THE USE OF POLYHYDROXYALKANOATE SYNTHASE (PHAC ${ }_{\text {bP-m-CPF4 }}$) AND NEWLY IDENTIFIED ENOYL-COA HYDRATASE (PHAJss) FOR THE PRODUCTION OF POLY[(R)-3-HYDROXYBUTYRATE-CO-(R)-3HYDROXYHEXANOATE]

TAN HUA TIANG

UNIVERSITI SAINS MALAYSIA

THE USE OF POLYHYDROXYALKANOATE SYNTHASE (PHAC ${ }_{\text {BP-m-CPF4 }}$) AND NEWLY IDENTIFIED ENOYL-COA HYDRATASE (PHAJss) FOR THE PRODUCTION OF POLY[(R)-3-HYDROXYBUTYRATE-CO-(R)-3HYDROXYHEXANOATE]

TAN HUA TIANG

Thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

December 2020

ACKNOWLEDGEMENT

The completion of my doctoral degree in Universiti Sains Malaysia would not have been possible without the support and guidance from many wonderful individuals. I am grateful for their supports throughout the whole journey of my doctoral study.

I would like to take this opportunity to express my sincere gratitude and deepest appreciation to my research supervisor Professor Dr. K. Sudesh Kumar for accepting me as a doctoral student and for introducing me to polyhydroxyalkanoates (PHA). His valuable advice, constructive suggestions and encouragement have enabled me to complete my research project successfully.

I would like to express my heartfelt appreciation to members of Ecobiomaterial Research Laboratory, for creating such a collegial work environment, especially to Dr. Foong Choon Pin who had helped me get started with PHA research. I would also like to convey my thanks to members of the laboratory for their help and I would forever cherish the wonderful moments we've spent together.

I would also like to express my deepest appreciation to Professor Dr. Toshio Hakoshima for allowing me to conduct part of my study in his laboratory at Nara Institute of Science and Technology (NAIST). His guidance and scientific views are very helpful and valuable. My utmost gratitude goes to Dr. Chek Min Fey, Dr. Kim Sun Yong and Dr. Tomoyuki Mori for their time, patience and guidance. Their willingness in teaching me skills and techniques which are indispensable to the field of my study has enabled the efficient execution of my project. I would also like to convey my thanks to the members of Structural Biology Laboratory, for their kindness and warm hospitality which has made my stay in Japan a pleasant and enjoyable one.

I am grateful to the Ministry of Higher Education, Malaysia for awarding me with MyBrainSc scholarship, which has provided me financial support throughout my research period. I would also like to acknowledge Universiti Sains Malaysia and NAIST for the funding throughout my 14-month research period in Japan.

Last but not least, I would like to express my deepest gratitude to my family for their boundless support and love which has kept me motivated to complete this research project.

TABLE OF CONTENTS

ACKNOWLEDGEMENT ii
TABLE OF CONTENTS iv
LIST OF TABLES
LIST OF FIGURES xii
LIST OF UNITS AND SYMBOLS xix
LIST OF ABBREVIATIONS xxii
LIST OF APPENDICES xxvii
ABSTRAK xxviii
ABSTRACT xxx
CHAPTER 1 INTRODUCTION 1
1.1 Overview 1
1.2 Objectives of this study 5
CHAPTER 2 LITERATURE REVIEW. 6
2.1 Plastics 6
2.2 Bio-based polymer 7
2.3 PHA 8
2.4 Metabolic pathways of PHA biosynthesis 11
2.5 The key enzyme in PHA biosynthesis: PhaC 15
2.6 Types of PHA 17
2.6.1 $\mathrm{P}(3 \mathrm{HB})$ 17
2.6.2 $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HV})$ 18
2.6.3 $\mathrm{P}(3 \mathrm{HB}-$ co- 3 HHx$)$ 19
2.6.4 $\mathrm{P}(3 \mathrm{HB}-$ co- 4 HB$)$ 20
2.6.5 PHA with unusual monomers 21
2.7 Application of PHA 21
2.8 PhaC for SCL-MCL-PHA production 22
2.8.1 PhaC from Aeromonas caviae 22
2.8.2 PhaC from Chromobacterium sp. USM2 23
2.8.3 PhaC from Rhodococcus aethirovorans I24 24
2.8.4 BP-M-CPF4 PhaC 24
2.8.5 PhaC from Pseudomonas sp. 61-3 25
2.9 Metabolic engineering of PHA producing strains 25
2.10 Enoyl-CoA hydratase 27
2.10.1 PhaJ of Aeromonas caviae 28
2.10.2 PhaJs of Pseudomonas aeruginosa 28
2.11 Engineering of PhaCs 38
CHAPTER 3 MATERIALS AND METHODS 32
3.1 General techniques 32
3.1.1 Aseptic technique 32
3.1.2 Sterilization 32
3.1.3 Measurement of optical density (OD) and pH 32
3.2 Media preparation 33
3.2.1 Lysogeny broth (LB) 33
3.2.2 Nutrient rich (NR) medium 33
3.2.3 Simmons citrate agar 34
3.2.4 Tryptic soy broth (TSB) 34
3.2.5 Mineral salts medium (MM) 34
3.2.6 Super Optimal broth with Catabolite repression (SOC) medium 35
3.2.7 Preparation of antibiotic stock solutions 35
3.3 Carbon Source 36
3.3.1 Palm olein (PO) 36
3.3.2 Crude palm kernel oil (CPKO) 36
3.3.3 Fructose 36
3.4 Bacterial strains and plasmids 37
3.5 General molecular biology techniques 40
3.5.1 Primer design 40
3.5.2 Genomic DNA extraction 40
3.5.3 Plasmid extraction 41
3.5.4 DNA quantification 42
3.5.5 Preparation of chemically competent cells 42
3.5.6 Agarose gel electrophoresis 43
3.5.7 Polymerase chain reaction (PCR) 44
3.5.8 Gel purification 48
3.5.9 PCR product purification 49
3.5.10 Digestion of PCR product and plasmid vector by restriction enzyme 49
3.5.11 Cloning 50
3.5.11(a) Ligation 50
3.5.11(b) In-Fusion Reaction 50
3.5.12 Transformation of plasmid DNA into E. coli 52
3.5.13 Colony PCR 52
3.5.14 Bacterial transconjugation 54
3.5.15 General Bioinformatics analysis of PhaJ (Protein sequence alignment) 55
3.5.16 DNA sequencing 55
3.5.17 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS- PAGE) 56
3.5.18 Protein quantification 59
3.6 Construction of transformants 59
3.6.1 Construction of C. necator transformants harboring phaC C_{s} 59
3.6.2 Construction of C. necator transformants harboring phaC $C_{\mathrm{BP}-\mathrm{M}-}$ CPF4 61
3.6.3 Construction of C. necator transformant harboring pBBR1-CBP-M- CPF4_SwaI_RS and pBBR1-CBP-M-CPF4 $\mathrm{J}_{S \mathrm{~s}}$ 62
3.6.4 Construction of E. coli Rosetta2 (DE3) transformants harboring $\mathrm{pET} 47 \mathrm{~b}(+) p h a C_{\mathrm{Cs}}$ and $\mathrm{pET} 47 \mathrm{~b}(+) p h a C_{\mathrm{BP}-\mathrm{M}-\mathrm{CPF}}$ 65
3.7 Evaluation of PHA biosynthesis by C. necator transformants 66
3.7.1 Cultivation in shake flasks 66
3.7.2 Harvesting 67
3.7.3 Analysis of PHA 67
3.7.1(a) Dry cell weight (DCW) calculations 67
3.7.2(b) Determination of PHA content and monomer composition 68
3.7.3(c) Molecular weight determination of PHA 71
3.8 Expression of PhaC 72
3.9 Purification of PhaCs 72
3.9.1 Sonication of the bacterial cells 72
3.9.2 His-tag protein purification 73
3.9.3 Recovery of His-tagged $\mathrm{PhaC}_{\mathrm{BP}-\mathrm{M}-\mathrm{CPF} 4}$ from the cell pellet 73
3.9.4 Ion-exchange chromatography 74
3.9.5 Size exclusion chromatography 75
3.9.6 Matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF MS) 75
3.10 In vitro enzymatic assay of PhaCs 75
3.11 Statistical analysis 76
CHAPTER 4 RESULTS 77
4.1 Construction of C. necator transformants with $\mathrm{PhaC}_{\mathrm{BP}-\mathrm{M}-\mathrm{CPF}}$ and PhaC_{C} 77
4.2 $\mathrm{P}\left(3 \mathrm{HB}-\right.$ co- 3 HHx) copolymer biosynthesized by $\mathrm{PhaC}_{\text {BP-M-CPF4 }}$ from PO 78
4.3 P(3HB-co-3HHx) copolymer biosynthesized by PhaСвР-м-срғ4 from СРКО 81
4.4 P(3HB-co-3HHx) copolymer biosynthesized by $\mathrm{PhaC}_{c \mathrm{~s}}$ from CPKO 85
4.5 $\mathrm{P}\left(3 \mathrm{HB}-\right.$ co-3HHx) copolymer biosynthesized by $\mathrm{PhaC}_{\text {bp-м-сPғ4 }}$ and $\mathrm{PhaC}_{\text {c }}$ from fructose 88
4.6 Purification of PhaСвР-м-сРF4 90
4.6.1 Purification without addition Tween-20 in lysis buffer during sonication 92
4.6.1(a) Ni-NTA purification of His-tagged PhaCbp-м-срғ4 92
4.6.2 Recovery of His-tagged $\mathrm{PhaC}_{\text {BP-M-CPF4 }}$ from the cell pellet 94
4.6.3 Purification with addition of 0.5% Tween-20 in lysis buffer during sonication 96
4.6.3(a) Ni-NTA purification of His-tagged PhaCbP-м-срF4 96
4.6.3(b) Purification of PhaCвP-м-сPF4 by ion-exchange chromatography 98
4.6.3(c) Purification of PhaC $_{\text {bP-m-CPF4 }}$ by size exclusion chromatography 101
4.6.3(d) MALDI-TOF MS of size exclusion chromatography purified PhaCbp-м-сРғ4 103
4.7 Purification of $\mathrm{PhaC}_{c s}$ 105
4.7.1 $\quad \mathrm{Ni}-\mathrm{NTA}$ purification of His-tagged $\mathrm{PhaC}_{C S}$ 107
4.7.2 Purification of $\mathrm{PhaC}_{C s}$ by ion-exchange chromatography 109
4.7.3 Purification of $\mathrm{PhaC}_{C s}$ by size exclusion chromatography 111
4.7.4 MALDI-TOF MS of size exclusion chromatography purified $\mathrm{PhaC}_{c s}$ 113
4.8 In vitro enzymatic activity of purified $\mathrm{PhaC}_{\mathrm{BP}-\mathrm{M}-\mathrm{CPF} 4}$ and $\mathrm{PhaC}_{C \mathrm{~s}}$ 115
4.9 Bioinformatics analysis of putative PhaJ from Streptomyces sp. strain CFMR7 117
4.10 Heterologous co-expression of uncharacterized PhaJ ($\mathrm{PhaJ}_{S_{\mathrm{s}}}$) with $\mathrm{PhaC}_{\mathrm{BP}-\mathrm{M}-}$ CPF4 122
CHAPTER 5 DISCUSSION 126
5.1 Construction of PhaC BP-M-CPF4 $^{\text {transformants and } \mathrm{PhaC}_{C s} \text { transformants }}$ 126
5.2 $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ copolymer biosynthesis by using plant oil as sole carbon source 128
5.3 P(3HB-co-3HHx) copolymer biosynthesized by PhaCbP-м-сPF4 and $\mathrm{PhaC}_{C s}$ transformants 131
5.4 Purification and in vitro study of $\mathrm{PhaC}_{\text {BP-м-CPF4 }}$ and $\mathrm{PhaC}_{C s}$ 142
5.5 Heterologous co-expression of uncharacterized PhaJ (PhaJ ${ }_{s s}$) with $\mathrm{PhaC}_{\text {BP-M- }}$ CPF4 147
CHAPTER 6 CONCLUSION 150
CHAPTER 7 RECOMMENDATIONS FOR FUTURE WORK 152
REFERENCES 154
APPENDICES
LIST OF PUBLICATIONS

