed the failure mechanism based on the variation in 

water levels in both sides of levee. They have observed main four failure mechanism. 

The first mechanism includes the determination of FOS of slope under the hydrostatic 

condition and various water levels.  

The FOS of levee slope is stable and cannot fail. The second mechanism 

includes the FOS analysis under steady state condition. The levee slope may fail due 

to attachment of water level near the levee crest. The third and fourth failures involves 

the sliding and overturning failure of levee foundation. The occurrence of sliding 

failure in levee foundation is highly predicted compared with overturning one. (Sumi 

et al., 2016) conducted series of vibration loading experiments for different moisture 

content to clarify the relationship between the volumetric water content with elapsed 

time after rainfall and the scale of slope failure. The rainfall behaviour were simulated 

using an artificial rain while model slope was subjected to seismic wave loading using 

a shaking table. The results show that the volumetric water content has a significant 

effect on the slope stability in which it leads to the occurrence of sliding failure and 

soil collapse when the percentage of water content is low. On the other hand, when 

the volumetric water content is high, the settlement failure in the dike crest is 

occurred without eroding the sliding surface. Continuous maintenance and risk 

evaluation can reduce the potential failure of dike slopes during the saturation of 
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water infiltration (Aryal and Sandven 2005; Aryal et al., 2004). Figure 2.6 shows the 

sketches for overtopping flow, piping and sliding inner slope failures 

 

 

                          (a) 

 

 

                                                                                  (b) 

 

                                                                                 (c) 

Figure 2.6: Sketches of (a) piping failure; (b) sliding inner slope; and overtopping 

flow failures (Rebour et al., 2016) 
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