LIST OF TABLES

Page

Table 2.1 Examples of bio-based polymers 8
Table 2.2 Classes of PhaCs based on substrate specificity and subunit composition. 16
Table 3.1 List of plasmids and bacterial strains used in this study. 37
Table 3.2 Oligonucleotides used in the construction of plasmids. 45
Table 3.3 PCR reaction mixture for amplification of plasmid vector, phaCs and phaJss 46
Table 3.4 Thermocycling condition for amplification of plasmid vector, phaCs and $p h a J_{\mathrm{Ss}}$ 46
Table 3.5 The pairing of the primers, DNA template and PCR product 47
Table 3.6 Ligation reaction mixture 51
Table 3.7 In-Fusion reaction mixture 51
Table 3.8 PCR reaction mixture for colony PCR 53
Table 3.9 Thermocycling condition for colony PCR. 53
Table 3.10 Components of sodium dodecyl sulfate polyacrylamide gel. 57
Table 3.11 Components of $5 \times$ Laemmli buffer 58
Table 3.12 Components of Mori Blue staining solution. 58
Table 3.13 Reaction mixture of PhaC activity assays 76
Table 4.1 PHA production in C. necator transformants harboring pha BP-м $^{\text {в }}$ CPF4 by using $6 \mathrm{~g} / \mathrm{L}$ of PO^{b}. 79
Table 4.2 Molecular weights of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ synthesized by C. necator transformants harboring $p h a C_{\mathrm{BP}-\mathrm{M}-\mathrm{CPF} 4}$ from PO 80
Table 4.3 PHA production in C. necator transformants harboring $p h a C_{\mathrm{BP}-\mathrm{m}}$ CPF4 by using $6 \mathrm{~g} / \mathrm{L}$ of $\mathrm{CPKO}^{\mathrm{b}}$. 82
Table 4.4 Molecular weights of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ synthesized by C. necator transformants harboring $p h a C_{\mathrm{BP}-\mathrm{M}-\mathrm{CPF}}$ from CPKO. 83
Table 4.5 PHA production in C. necator transformants harboring $p h a C_{\mathrm{Cs}}$ by using $6 \mathrm{~g} / \mathrm{L}$ of $\mathrm{CPKO}^{\mathrm{b}}$. 86
Table 4.6 Molecular weights of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ synthesized by C. necator transformants harboring pha C_{Cs} from CPKO 87Table 4.7 PHA production in C. necator transformants harboring $p h a C_{\mathrm{BP}-\mathrm{M}}$ -CPF4 or pha $C_{\text {Cs }}$ by using fructose and the corresponding molecularweights ${ }^{\text {a }}$.89
Table 4.8 Percent Identity Matrix created by Clustal 2.1 for putative enoyl-CoA hydratase from Streptomyces sp. CFMR 7 with other wellcharacterized PhaJs $\left(\mathrm{PhaJ}_{A c}, \mathrm{PhaJ} 1_{P a}, \mathrm{PhaJ} 2_{P a}, \mathrm{PhaJ} 3_{P a}\right.$ andPhaJ4Pa)120
Table $4.9 \quad$ PHA production in C. necator transformants harboring $p h a C_{\mathrm{BP}-\mathrm{M}-}$CPF4 and phaJ ${ }_{\text {Ss }}$ by using different carbon sources ${ }^{\text {b }}$.124
Table 4.10 Molecular weights of $\mathrm{P}(3 \mathrm{HB}-$ co- 3 HHx$)$ synthesized by C. necatortransformants harboring phaC $C_{\mathrm{BP}-\mathrm{M}-\mathrm{CPF4}}$ and $p h a J_{\mathrm{Ss}}$ by usingdifferent carbon sources.125

LIST OF FIGURES

Page

Figure 2.1 General chemical structure of PHA. ' x ' represents the carbon chain in the linear polyester structure while ' R ' represents the variable hydrocarbon side chains. ' n ' represents number of repeating units.

Figure 2.2 Metabolic pathway of PHA biosynthesis. Black box, blue box, red box and yellow box represent the pathway of $\mathrm{P}(3 \mathrm{HB}), \mathrm{P}(3 \mathrm{HB}-$ co$3 \mathrm{HV}), \mathrm{P}(3 \mathrm{HB}-$ co $-4 \mathrm{HB})$ and $\mathrm{P}(3 \mathrm{HB}-c o-3 \mathrm{HHx})$ production, respectively

Figure 2.3 Chemical structure of $\mathrm{P}(3 \mathrm{HB})$. ' n ' represents number of repeating units17

Figure 2.4 Chemical structure of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HV})$. ' x ' and ' y ' represent
repeating unit of each monomer. 18

Figure 2.5 Chemical structure of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$. ' x ' and ' y ' represent
repeating unit of each monomer. 19

Figure 2.6 Chemical structure of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-4 \mathrm{HB})$. ' x ' and ' y ' represent
repeating unit of each monomer. 20

Figure 3.1 Schematic drawing of genotypes of C. necator mutant host and recombinant plasmid pBBR1 and pHT1 harboring phaC ${ }_{\text {BP-M-CPF4 }}$
 $\left(\mathrm{J}_{S \mathrm{~s}}\right)$. The phaC1 was mutated or deleted in $\mathrm{PHB}^{-} 4$ or $\mathrm{H} 16 \Delta \mathrm{C}$, respectively. Re2160 has phaC1, phaB2, phaB3 and proC deleted from the genome. Re 2058 has $p h a C 1$ and proC deleted from the genome. Plasmid pBBR1 is pBBR1MCS-2 harboring C. necator phaCl promoter while plasmid pHT1 consists of C. necator phaC1 promoter, phaA A_{Cn}, phaJ 1_{Pa} and proC region (from the C. necator genome) cloned into pBBR1MCS-2. Those strains were the strains used for PHA biosynthesis study.

Figure 3.2 Schematic diagram showing the linearization of vector pHT 1 by removing the phaC2 of R. aetherivorans 124 from pCB113 using SwaI restriction enzyme

Figure 3.3 Schematic diagram showing the construction of $\mathrm{pHT} 1-\mathrm{C}_{C \mathrm{~s}}$ through ligation of linearized vector pHT 1 with phaC C_{Cs} using the $S w a \mathrm{I}$ restriction site.

Figure 3.4 Schematic diagram showing the construction of pHT1-C BP-M-CPF4 through ligation of linearized vector $\mathrm{pHT1}$ with $p h a C_{\text {вP-м-СPF4 }}$ using the $S w a \mathrm{I}$ restriction site.

Figure 3.5 Schematic diagram showing the linearization of vector pBBR1Clpro by the removal of $p h a C_{\text {BP-M-CPF4 }}$ from pBBR1-CBP-м-CPF4 using HindIII and ApaI restriction enzyme

Figure 3.6 Schematic diagram showing the construction of $\mathrm{pBBR} 1-\mathrm{C}_{\mathrm{BP}-\mathrm{m}}$ CPF4_SwaI_RS through ligation of linearized vector pBBR1-Clpro with $p h a C_{\text {BP-M-CPF4 }}$ with $S w a I$ restriction site

Figure 3.7 Schematic diagram showing the linearization of vector 5'-AAAT-pBBR1-Cbp-m-CPF4-ATTT-3' by digestion with SwaI restriction enzyme.

Figure 3.8 Schematic diagram showing the construction of pBBR1-C BP-M-CPF4 $\mathrm{J}_{S \mathrm{~s}}$ through the ligation of linearized vector 5'-AAAT-pBBR1-C ${ }_{B P}$ -м-CPF4-ATTT-3' with $p h a J_{S S}$ using the $S w a \mathrm{I}$ restriction site.

Figure 3.9 Schematic diagram showing the construction of pET47b(+) $p h a C_{\mathrm{Cs}}$ through In-Fusion cloning of $p h a C_{\mathrm{Cs}}$ into linearized vector $\mathrm{pET} 47 \mathrm{~b}(+)$. The red and yellow fragments at both vector and insert represent fragments involved in the In-Fusion reaction.

Figure 3.10 Schematic diagram showing the construction of pET47b(+) pha $C_{\text {BP-м-CPF4 }}$ through In-Fusion cloning of phaC $C_{\text {BP-м-CPF4 }}$ into linearized vector $\mathrm{pET} 47 \mathrm{~b}(+)$. The red and yellow fragments at both vector and insert represent fragments involved in the In-Fusion reaction.

Figure 4.1 Biosynthesis of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ copolymer by C. necator transformants harboring phaC $C_{\text {BP-м-CPF4, }}$ comparing $3 H H x$ monomer composition produced from PO (dotted) and CPKO (diagonal line), respectively. All the measurements were performed in triplicates. The standard deviations are indicated by error bars. The asterisk* represent the significant differences of 3 HHx composition produced using two-tailed independent t-test ($\mathrm{p}<0.05$)

Figure 4.2 The protein sequence of His-tagged PhaC $_{\text {BP-m-CpF4. }}$. Bold letters represented the polyhistidine-tag at the N -terminus of $\mathrm{PhaC}_{\mathrm{BP}-\mathrm{M}}$ CPF4. The cleavage site was indicated by an arrow.

Figure 4.3 SDS-PAGE profile of Ni-NTA agarose purified His-tagged PhaC ${ }_{\text {BP-M-CPF4 }}$ separated on a 12.5% gel. The target protein was overexpressed, but mainly in the pellet (white arrow) with a small portion in the supernatant (black arrow). Two additional protein bands were observed at 70 kDa and 75 kDa (black box). M , molecular standard (BenchMark ${ }^{\text {TM }}$ Protein Ladder, Thermo Scientific); S, supernatant (no. $1-3$ represent $1 \mu \mathrm{~L}, 3 \mu \mathrm{~L}$ and 5 $\mu \mathrm{L}$ of samples); P, cell pellet (no. $1-3$ represent $1 \mu \mathrm{~L}, 3 \mu \mathrm{~L}$ and 5 $\mu \mathrm{L}$ of samples); E, eluate (no. $1-5$); F, flow-through; W, wash fraction; R, resin.

Figure 4.4 SDS-PAGE profile of recovered His-tagged PhaC BP-M-CPF4 separated on a 12.5% gel. Screening of buffer that able to solubilize His-tagged PhaC BP-M-CPF4 from cell pellet. The buffers are: (1) 20 mM MES $\mathrm{pH} 6.0,300 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ DTT; (2) 20 mM HEPES pH 7.0, $300 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ DTT; (3) 20 mM Bis Tris Propane $\mathrm{pH} 9.0,300 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ DTT; (4) 20 mM TrisCl pH 8.0, $500 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ DTT; (5) 20 mM Tris-Cl pH 8.0, $300 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ DTT, 0.5% Tween-20; (6) 20 mM Tris-Cl $\mathrm{pH} 8.0,300 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ DTT, 2 M urea. The target protein was successfully recovered from cell pellet by Buffer 5 (white arrow). M, molecular standard (BenchMark ${ }^{\mathrm{TM}}$ Protein Ladder, Thermo Scientific); S, supernatant; P, cell pellet.............................. 95

Figure 4.5 SDS-PAGE profile of Ni-NTA agarose purified His-tagged PhaC ${ }_{\text {BP-м-CPF4 }}$ separated on a 12.5% gel. The target protein was successfully purified through Ni-NTA agarose purification (white arrow). M, molecular standard (BenchMark ${ }^{\mathrm{TM}}$ Protein Ladder, Thermo Scientific); S, supernatant (no. $1-3$ represent $1 \mu \mathrm{~L}, 3 \mu \mathrm{~L}$ and $5 \mu \mathrm{~L}$ of samples); P, cell pellet (no. $1-3$ represent $1 \mu \mathrm{~L}, 3 \mu \mathrm{~L}$ and $5 \mu \mathrm{~L}$ of samples); E, eluate (no. $1-5$); F, flow-through; W, wash fraction; R , resin.

Figure 4.6 (A) Chromatogram of ion-exchange chromatography for purification of $\mathrm{PhaC}_{\mathrm{BP}-\mathrm{m}-\mathrm{CPF} 4}$. The no. $1-40$ in red represents the 5 mL eluate fractions collected in increasing gradient from 100 mM NaCl to 1000 mM NaCl . The line in red represents conductivity of the detected samples while the line in blue represents the milli-absorbance unit (mAU). (B) SDS-PAGE profile of ion-exchange chromatography purified $\mathrm{PhaC}_{\text {вP-м-СРF4 }}$ separated on a 12.5% gel. Eluates (no. 16 - 19) with less impurities were marked with a red box. M, molecular standard (BenchMark ${ }^{\mathrm{TM}}$ Protein Ladder, Thermo Scientific); E, eluate (no. 7-23).

Figure 4.7 (A) Chromatogram of size exclusion chromatography for purification of PhaСвр-м-срғ4. The no. $1-40$ in red represents the 5 mL eluate fractions collected. The line in red represents conductivity of the detected samples while the line in blue represents the milli-absorbance unit (mAU). (B) SDS-PAGE profile of size exclusion chromatography purified PhaC ${ }_{\text {BP-M-CPF4 }}$ separated on a 12.5% gel. Eluates (no. 8 - 12) with less impurities were marked with a red box. M, molecular standard (BenchMark ${ }^{\mathrm{TM}}$ Protein Ladder, Thermo Scientific); E, eluate (no. $1-16$).

Figure 4.8 MALDI-TOF MS of size exclusion chromatography purified PhaC ${ }_{\text {BP-м-CPF4 }}$ from section 4.6.3c

Figure 4.9 The protein sequence of His-tagged PhaC_{C}. Bold letters represented the polyhistidine-tag at the N -terminus of $\mathrm{PhaC}_{C \text { s }}$. The cleavage site was indicated by an arrow.

Figure 4.10 SDS-PAGE profile of Ni-NTA agarose purified His-tagged $\mathrm{PhaC}_{C s}$ separated on a 12.5% gel. The target protein was successfully purified through Ni-NTA agarose purification (white arrow). M, molecular standard (BenchMark ${ }^{\mathrm{TM}}$ Protein Ladder, Thermo Scientific); S, supernatant (no. $1-3$ represent $1 \mu \mathrm{~L}, 3 \mu \mathrm{~L}$ and $5 \mu \mathrm{~L}$ of samples); P, cell pellet (no. $1-3$ represent $1 \mu \mathrm{~L}, 3 \mu \mathrm{~L}$ and $5 \mu \mathrm{~L}$ of samples); E, eluate (no. $1-5$); F, flow-through; W, wash fraction; R , resin.

Figure 4.11 (A) Chromatogram of ion-exchange chromatography for purification of $\mathrm{PhaC}_{C s}$. The no. $1-40$ in red represents the 5 mL eluate fractions collected in increasing gradient from 100 mM NaCl to 1000 mM NaCl . The line in red represents conductivity of the detected samples while the line in blue represents the milliabsorbance unit (mAU). (B) SDS-PAGE profile of ion-exchange chromatography purified $\mathrm{PhaC}_{C s}$ separated on a 12.5% gel. Eluates (no. $7-10$) with less impurities were marked with a red box. M, molecular standard (BenchMark ${ }^{\mathrm{TM}}$ Protein Ladder, Thermo Scientific); E, eluate (no. 3 - 16).

Figure 4.12 (A) Chromatogram of size exclusion chromatography for purification of $\mathrm{PhaC}_{C s}$. The no. $1-40$ in red represents the 5 mL eluate fractions collected. The line in red represents conductivity of the detected samples while the line in blue represents the milliabsorbance unit (mAU). (B) SDS-PAGE profile of size exclusion chromatography purified $\mathrm{PhaC}_{C s}$ separated on a 12.5% gel. $\mathrm{PhaC}_{C s}$ was successfully polished through size exclusion chromatography (white arrow). M, molecular standard (BenchMark ${ }^{\mathrm{TM}}$ Protein Ladder, Thermo Scientific); E, eluate (no. 8-24).

Figure 4.13 MALDI-TOF MS of size exclusion chromatography purified $\mathrm{PhaC}_{C s}$ from section 4.7.3.

Figure 4.14 In vitro enzymatic assay, comparing 250 nM PhaCBP-M-CPF4 (solid line) and $250 \mathrm{nM} \mathrm{PhaC}_{C s}$ (dashed line) polymerizing $200 \mu \mathrm{M}$ $(R)-3 \mathrm{HB}-\mathrm{CoA}$ at $30^{\circ} \mathrm{C}$. A control reaction without the enzyme was measured (dotted line). The red arrows indicate the lag phase of both enzymatic reactions. All the measurements were performed in triplicates. The standard deviations are indicated by error bars... 116

Figure 4.15 Alignment of the amino acid sequence of the putative enoyl-CoA hydratase from Streptomyces sp. strain CFMR 7 ($\mathrm{PhaJ}_{S s}$) with other well characterized PhaJs $\left(\mathrm{PhaJ}_{A c}, \mathrm{PhaJ} 1_{P a}, \mathrm{PhaJ} 2_{P a}, \mathrm{PhaJ} 3_{P a}\right.$ and PhaJ $4{ }_{P a}$). The amino acid sequences in the dashed box indicates the position of the hydratase two motif residues. Active residues, aspartic acid (D) and histidine (H), are bolded and can be found in the hydratase 2 motif. PhaJ ${ }_{A c}$, PhaJ of A. caviae; PhaJ $1_{P a}$, PhaJ1 of P. aeruginosa; PhaJ $2_{P a}$, PhaJ2 of P. aeruginosa; PhaJ3Pa, PhaJ3 of P. aeruginosa; PhaJ4Pa, PhaJ4 of P. aeruginosa.

Figure 4.16 Phylogenetic analysis of enoyl-CoA hydratase was done by using Neighbour-Joining method. Neighbour-joining method was applied at the bootstrap value of 1000 . Multiple sequence alignment of proteins and construction of the phylogenetic tree were conducted in MEGA7. The neighbour-joining method cladogram showing a phylogenetic relationship between putative enoyl-CoA hydratase from Streptomyces sp. strain CFMR 7 (PhaJ ${ }_{S s}$) with other characterized PhaJs $\left(\mathrm{PhaJ}_{A c}, \mathrm{PhaJ}_{1 \mathrm{~Pa}}, \mathrm{PhaJ} 2_{P a}\right.$, PhaJ3 $3_{P a}$ and PhaJ4 $4_{P a}$). PhaJ ${ }_{A c}$, PhaJ of A. caviae; PhaJ1 $1_{P a}$, PhaJ1 of P. aeruginosa; PhaJ $2_{P a}$, PhaJ2 of P. aeruginosa; PhaJ3 ${ }_{P a}$, PhaJ3 of P. aeruginosa; PhaJ4 $4_{P a}$, PhaJ4 of P. aeruginosa

Figure 5.1 Proposed pathway of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ biosynthesis from plant oil by the C. necator transformants. PhaA, β-ketothiolase; PhaB, NADPH-dependent acetoacetyl-CoA reductase; PhaC ${ }_{\text {BP-M-CPF4 }}$, PhaC isolated from mangrove metagenome; $\mathrm{PhaC}_{C \mathrm{~s}}, \mathrm{PhaC}$ from Chromobacterium sp. USM2; PhaJ1 $1_{P a}$, enoyl-CoA hydratase from P. aeruginosa ; C4, 4 Carbon intermediate; C6, 6 Carbon intermediate.

Figure 5.2 (A) The alignment of the amino acid sequences of the Class I PhaCs, which includes PhaC BP-m-CPF4 $\left(\mathrm{AXB} 72506\right.$), $\mathrm{PhaC}_{A c}$ from Aeromonas caviae (BAA21815), $\mathrm{PhaC}_{C s}$ from Chromobacterium sp. USM2 (ADL70203), and $\mathrm{PhaC}_{C n}$ from C. necator (AAW65074). The numbering of the amino acid was based on the sequence of PhaC BP-m-CPF4. The beneficial mutations, N149S and $^{\text {a }}$ D171G, of $\mathrm{PhaC}_{A c}$ correspond to the D120 and G142 of PhaC BP-MCPF4. (B) The catalytic pocket, Site A (circled with dashed line), of the crystal structure of the catalytic domain of the $\mathrm{PhaC}_{C S}(\mathrm{PDB}$: 5XAV). Residues H317, L404, and F409 of PhaC ${ }_{\text {bP-m-CPF4 }}$ correspond to the residues of the $\mathrm{PhaC}_{C s}$ in the catalytic pocket, Site A. The residues of both $\mathrm{PhaC}_{\mathrm{Cs}}(\mathrm{Cs})$ and $\mathrm{PhaC}_{\text {bP-m-CPF4 }}$ (BP) were labelled.

LIST OF UNITS AND SYMBOLS

α	Alpha
\sim	Approximately
β	Beta
Da	Dalton
${ }^{\circ} \mathrm{C}$	Degree Celsius
Δ	Delta
wt\%	Dry weight percent
γ	Gamma
GPa	Gigapascal
g	Gram
Hz	Hertz
h	Hour
∞	Infinity
kDa	Kilodalton
kPa	Kilopascal
L	Liter
MPa	Megapascal
$\mu \mathrm{g}$	Microgram

$\mu \mathrm{L}$	Microliter
$\mu \mathrm{M}$	Micromolar
mg	Milligram
mL	Milliliter
mM	Millimolar
\min	Minute
mol\%	Mole percent
ng	Nanogram
nm	Nanometer
nM	Nanomolar
\%	Percentage
\pm	Plus-minus
psi	Pounds per square inch
(R)	Rectus isomer
rpm	Revolutions per minute
s	Second
(S)	Sinister isomer
\times	Times
$\times g$	Times gravity

V	Volt
v/v	Volume per volume
w/v	Weight per volume

LIST OF ABBREVIATIONS

3 H 4 MV	3-hydroxy-4-methylvalerate
3 HB	3-hydroxybutyrate
3HB-CoA	3-hydroxybutyryl-CoA
3 HHp	3-hydroxyheptanoate
3 HHx	3-hydroxyhexanoate
$3 \mathrm{HHx}-\mathrm{CoA}$	3-hydroxyhexanoyl-CoA
3 HV	3-hydroxyvalerate
4HB	4-hydroxybutyrate
4HB-CoA	4-hydroxybutyryl-CoA
5HV	5-hydroxyvalerate
ANOVA	One-way analysis of variance
$\beta-\mathrm{ME}$	β-mercaptoethanol
CME	Caprylic methyl ester
CoA	coenzyme A
CPKO	Crude palm kernel oil
C-terminus	Carboxy-terminus
D	Aspartic acid
DCW	Dry cell weight

DNA	Deoxyribonucleic acid
dNTP	Deoxyribonucleoside triphosphate
DTNB	5,5'-dithio-bis-(2-nitrobenzoic acid)
DTT	Dithiothreitol
EDTA	Ethylenediaminetetraacetic acid
GC	Gas chromatography
gDNA	Genomic DNA
GPC	Gel permeation chromatography
H	Histidine
HA	Hydroxyacyl
HA-CoA	Hydroxyacyl-CoA
HPLC	High-performance liquid chromatography
IPTG	Isopropyl- β-D-thiogalactopyranoside
LB	lysogeny broth
LDPE	Low-density polyethylene
MALDI-TOF MS	Matrix-assisted laser desorption/ ionization time-offlight mass spectrometry
MEGA	Molecular Evolutionary Genetic Analysis
MM	Mineral salts medium

$M_{\text {w }}$	Weight-average molecular weight
$M_{\text {n }}$	Number-average molecular weight
$M_{\mathrm{w}} / M_{\mathrm{n}}$	Polydispersity index
NADPH	Reduced form nicotinamide adenine dinucleotide phosphate
NCBI	National Center for Biotechnology Information
Ni-NTA	Nickel-nitrilotriacetic acid
NR	Nutrient rich
$\mathrm{OD}_{412 \mathrm{~nm}}$	Optical density at wavelength 412 nm
$\mathrm{OD}_{600 \mathrm{~nm}}$	Optical density at wavelength 600 nm
$\mathrm{P}(3 \mathrm{HB})$	Poly(3-hydroxybutyrate)
$\mathrm{P}(3 \mathrm{HB}-$ co-3HHx)	Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)
$\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HV})$	Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
$\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-4 \mathrm{HB})$	Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)
PA	polyamide
PCR	Polymerase chain reaction
PE	polyethylene
PET	polyethylene terephthalate
pH	Potential of hydrogen
PHA	Polyhydroxyalkanoate

PhaA	Beta-ketothiolase
PhaB	NADPH-dependent acetoacetyl-CoA reductase
PhaC	PHA synthase
PhaE	PHA synthase subunit E
PhaG	3-hydroxyacyl-ACP-CoA transferase
PhaJ	(R)-specific enoyl-CoA hydratase
PhaP	Phasin
PhaR	PHA synthase subunit R
PhaZ	PHA depolymerase
PO	Palm olein
PP	Polypropylene
ProC	Pyrroline-5-carboxylate reductase
PS	Polystyrene
P-value	Probability value
PVC	Polyvinyl chloride
RBS	Ribosomal binding sites
SCL	Short-chain-length
SD	Standard deviation
SDS	Sodium dodecyl sulfate

SDS-PAGE	Sodium dodecyl sulfate polyacrylamide gel electrophoresis
SOB	Super Optimal Broth
TAE	Tris-acetate-EDTA
TCA	Tricarboxylic acid
T_{g}	Glass transition temperature
T_{m}	Melting temperature
TSB	Ulryptic soy broth
UHMW	Ultraviolet

LIST OF APPENDICES

Appendix A Approval letter for construction of the transformants
Appendix B Gel electrophoresis (Cloning)

PENGGUNAAN SINTASE POLIHIDROKSIALKANOAT (PHACвр-м-срғ4)

DAN ENOIL-KOA HIDRATASE (PHAJss) YANG BARU DITEMUI UNTUK PENGHASILAN POLI[(R)-3-HIDROKSIBUTIRAT-KO-(R)-3HIDROKSIHEKSANOAT]

Abstract

ABSTRAK Kebanyakan plastik industri dihasilkan daripada sumber yang tidak boleh diperbaharui seperti petroleum. Oleh itu, proses penghasilan polimer berasaskan sumber yang boleh diperbaharui perlu dibangunkan untuk mengurangkan jejak karbon yang ditinggalkan oleh aktiviti manusia. Polihidroksialkanoat (PHA) adalah biopoliester intrasel yang disintesis oleh pelbagai jenis mikroorganisma sebagai simpanan karbon di bawah keadaan kultur yang kekangan sumber nutrien penting tetapi berlebihan sumber karbon. Selain itu, PHA boleh dibiodegradasikan. Antara pelbagai jenis PHA, poli[(R)-3-hidroksibutirat-ko-(R)-3-hidroksiheksanoat] [$\mathrm{P}(3 \mathrm{HB}-$ ko-3HHx)] mempunyai potensi yang tinggi untuk berfungsi sebagai bioplastik komersial kerana ia mempunyai sifat yang paling serupa dengan plastik berasaskan petroleum. PHA sintase Chromobacterium sp . USM2 $\left(\mathrm{PhaC}_{C \mathrm{~s}}\right)$ dan dipencilkan dari metagenom paya bakau (PhaC $_{\text {BP-M-CPF4 }}$) telah dilaporkan mampu menghasilkan P(3HB-ko-3HHx). Dalam kajian ini, $\mathrm{PhaC}_{C \text { s }}$ dan $\mathrm{PhaC}^{\text {BP-m-CPF4 }}$ serta enoil-KoA hidratase Streptomyces sp. strain CFMR $7\left(\right.$ PhaJ $\left._{s \mathrm{~s}}\right)$ telah dicirikan. Oleh itu, lima transforman Cupriavidus necator yang mengandungi phaC $C_{\mathrm{BP}-\mathrm{M}-\mathrm{CPF} 4}$ dengan genotip yang berbeza dan tiga transforman C. necator yang mengandungi gen $p h a C_{\mathrm{Cs}}$ dengan genotip yang berbeza telah dihasilkan untuk menilai kecekapan inkorporasi monomer 3-hidroksiheksanoat (3HHx). Jumlah monomer 3HHx yang diinkorporasikan dalam PHA yang disintesis oleh transforman C. necator tersebut telah diperiksa

menggunakan minyak kelapa sawit sebagai sumber karbon tunggal. PhaCBP-м-CPF4 membolehkan inkorporasi monomer 3 HHx yang lebih tinggi daripada $\mathrm{PhaC}_{C s}$ (sehingga $18 \mathrm{~mol} \%$ 3HHx). Selain itu, berat molekul (M_{w}) $\mathrm{P}(3 \mathrm{HB}-\mathrm{ko}-3 \mathrm{HHx}$) yang dihasilkan oleh transforman yang mengandungi pha $C_{\text {BP-M-CPF4 }}$ dapat mencapai sehingga $1.8 \times 10^{6} \mathrm{Da}$, enam kali ganda lebih tinggi daripada $\mathrm{P}(3 \mathrm{HB}-\mathrm{ko}-3 \mathrm{HHx})$ yang dihasilkan oleh transforman yang mengandungi phaC Cs . Enoil-KoA hidratase sangat penting untuk pengumpulan 3 HHx semasa penghasilan $\mathrm{P}(3 \mathrm{HB}-\mathrm{ko}-3 \mathrm{HHx})$. Enzim ini menyalurkan laluan untuk membekalkan unit monomer (R)-3-hidroksiasil-KoA, terutamanya (R)-3-hidroksiheksanoil-KoA dari pengoksidaan- β asid lemak. Dalam kajian ini, phaJ ${ }_{S s}$ telah dikenal pasti dari bakteria Gram-positif pendegradasi getah yang tidak mampu menghasilkan PHA, Streptomyces sp. strain CFMR 7. Pengekspresan bersama gen hidratase enoil-KoA tersebut dengan sintase PHA, pha $C_{\text {BP-м-CPF4, }}$ dalam C. necator $\mathrm{PHB}^{-} 4$, telah meningkatkan komposisi 3 HHx dengan ketara tanpa pengurangan kandungan PHA. Transforman ini dapat menghasilkan $\mathrm{P}(3 \mathrm{HB}-\mathrm{ko}-3 \mathrm{HHx})$ dengan $18 \mathrm{~mol} \%$ 3HHx dan M_{w} menghampiri satu juta Da lantas mendedahkan bahawa kedua-dua PhaC $_{\text {BP-м-CPF4 }}$ dan PhaJ $_{S S}$ berpotensi digunakan untuk aplikasi industri.

THE USE OF POLYHYDROXYALKANOATE SYNTHASE (PhaCbр-м-срғ4) AND NEWLY IDENTIFIED ENOYL-COA HYDRATASE (PHAJss) FOR THE PRODUCTION OF POLY[(R)-3-HYDROXYBUTYRATE-CO-(R)-3HYDROXYHEXANOATE]

Abstract

Most industrial plastics are produced using non-renewable resources such as petroleum. Hence, polymer production processes based on renewable resources must be developed to reduce the carbon footprints left by human activities. Polyhydroxyalkanoates (PHAs) are intracellular biopolyesters synthesized by numerous microorganisms as carbon storage under culture conditions of limiting essential nutrients but with excess carbon source. Besides, PHA is biodegradable. Among the various types of PHA, poly[(R)-3-hydroxybutyrate-co- $(R)-3-$ hydroxyhexanoate] [$\mathrm{P}(3 \mathrm{HB}-$ co- 3 HHx$)$] has a high potential to serve as a commercial bioplastic due to it having the most identical properties to petroleum-based plastics. PHA synthase of Chromobacterium sp. USM2 $\left(\mathrm{PhaC}_{C s}\right)$ and PHA synthase isolated from mangrove metagenome ($\mathrm{PhaC}_{\mathrm{BP}-\mathrm{M}-\mathrm{CPF} 4}$) have been reported to be able to produce $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$. In this study, $\mathrm{PhaC}_{C \text { s }}$ and $\mathrm{PhaC}_{\text {BP-M-CPF4 }}$ as well as enoyl-CoA hydratase of Streptomyces sp. strain CFMR $7\left(\mathrm{PhaJ}_{s \mathrm{~s}}\right)$ were characterized. Thus, five different genotypes of Cupriavidus necator transformants harboring phaCвР-м-сеғ4 gene and three different genotypes of C. necator transformants harboring $p h a C_{C_{s}}$ gene were developed to evaluate the incorporation efficiency of 3-hydroxyhexanoate (3HHx) monomers. The amount of 3 HHx monomer incorporated in the PHA synthesized by these C. necator transformants were examined using palm oil as the sole carbon source. PhaC ${ }_{\text {BP-M-CPF4 }}$ enabled the incorporation of higher 3HHx monomer

than $\mathrm{PhaC}_{C \mathrm{~s}}$ (up to $18 \mathrm{~mol} \% 3 \mathrm{HHx}$). Besides, the molecular weight (M_{w}) of $\mathrm{P}(3 \mathrm{HB}-$ $c o-3 H H x)$ produced by transformants harboring $p h a C_{\mathrm{BP}-\mathrm{M}-\mathrm{CPF} 4}$ could reach up to $1.8 \times$ $10^{6} \mathrm{Da}$, which was six times higher than the $\mathrm{P}(3 \mathrm{HB}-$ co- 3 HHx$)$ produced by transformants harboring $p h a C_{\mathrm{C} s}$. Enoyl-CoA hydratase is crucial for 3 HHx accumulation during the production of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$. This enzyme channels the pathway for supplying (R)-3-hydroxyacyl-CoA monomer units, especially (R)-3-hydroxyhexanoyl-CoA from fatty acid β-oxidation. In this study, $p h a J_{\mathrm{Ss}}$ was identified from the rubber degrading Gram-positive non-PHA producing bacterium, Streptomyces sp. strain CFMR 7. Co-expression of this enoyl-CoA hydratase gene with the chosen PhaC above, phaC $C_{\text {BP-M-CPF4, }}$ in C. necator $\mathrm{PHB}^{-} 4$, significantly increased 3HHx composition without decreasing the PHA content. This transformant could produce $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ with $18 \mathrm{~mol} \%$ of 3 HHx and has a M_{w} of nearly one million Da revealing that both $\mathrm{PhaC}_{\mathrm{BP}-\mathrm{M}-\mathrm{CPF} 4}$ and $\mathrm{PhaJ}_{S \mathrm{~s}}$ could potentially be used for industrial applications.

CHAPTER 1

INTRODUCTION

1.1 Overview

Most industrial plastics are produced using non-renewable resources such as petroleum. Hence, polymer production processes based on renewable resources must be developed to reduce the dependence on the fossil-based plastic (Sudesh et al., 2000). Solid wastes from non-biodegradable plastics also cause major impact on both terrestrial and marine environment as they affect wildlife via entanglement and ingestion (Derraik, 2002; Hahladakis, 2020) Polyhydroxyalkanoates (PHAs) are biobased polyesters synthesized by numerous microorganisms as carbon storage, using renewable carbon resources, for example, plant oils, sugars, plant biomass and even carbon dioxide (Anderson and Dawes, 1990; Fukui and Doi, 1998; Albuquerque et al., 2007; Miyasaka et al., 2013; Heng et al., 2017). The unique attributes of PHA such as excellent biodegradability, good thermostability and processability make it a worthwhile alternative to replace conventional plastics (Sudesh et al., 2000).

In general, there are three types of PHAs, namely the short-chain-length PHA (SCL-PHA) consisting of three to five carbons in the monomer units, medium-chainlength PHA (MCL-PHA) consisting of six to 14 carbons in the monomer units, as well as the mixture of both SCL- and MCL-PHA (Sudesh, 2012). The types of monomer present in the polymer chain are the determining factor for the physicochemical properties of the resulting PHAs. For instance, poly[(R)-3-hydroxybutyrate)] [P(3HB)], is a type of SCL-PHA homopolymer consisting of four carbons in its monomer unit and is produced by most PHA producers. $\mathrm{P}(3 \mathrm{HB})$ polymer is highly crystalline and holds high melting temperature (Reinecke and Steinbüchel, 2009). However, the brittle and stiff nature of $\mathrm{P}(3 \mathrm{HB})$ makes it difficult to be processed and used for industrial
applications. In contrast, copolymerization of MCL monomers with 3HB leads to dramatic changes in the properties of the polymer, making it softer and more flexible compared to $\mathrm{P}(3 \mathrm{HB})$ homopolymer (Noda et al., 2005).

Among the various types of PHAs, poly[(R)-3-hydroxybutyrate-co- (R)-3hydroxyhexanoate] [$\mathrm{P}(3 \mathrm{HB}-$ co- 3 HHx$)$] has been identified as a commercially useful PHA copolymer since it has a close resemblance to commodity plastics such as polypropylene (PP) and low-density polyethylene (LDPE) (Doi, 1990). Depending on the 3-hydroxyhexanoate (3HHx) compositions, the polymer $\mathrm{P}(3 \mathrm{HB}-$ co- 3 HHx) vary substantially in its properties ranging from the strong but less flexible to the more flexible and strong variety (Asrar et al., 2002). It has been shown that high 3HHx levels ($17 \mathrm{~mol} \%$) in this copolymer results in properties which are similar to LDPE (Doi et al., 1995). Besides, molecular weight is one of the most important criteria in selecting polymeric materials as it can significantly influence the physical and mechanical strength of the bioplastic produced (Hahn et al., 1994). PHAs with higher molecular weight are known to possess better mechanical properties and are preferred for practical applications (Aoyagi et al., 2003). In particular, it is highly desired to develop a microbial strain that is capable of producing high molecular weight $\mathrm{P}(3 \mathrm{HB}-$ co-3HHx) copolymer.

PHA synthase (PhaC) is the key enzyme for PHA production. It determines the composition of monomer that is incorporated into the PHA polymer chain. Since the PHA polymer properties are greatly affected by the composition of the monomer units, PhaC is one of the determining factors that affect the properties of the polymers synthesized. PhaCs are categorized into four classes based on their primary sequences, subunit compositions and substrate specificities (preferences for SCL [C3 to C5] or MCL [C6 to C14] monomers) (Rehm, 2003). However, some PhaCs are difficult to be
classified based on these criteria as they are able to polymerize both SCL- and MCLmonomers, for example, PhaCs of Aeromonas caviae, Aeromonas hydrophila 4AK4, Rhodococcus aetherivorans I24, Chromobacterium sp. strain USM2 and the recently reported PhaC $_{\text {BP-м-CPF4 }}$ that was isolated from mangrove soil metagenome (Doi et al., 1995; Han et al., 2004; Chia et al., 2010; Budde et al., 2011; Foong et al., 2018). Among these synthases, PhaCbP-м-CPF4 has attracted much interests due to its ability to incorporate up to six different types of PHA monomers, i.e. 3-hydroxybutyrate (3HB), 3HHx, 3-hydroxyvalerate (3HV), 3-hydroxy-4-methylvalerate (3H4MV), 4hydroxybutyrate (4 HB) and 5-hydroxyvalerate (5 HV), with appropriate precursors. The ability of this PhaC for the production of $\mathrm{P}(3 \mathrm{HB}-$ co- 3 HHx$)$ copolymer, has intrigued scientists to study these enzymes in detail. Prior to the discovery of PhaCвр-м-CPF4, various efforts such as enzyme evolution and strain engineering have been made to enable the production of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ copolymer with a regulated monomer composition and ultrahigh-molecular-weight (UHMW) using plant oils as the sole carbon source (Tsuge et al., 2007; Mifune et al., 2008; Budde et al., 2011; Chuah et al., 2013).

Cupriavidus necator showed better growth and PHA accumulation when using plant oils as carbon sources, as compared to sugars (Fukui and Doi, 1998). The benefit of using plant oil is that it contains higher carbon content per weight than sugars. It is proposed that the yield of PHA by microorganism from plant oils could be at least twofold higher than those that was produced from sugar (Akiyama et al., 2003). Besides, the metabolism of plant oil can influence the monomer composition of the resulting PHA. For example, 3HHx monomers could be supplied as metabolites without using expensive precursor compounds such as sodium hexanoate, sodium octanoate and sodium dodecanoate (Fukui and Doi, 1997; Akiyama et al., 2003; Sun et al., 2010).

Plant oil is a preferable carbon source as it is cheaper and does not require expensive precursor for production of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$. Hence, it is necessary to develop an efficient recombinant strain that can produce $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ copolymer with variable molar fractions of 3 HHx , preferably from $10-20 \mathrm{~mol} \% 3 \mathrm{HHx}$, by using plant oil as the sole carbon source. Different applications require $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ copolymer with different composition of 3 HHx . In order to have good mechanical properties, it is necessary to produce $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ copolymer with sufficiently high M_{w} of more than $500,000 \mathrm{Da}$.

In this study, five C. necator transformants with PhaC ${ }_{\text {BP-M-CPF4 }}$ in two different plasmids have been developed to evaluate the composition of 3 HHx monomer and the molecular weight of $\mathrm{P}(3 \mathrm{HB}-$ co- 3 HHx) copolymer produced by this PhaC when using palm oil as the sole carbon source. In addition, the capability of $\mathrm{PhaC}_{\text {BP-м-CPF4 }}$ to incorporate 3 HHx was compared with corresponding C. necator transformants which harbors pha C_{Cs} (Chromobacterium sp. strain USM2). The factors affecting the 3 HHx composition were investigated based on the different host strains, PhaCs, plasmids and carbon sources. The C. necator mutant hosts used in this study were $\mathrm{H} 16 \Delta \mathrm{C}, \mathrm{PHB}^{-} 4$, Re2058 and Re2160. Previous studies have shown that these mutant hosts affect the incorporation of 3 HHx monomers in $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ copolymer owing to the activity differences in PhaA and PhaB (Mifune et al., 2008; Budde et al., 2011). Another enzyme that is crucial for 3 HHx accumulation during production of $\mathrm{P}(3 \mathrm{HB}-$ co-3HHx) is enoyl-coenzyme A (enoyl-CoA) hydratase (PhaJ) (Fukui and Doi, 1997). This enzyme creates a pathway for supplying (R)-3-hydroxyacyl-CoA [(R)-3HA-CoA] monomer units, especially $3 \mathrm{HHx}-\mathrm{CoA}$ from fatty acid β-oxidation. In this study, putative enoyl-CoA hydratase genes from the rubber degrading Gram-positive, nonPHA producing bacterium, Streptomyces sp. strain CFMR 7 were analyzed through
bioinformatics. The enoyl-CoA hydratase gene that could possibly be functional was cloned into C. necator $\mathrm{PHB}^{-} 4$ and co-expressed with $p h a C_{\text {BP-M-CPF4 }}$ to investigate the uncharacterized PhaJ.

1.2 Objectives of this study

a) To determine the efficiency of $\mathrm{PhaC}_{\mathrm{BP}-\mathrm{M}-\mathrm{CPF}}$ and $\mathrm{PhaC}_{C \mathrm{C}}$ for the production of P (3HB-co-3HHx) from plant oil.
b) To determine the relationship of enzymatic activity of PhaC with M_{w} of the PHA produced.
c) To determine the ability of uncharacterized enoyl-CoA hydratase genes from Streptomyces sp. strain CFMR 7 on the production of $\mathrm{P}(3 \mathrm{HB}-$ co- 3 HHx$)$ from plant oil.

CHAPTER 2

LITERATURE REVIEW

2.1 Plastics

Plastics is a group of polymers with industrially desirable properties such as chemical and light-resistance, inexpensive, strong, durable, high thermostability and electrical insulation. The large varieties of polymers and the versatility of their properties accelerate the production of plastic products which continue to benefit human society with expanding applications and create a better quality of life. Since 2018, world plastics production has increased nearly 180-fold from 1950 (2 million metric tons), reaching up to 359 million metric tons (Garside, 2019).

Although plastics are very important in today's society, production of plastics from non-renewable resources is one of the major concerns of the society. Moreover, its non-biodegradability has caused major impact on environment, such as waste accumulation, marine pollution, greenhouse gases production, and human-health risk (Rodrigues et al., 2019; Shen et al., 2020).

The continued increase in disposable, short-life consumer products with ultradurable property limits its recyclability, further highlighting that plastics are unsustainable (Halden, 2010). More than 33% of the production volume of plastics are for disposable items. The useful life span for many plastic items such as plastic bags, disposable cups, and plastic utensils are generally very short. These products are known to persist and pollute for extremely long period of time. Release of these products to the environment generates many plastics-exposed biotas. Weathering of plastic debris causes fragmentation of the plastic wastes into smaller particles that can be ingested by small marine animals (Laist, 1997). There are over 260 species of fish, seagulls, invertebrates, turtles, condor, and mammals which have been documented as
to having ingested or being entangled by plastic debris. Although incineration is the most effective way for removing plastic wastes, this method generates chemicals which will cause severe health issues to human such as carcinogenic polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and organohalogens (Takasuga et al., 2007).

2.2 Bio-based polymer

Bio-based polymers are polymers that have similar properties with petrochemical-based plastics, which are made from biological renewable resources, and polymerized by either chemical or biological methods (Harmsen et al., 2014). Hence, they are one of the best alternative materials to replace petrochemical-based plastics such as polyamide (PA), polyethylene (PE), polyethylene terephthalate (PET), PP, polystyrene (PS), and polyvinyl chloride (PVC).

Bio-based polymers can be classified into three groups: modified natural polymers, biosynthetic polymers, and bio-chemosynthetic polymers (Table 2.1) (Sudesh and Iwata, 2008). Biomass such as cellulose and starch need to undergo chemical modifications to produce modified natural polymers (Lu et al., 2005). However, the use of modified natural polymers has been restricted to only a few applications such as packaging, textiles and construction. Biosynthetic polymers, on the other hand, are totally synthesized through biological process, whereby the entire process of the polymer production occurs in bacterial cells, right from the beginning (production of monomers) up to the end (polymerization of the monomers) (Sudesh et al., 2000). One of the well-known biosynthetic polymers is PHA. For biochemosynthetic polymers, the monomers are first synthesized biologically in bacterial cells and then polymerized chemically (Jem et al., 2010). Poly(lactic acid), PLA, for example, is produced in a way that lactic acid monomers are initially produced by
microbial fermentation and the monomers produced are then chemically polymerized into PLA by the aid of a metal catalyst.

Table 2.1: Examples of bio-based polymers.
Adapted from Sudesh (2012).

Type	Processes involved	Example
Modified natural polymers	Chemical modification of natural polymer	Starch polymer, cellulose derivatives, proteins
Biosynthetic polymers	Biosynthesis of polymer by microorganisms	Poly(3-hydroxybutyrate)
Bio- chemosynthetic polymers	Biosynthesis of monomers and polymerized chemically	Poly(lactic acid), polyvinyl alcohol

2.3 PHA

PHA was first discover by Maurice Lemoigne in Bacillus megaterium in 1926 (Lemoigne, 1926). PHAs, which are biopolymeric chains composed of various hydroxyalkanoates, are accumulated as intracellular carbon storage compound (Anderson and Dawes, 1990). Since the first discovery of PHA back in 1926, the number of different genera of both Gram-positive and Gram-negative PHA producing bacteria which have been documented had increased to more than 75 (Reddy et al., 2003). Up to now, there are more than 150 different monomeric blocks of PHA identified (Rehm, 2003). The general chemical structure of PHA is made up of one hydroxyl group and one carboxyl group as shown in Figure 2.1. PHAs are naturally produced by many bacteria and archaea under condition with excess supply of carbon source, but with the limitation of other nutritional elements, such as nitrogen, phosphorus, sulfur, magnesium or oxygen (Anderson and Dawes, 1990; Doi, 1990).

In contrast with deoxyribonucleic acid, ribonucleic acid, and polypeptide, which synthesis are directed by information encoded in other biopolymers, PHAs are synthesized in a non-template-dependent manner (Stubbe et al., 2005). PHAs are stored as carbon and energy reserves intracellularly (cytoplasm) in the form of water insoluble inclusions or granules. Studies had shown that almost 90% of the bacterial dry cell weight (DCW) could be comprised of PHA, without causing any significant effect to the osmotic pressure in the cell (Madison and Huisman, 1999). These water insoluble PHAs will later be degraded by PHA depolymerase (PhaZ) when required for survival during carbon starvation (Anderson and Dawes, 1990).

Figure 2.1: General chemical structure of PHA. ' x ' represents the carbon chain in the linear polyester structure while ' R ' represents the variable hydrocarbon side chains. ' n ' represents number of repeating units.

Generally, PHA can be categorized into three main groups based on the carbon numbers in the monomer building blocks: SCL-PHA, MCL-PHA, and combination of SCL-PHA and MCL-PHA (SCL-MCL-PHA) (Sudesh, 2012). SCL-PHA consists of monomers with 3 to 5 carbon atoms, MCL-PHA consists of monomers with 6 to 14 carbon atoms and SCL-MCL-PHA consists of monomers with 3 to 14 carbon atoms. The physical and thermal properties of PHAs are dependent on the monomer type, monomer composition and molecular weight of the polymer (Sudesh et al., 2000). SCL-PHAs have thermoplastic properties such as high crystallinity, stiff, brittle, high melting temperature, high tensile modulus and low elongation at break while MCLPHAs have elastomeric properties such as low crystallinity, low melting temperature and high elongation at break (Yu, 2007). However, the SCL-MCL-PHA copolymers which are composed of both SCL-PHA and MCL-PHA monomers generally possess better thermal and mechanical properties compared to homopolymers like SCL-PHA and MCL-PHA (Kellerhals et al., 2000). Depending on the composition of MCL-PHA, the SCL-MCL-PHA copolymers vary substantially in their properties ranging from the strong but less flexible to the more flexible and strong variety (Asrar et al., 2002).

Besides, the molecular weight of PHA substantially affect its physical and mechanical strength (Hahn et al., 1994). PHAs with higher molecular weight are known to possess better mechanical properties and are preferred for practical applications (Aoyagi et al., 2003). One of the unique properties of PHA is that it is completely biodegradable (Sudesh et al., 2000). It can be biodegraded into carbon dioxide and water under aerobic condition or into methane and carbon dioxide under anaerobic condition by microorganisms. Hence, these polymers are gaining global attention and are being studied extensively for developing PHAs for commercial use.

2.4 Metabolic pathways of PHA biosynthesis

Cupriavidus necator H 16 is the paradigm for studying PHA biosynthesis. Wild type C. necator H 16 can only produce P 3 HB homopolymer. This PHA biosynthesis pathway comprises of three main enzymatic steps which will convert acetyl-CoA intermediate into P3HB (Figure 2.2) (Anderson and Dawes, 1990; Sudesh et al., 2000). The genes for these three important steps were discovered as an operon (phaC1-phaAphaB1) in C. necator H16. They are phaA, phaB and phaC, which encode β ketothiolase (PhaA), NADPH-dependent acetoacetyl-CoA reductase (PhaB) and PhaC, respectively. First, two molecules of acetyl-CoA undergo condensation which is catalyzed by β-ketothiolase (PhaA) to form a molecule of acetoacetyl-CoA. Then, the acetoacetyl-CoA is reduced by PhaB to form (R)-3-hydroxybutyryl-CoA (3HB-CoA). Lastly, 3HB-CoAs are polymerized by PhaC to form P3HB (Figure 2.2, black box).

In addition to P 3 HB , there are many types of copolymers such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) $[\mathrm{P}(3 \mathrm{HB}-c o-3 \mathrm{HV})], \mathrm{P}(3 \mathrm{HB}-c o-3 \mathrm{HHx})$ and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [$\mathrm{P}(3 \mathrm{HB}-$ co-4HB)] which can be produced by PHA producing microorganisms (Doi et al., 1988a; Doi et al., 1988b; Doi et al., 1995). The substrates or monomers for the biosynthesis of these copolymers were supplied from various metabolic pathways, such as citrate acid cycle, fatty acid β-oxidation and fatty acid de novo biosynthesis (Figure 2.2).

Figure 2.2: Metabolic pathway of PHA biosynthesis. Black box, blue box, red box and yellow box represent the pathway of $\mathrm{P}(3 \mathrm{HB}), \mathrm{P}(3 \mathrm{HB}-\mathrm{co}-$ $3 \mathrm{HV}), \mathrm{P}(3 \mathrm{HB}-\mathrm{co}-4 \mathrm{HB})$ and $\mathrm{P}(3 \mathrm{HB}-$ co-3HHx) production, respectively. Adapted from Sudesh et al. (2000) and Valentin et al. (1995).
$\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HV})$ copolymer can be produced when odd chain organic acids are used as the carbon source (Steinbüchel and Lütke-Eversloh, 2003). Metabolism of these acids leads to the formation of propionyl-CoA. Propionyl-CoA and acetyl-CoA then undergo condensation which is catalyzed by β-ketothiolase (BktB) to form ketovaleryl-CoA (Figure 2.2, blue box). Reduction of the ketovaleryl-CoA by PhaB produces (R)-3-hydroxyvaleryl-CoA, the substrate intermediate that is ready to be incorporated into the polymer chain.

Meanwhile, $\mathrm{P}(3 \mathrm{HB}-$ co- 4 HB) can be produced if the PHA-producing microorganism can express succinic semialdehyde dehydrogenase, 4-hydroxybutyrate dehydrogenase, and succinyl-CoA:CoA transferase (Valentin et al., 1995; LütkeEversloh and Steinbüchel, 1999). The 4-hydroxybutyrate monomer is synthesized by conversion of succinyl-CoA from tricarboxylic acid (TCA) or citric acid cycle to 4-hydroxybutyryl-CoA (4HB-CoA) through a series of enzymatic reaction with catalysis by the enzymes previously mentioned (Figure 2.2, red box). Firstly, succinyl-CoA (the intermediate of TCA or citric acid cycle) is converted to succinic semialdehyde and then 4-hydroxybutyrate by the catalytic reaction of succinic semialdehyde dehydrogenase and 4-hydroxybutyrate dehydrogenase, respectively. Lastly, the 4HB intermediate is converted to $4 \mathrm{HB}-\mathrm{CoA}$ by reacting with acetyl-CoA via the catalytic reaction of succinyl-CoA:CoA transferase.

For the production of MCL-PHA monomers such as 3HHx (Figure 2.2, yellow box) and 3-hydroxyheptanoate (3 HHp), oil or fatty acids are generally used as the carbon sources (Doi et al., 1995; Fukui et al., 1997). Trans-2-enoyl-CoA intermediates synthesized from fatty acid β-oxidation pathway can be converted to $[(R)-3 \mathrm{HA}-\mathrm{CoA}]$ via the catalysis reaction of (R)-specific enoyl-CoA hydratase (PhaJ) (Fukui et al., 1998). Besides, (S)-3HA-CoA can be converted to 3-ketoacyl-CoA intermediates and
then $(R)-3 \mathrm{HA}-\mathrm{CoA}$ in the same pathway via the catalytic reaction of epimerase and 3-ketoacyl-CoA reductase (FabG), respectively (Tsuge et al., 2003). Moreover, MCLPHA monomers could also be channelled from the fatty acid de novo biosynthesis pathway, whereby (R)-3-hydroxyacyl-ACP intermediates can be converted to (R) -3HA-CoA via the catalysis reaction of 3-hydroxyacyl-ACP-CoA transferase (PhaG).

The substrates or monomers of the copolymers can also be supplied through the addition of precursors or structurally-related substrates as exogenous carbon sources to the microorganisms during biosynthesis. There are also some unusual copolymers which can only be produced through the addition of precursors or structurally-related substrates because their substrates or monomers cannot be supplied through the metabolic pathway. For example,
(i) Sodium propionate or sodium valerate are the precursors for the synthesis of $\mathrm{P}(3 \mathrm{HB}-$ co-3HV) (Bhubalan et al., 2008)
(ii) Sodium 4-hydroxybutyrate, γ-butyrolactone or 1,4-butanediol are the precursors for the synthesis of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-4 \mathrm{HB})$ (Doi et al., 1989; Kunioka et al., 1989)
(iii) 3-mercaptopropionic acid is the precursors for the synthesis of poly(3hydroxybutyrate-co-3-mercaptopropionate) (Lütke-Eversloh et al., 2001)
(iv) Isocaproic acid is the precursor for the synthesis of poly(3-hydroxybutyrate-co-3-hydroxy-4-methylvalerate) (Ling et al., 2011)

However, this also depends on the substrate specificity of the PhaC.

2.5 The key enzyme in PHA biosynthesis: PhaC

PhaC is the key enzyme involved in the process of PHA biosynthesis. PhaC's function is to catalyze the polymerization of the (R)-enantiomer form of hydroxyacyl (HA) moiety in (R)-HA-CoA to PHA with a concomitant release of CoA (Rehm, 2003; Sudesh, 2012). PhaCs can be grouped into four classes. The categorization is based on their primary sequences, substrate specificity, and subunit composition (Table 2.2). Class I and class II PhaCs contain only one type of subunit (PhaC) (Sudesh, 2012). However, class I PhaC comprises of only a single PhaC subunit while class II PhaC comprise of two PhaC subunits. In contrast, class III and class IV PhaCs contain two different types of subunits, forming heterodimers, comprising of PhaC-PhaE and PhaC-PhaR, respectively (Sudesh, 2012). Interestingly, PhaE and PhaR subunits have no similarity to PhaC subunit. Meanwhile, all the PhaC subunit consists of a conserved lipase-box-like motif "G-X-[S/C]-X-G" (whereby X represents any amino acid residues, and serine is substituted with cysteine in PhaC) (Rehm, 2003). Many studies have shown that PhaCs possess catalytic triads with a nucleophile (cysteine), an acid (aspartic acid), and a base (histidine) that are required for catalytic activity.

Generally, class I, III and IV PhaCs can only produce SCL-PHA while class II PhaCs can only produce MCL-PHA (Sudesh, 2012). However, there are always exceptions. For examples, PhaCs from A. caviae, Chromobacterium sp. strain USM2, R. aethirovorans I24 and mangrove metagenome (PhaСвР-м-СРF4) have strong similarity to class I synthases, but they are able to catalyze the copolymerization of P(3HB-co-3HHx) (Doi et al., 1995; Bhubalan et al., 2010; Budde et al., 2011; Foong et al., 2018). Besides, PhaC1 and PhaC2 from Pseudomonas sp. 61-3 also have strong similarity to other class II synthases but are able to catalyze the mixed copolymerization of SCL 3HB with other MCL monomers (Matsusaki et al., 1998).

Table 2.2: Classes of PhaCs based on substrate specificity and subunit composition.

Class	Subunits	Substrate ${ }^{\text {a }}$
I		SCL-monomer: $\begin{aligned} & \text { 3HA-CoA (C3-C5), } \\ & \text { 4HA-CoA, } 5 \mathrm{HA}-\mathrm{CoA} \end{aligned}$
II		MCL-monomer: $3 \mathrm{HA}-\mathrm{CoA}(\geq \mathrm{C} 5)$
III		SCL-monomer: 3HA-CoA, 4HA-CoA, 5HA-CoA MCL-monomer: 3HA-CoA (C6 - C8)
IV		SCL-monomer: 3HA-CoA

${ }^{\text {a }}$ Abbreviations: SCL, short-chain-length; MCL, medium-chain-length; 3HA, 3hydroxyalkanoate; 4HA, 4-hydroxyalkanoate, 5HA, 5-hydroxyalkanoate. C3, monomer with 3 carbons such as 3-hydroxypropionate; C5, monomer with 5 carbons such as 3-hydroxyvalerate; C6, monomer with 6 carbons such as 3-hydroxyhexanoate; C8, monomer with 8 carbons such as 3-octanoate. Adapted from Rehm (2003).

2.6 Types of PHA

2.6.1 $\mathbf{P}(\mathbf{3 H B})$

$\mathrm{P}(3 \mathrm{HB})$ is the best characterized biopolymer as extensive researches had been conducted revolving around it, in contrast to the other PHAs. $\mathrm{P}(3 \mathrm{HB})$ is a polyester with an ester group composed of four carbon atoms with a methyl group as the side chain group at the β-position. The chemical structure of this polymer is illustrated in Figure 2.3. The crystallinity of this polymer was reported to be in the range of 55 to 80% (Holmes, 1988). The melting temperature of this polymer is close to $180^{\circ} \mathrm{C}$ and it's glass transition temperature is close to $4^{\circ} \mathrm{C}$. The tensile strength, Young's Modulus, and elongation at break of $\mathrm{P}(3 \mathrm{HB})$ homopolymer were found to be $43 \mathrm{MPa}, 3.5 \mathrm{GPa}$, and 5%, respectively (Sudesh et al., 2000). The Young's Modulus and tensile strength of $\mathrm{P}(3 \mathrm{HB})$ are similar to PP but PP has 80 times higher value of elongation at break (400%) than $\mathrm{P}(3 \mathrm{HB})$. Hence, $\mathrm{P}(3 \mathrm{HB})$ is more brittle and harder than PP. The formation of large crystalline domains in the form of spherulites causes the $\mathrm{P}(3 \mathrm{HB})$ films to be brittle. It was reported that $\mathrm{P}(3 \mathrm{HB})$ can be produced with weight average molecular weight (M_{w}) up to 1.1×10^{7} Da by recombinant Escherichia coli harboring C. necator's phaC1 (Kusaka et al., 1998). This ultra-high-molecular-weight (UHMW) $\left(3 \times 10^{6}-1.1 \times 10^{7}\right) \mathrm{P}(3 \mathrm{HB})$ has better mechanical properties compared to $\mathrm{P}(3 \mathrm{HB})$ with low M_{w}. The tensile strength, Young's Modulus, and elongation at break of the UHMW P(3HB) were $62 \mathrm{MPa}, 1.1 \mathrm{GPa}$, and 58%, respectively.

Figure 2.3: Chemical structure of $\mathrm{P}(3 \mathrm{HB})$. ' n ' represents number of repeating units.

2.6.2 P(3HB-co-3HV)

$\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HV})$ is a copolymer composed of two types of monomers, which are 3 HB and 3 HV (an ester group composed of five carbon atoms with an ethyl group as the side chain group at the β-position). The chemical structure of this copolymer is illustrated in Figure 2.4. Imperial Chemical Industries (ICI) has commercialized $\mathrm{P}\left(3 \mathrm{HB}-\right.$ co- 3 HV) under the trade name Biopol ${ }^{\mathrm{TM}}$ since 1980s. Glucose and propionic acid could be used for the production of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HV})$ random copolymers (Holmes, 1988). Co-crystallization of 3 HV and 3 HB monomer units in either of the polymer crystal lattices due to the isodimorphism of both these units causes the degree of crystallinity of $\mathrm{P}(3 \mathrm{HB}-$ co $-3 \mathrm{HV})$ to remain almost similar to $\mathrm{P}(3 \mathrm{HB})$ (50 to $70 \%)$ (Doi and Steinbüchel, 2001). Monomer composition of 3HV strongly affects the mechanical properties of $\mathrm{P}(3 \mathrm{HB}-$ co- 3 HV) copolymer. When 3 HV content was increased from 0 to $25 \mathrm{~mol} \%$ in solution cast films of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HV})$, the value of tensile strength and Young's Modulus decreased. These results indicate that increase in 3 HV monomer composition will cause an increase in the flexibility of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-$ 3HV) films. For $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HV})$ with $28 \mathrm{~mol} \%$ of 3 HV monomer composition, the elongation at break reached 700% and the toughness of the film was significantly increased. Furthermore, increase in 3 HV content from 0 to $25 \mathrm{~mol} \%$ lowers the melting temperature (T_{m}) but does not affect the thermal degradation temperature. This provides more room for thermal processing (Sudesh and Abe, 2010).

Figure 2.4: Chemical structure of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HV})$. ' x ' and ' y ' represent repeating unit of each monomer.

2.6.3 $\mathbf{P}(\mathbf{3 H B}-c o-3 H H x)$

$\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ is a copolymer composed of two types of monomers, which are 3 HB and 3 HHx (an ester group composed of six carbon atoms with a propyl group as the side chain group at the β-position). The chemical structure of this copolymer is illustrated in Figure 2.5. 3HHx monomer has a longer alkyl side chain, so 3HB and 3HHx monomer units are not able to fit into the crystalline lattices of each other (Doi et al., 1995). This avoids isodimorphism between 3 HB and 3 HHx monomer units. The crystallinity of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ decreased (60 to 18%) as the 3 HHx monomer composition was increased (0 to $25 \mathrm{~mol} \%$). Besides, increase in the 3 HHx content of the solution-cast films of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ from 0 to $17 \mathrm{~mol} \%$ will increase the elongation at break of the copolymer from 6 to 850% while decreasing the tensile strength of the copolymer from 43 to 20 MPa . Thus, increasing 3 HHx content in $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ copolymer causes the copolymer to become softer and more flexible (Asrar et al., 2002). P(3HB-co-3HHx) that is composed of small amounts of 3 HHx monomer fraction ($5 \mathrm{~mol} \%$) has a T_{m} less than $155^{\circ} \mathrm{C}$ and the T_{m} can be further reduced to $52{ }^{\circ} \mathrm{C}$ when the 3 HHx monomer fraction is increased to $25 \mathrm{~mol} \%$ (Doi et al., 1995; Loo et al., 2005). Hence, P(3HB-co-3HHx) which possesses better mechanical property and processability is a suitable candidate for blending in order to enhance the ductility of brittle and hard polyesters (Freier, 2006).

Figure 2.5: Chemical structure of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$. ' x ' and ' y ' represent repeating unit of each monomer.

2.6.4 $\mathbf{P}(3 \mathrm{HB}-c o-4 \mathrm{HB})$

$\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-4 \mathrm{HB})$ is a copolymer composed of two types of monomers, which are 3 HB and 4HB (a linear ester group composed of four carbon atoms). The chemical structure of this copolymer is illustrated in Figure 2.6. The crystallinities of $\mathrm{P}(3 \mathrm{HB}-$ co-4HB) were reported to be in the range of 15 to 60% (Saito and Doi, 1994). When 4HB was incorporated into $\mathrm{P}(3 \mathrm{HB})$, the resulting copolymer exhibits elastomeric property. The elongation at break values of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-4 \mathrm{HB})$ copolymers showed an increasing trend (from five to 1320%) from 0 to $82 \mathrm{~mol} \%$ of 4 HB monomer composition, but a declining trend (from 1320 to 1000%) when the 4HB monomer composition was further increased from 82 to $100 \mathrm{~mol} \%$. However, the tensile strength of these copolymers showed a declining trend (from 43 to 17 MPa) from 0 to $64 \mathrm{~mol} \%$ of 4 HB monomer composition but increasing trend (from 17 to 104 MPa) when the 4 HB monomer composition was further increased from 64 to $100 \mathrm{~mol} \%$. The T_{m} of $\mathrm{P}(3 \mathrm{HB}-$ co $-4 \mathrm{HB})$ copolymers is lower compared to $\mathrm{P}(3 \mathrm{HB})$ homopolymer. The T_{m} showed a declining trend from 178 to $50^{\circ} \mathrm{C}$ when the 4 HB monomer composition was increased from zero to $100 \mathrm{~mol} \%$. Besides, the glass transition temperature $\left(T_{\mathrm{g}}\right)$ also exhibited a similar declining trend from 4 to $-48{ }^{\circ} \mathrm{C}$ when the 4 HB monomer composition was increased. $\mathrm{P}(3 \mathrm{HB}-$ co- 4 HB$)$ is lipase-degradable and hence, it is biocompatible and bioabsorbable (Jaeger et al., 1995; Martin and Williams, 2003). These unique features made it applicable for various medical applications.

Figure 2.6: Chemical structure of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-4 \mathrm{HB})$. ' x ' and ' y ' represent repeating unit of each monomer.

2.6.5 PHA with unusual monomers

There are numerous types of PHA with different functional groups in the side chain such as carboxyl, hydroxyl, phenoxy, epoxy, halogens, nitrophenoxy, thiophenoxy, cyanophenoxy, and methylester groups. These types of PHA were synthesized by bacteria possessing different metabolic pathways (Kessler et al., 2001). For example, Pseudomonas oleovorans was reported to be able to synthesize various types of PHA with unusual monomers (Kim et al., 1991). P. oleovorans is able to produce PHA polymer containing 3-hydroxy-5-phenylvalerate when supplemented with mixtures of 5-phenylvaleric acid with either n-octanoic acid or n-nonanoic acid as the carbon source. Besides, P. oleovorans is able to produce PHA polymer containing 9-cyano-3-hydroxynonanoate and 7-cyano-3-hydroxyheptanoate when supplemented with mixtures of 11-cyanoundecanoic acid and n-nonanoic acid as the carbon feedstock (Lenz et al., 1992). Furthermore, P. oleovorans was also reported to be able to produce PHA polymer containing halogenated functional group, 3-hydroxy-8-chlorooctanoate (Doi and Abe, 1990). This polymer was synthesized by P. oleovorans when octane and 1-chlorooctane were supplemented as the carbon feedstock.

2.7 Application of PHA

Since PHA has similar properties with petrochemical-based synthetic plastic and is biodegradable, biocompatible and sustainable, it has been studied as a potential candidate to replace conventional plastics (Anderson and Dawes, 1990). Since 1982, PHA has been commercialized by many companies in several countries such as Georgia (Danimer Scientific), United States (Yield10 Bioscience), Germany (BioMatera), and China (TianAn Biologic Materials, Tianjin GreenBio Materials)
(Maida, 2017). Due to the unique features of PHAs, they can be used for many applications such as disposable items, coating and packaging materials, bio-implants, drug carriers and encapsulated fertilizer, pesticides or herbicides (Martin and Williams, 2003; Voinova et al., 2009; Grillo et al., 2011). Packaging and disposable items such as utensils, bottles, cups, razors, mulch films, diapers and feminine hygiene products are the most common applications of PHA. Besides, study by Sudesh and his colleague (2007) has shown that PHA has the potential to be used as facial oil-blotting film in cosmetic industry. Moreover, the biocompatibility and biodegradability of PHA make it suitable for osteosynthetic materials, bone plates, cardiovascular patches, wound dressings, surgical sutures and tissue engineering scaffolds (Martin and Williams, 2003). For example, $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-4 \mathrm{HB})$ is suitable to be used for suture and implants because of its lipase-degradable properties (Jaeger et al., 1995). Hence, this biodegradable plastic can be implanted and does not need to be removed. PHA could also be used as drug carrier by adjusting the ratio of drug and PHA polymer to control the release formulations (Shrivastav et al., 2013). In the agricultural field, PHA can be used to encapsulate fertilizers, pesticides or herbicides for controlled release (Voinova et al., 2009; Grillo et al., 2011). This controlled release system provides sufficient pesticides and herbicides that in turn reduces the negative impact on plants since these chemicals can be harmful to the plants in high dosage.

2.8 PhaC for SCL-MCL-PHA production

2.8.1 PhaC from Aeromonas caviae

$\mathrm{P}(3 \mathrm{HB}-$ co-3HHx) was first found to be synthesized in A. caviae (Doi et al., 1995). A. caviae accumulated $\mathrm{P}(3 \mathrm{HB}-$ co- 3 HHx$)$ when grown on plant oils or fatty acids. Studies on A. caviae have revealed that the PhaC of A. caviae $\left(\mathrm{PhaC}_{A c}\right)$ has substrate specificity
toward 3HB-CoA and (R)-3-hydroxyhexanoyl-CoA (3HHx-CoA). Advances in genetic engineering have allowed the construction of recombinant bacteria capable of synthesizing $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ by expressing this heterologous gene (Fukui and Doi, 1997). This study has shown that C. necator harboring $p h a C_{A c}$ could accumulate more $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx}) . \mathrm{PhaC}_{A c}$ NSDG mutant [$\mathrm{PhaC}_{A c}$ with double mutation at the $149^{\text {th }}$ and $171^{\text {st }}$ amino acid, which is a substitution of asparagine 149 by serine (N149S) and aspartic acid 171 by glycine (D171G)] is able to accumulate $82 \mathrm{wt} \%$ of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-$ 3 HHx) DCW with up to $12.2 \mathrm{~mol} \% 3 \mathrm{HHx}$ content when supplemented with octanoate as the carbon source (Tsuge et al., 2007). The M_{w} of this copolymer almost reached the UHMW, which is $2.55 \times 10^{6} \mathrm{Da}$. This strain was also able to accumulate $82 \mathrm{wt} \%$ of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ from soybean oil. However, the 3 HHx content was only up to 3.5 $\mathrm{mol} \%$ and the M_{w} was only $4.7 \times 10^{5} \mathrm{Da}$.

2.8.2 PhaC from Chromobacterium sp. strain USM2

Chromobacterium sp. strain USM2 was isolated in an island named Langkawi in Kedah,Malaysia and was found to be able to accumulate PHA (Yong, 2009). The PhaC of Chromobacterium sp. strain USM2 $\left(\mathrm{PhaC}_{C_{s}}\right)$ was found to favour 3HV substrate monomer. Constructed transformant, $\mathrm{PHB}^{-} 4$ harboring $p h a C_{\mathrm{Cs}}$ was reported to be able to synthesize $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ from plant oil (Bhubalan et al., 2010). The transformant was able to accumulate $63 \mathrm{wt} \%$ of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx}) \mathrm{DCW}$ with $4 \mathrm{~mol} \%$ 3HHx content from CPKO. Furthermore, Strep2-tagged PhaC $_{C_{S}}$ showed an enzymatic activity of $238 \mathrm{U} / \mathrm{mg}$ toward $(R)-3 \mathrm{HB}-\mathrm{CoA}$, which is almost five-fold higher than the activity of PhaC from C. necator $\left(\mathrm{PhaC}_{C_{n}}\right)$ (Bhubalan et al., 2011). This in vitro activity result indicates that this highly active PhaC possesses superior polymerizing ability. To date, $\mathrm{PhaC}_{C S}$ is the most active PhaC among the purified PhaC ever reported.

2.8.3 PhaC from Rhodococcus aetherivorans I24

R. aetherivorans I24 contained two PhaC genes, $p h a C 1_{\text {Ra }}$ and $p h a C 2_{\text {Ra }}$ (Budde et al., 2011). The study has shown that these genes were functional and were able to polymerize PHA. The constructed recombinant strains, Re2000 and Re2001 (harboring $p h a C 1_{\mathrm{Ra}}$ and $p h a C 2_{\mathrm{Ra}}$, respectively), were reported to be able to synthesize $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ from both hexanoate and octanoate. Many recombinant strains and transformants were constructed to study the ability of $p h a C 1_{\mathrm{Ra}}$ and $p h a C 2_{\mathrm{Ra}}$. Studies have shown that $\mathrm{PhaC} 2_{R a}$ can produce $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ with a broader range of 3 HHx monomer composition ($1-70 \mathrm{~mol} \%$) from plant oil compared to $\mathrm{PhaC1}_{\text {Ra }}$. However, the molecular weight of the copolymer produced by $\mathrm{PhaC} 2_{R a}$ was lower than 4×10^{5} Da. High cell density fermentation of Re2058/pCB113, a strain harboring phaC2Ra, achieved $102.9 \mathrm{~g} / \mathrm{L}$ P(3HB-co-3HHx) with $19 \mathrm{~mol} \% 3 \mathrm{HHx}$ monomer composition from plant oil (Riedel et al., 2012).

2.8.4 BP-M-CPF4 PhaC

PhaC ${ }_{\text {BP-M-CPF4 }}$ is a PhaC isolated from the mangrove metagenome in a mangrove forest at Balik Pulau, Penang, Malaysia (Foong et al., 2018). PhaC ${ }_{\text {BP-м-сPF4 }}$ showed extremely wide substrate specificity. It was able to incorporate six types of PHA monomers namely, $3 \mathrm{HB}, 3 \mathrm{HHx}, 3 \mathrm{HV}, 3 \mathrm{H} 4 \mathrm{MV}, 4 \mathrm{HB}$ and 5 HV , with appropriate precursors. The study also shown that constructed transformant, $\mathrm{PHB}^{-} 4$ harboring phaC $C_{\text {BP-м-CPF4 }}$ was able to accumulate $62 \mathrm{wt} \%$ of $\mathrm{P}(3 \mathrm{HB}-$ co- 3 HHx$) \mathrm{DCW}$ with $7 \mathrm{~mol} \%$ 3HHx content from CPKO. When fructose was supplemented together with sodium hexanoate, the strain can synthesize $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ with 3 HHx content up to 18 $\mathrm{mol} \%$ but yield only $44 \mathrm{wt} \%$ of DCW (Foong et al., 2018).

2.8.5 PhaC from Pseudomonas sp. 61-3

Study by Matsusaki et al. (1998) has confirmed that Pseudomonas sp. 61-3 contained two PhaC genes, phaC1 1_{Ps} and phaC2 $2_{\mathrm{Ps} .}$ The PhaCs of Pseudomonas sp. 613 belong to class II PhaCs, which differ from class I PhaCs as they prefer MCL-PHA monomers. Constructed transformants, $\mathrm{PHB}^{-} 4$ harboring phaCl l_{Ps} and $p h a C 2_{\mathrm{Ps}}$, respectively, have been reported to be able to synthesize $\mathrm{P}(3 \mathrm{HB})$ homopolymer and $[\mathrm{P}(3 \mathrm{HB}-$ co-3HA) $]$ random copolymer consisting of 3 HA units of C 4 to C 12 when supplemented with sugars and alkanoic acids (Matsusaki et al., 1998). This has shown that $\mathrm{PhaC1}_{P s}$ and $\mathrm{PhaC} 2_{P s}$ exhibited similar substrate specificities and are thus, able to incorporate a wide range of 3HA units into PHA.

2.9 Metabolic engineering of PHA producing strains

SCL-MCL-PHA shows better thermal and physical properties than SCL-PHA and MCL-PHA (Asrar et al., 2002). A lot of efforts have been made to produce SCL-MCL-PHA with desired properties such as through metabolic engineering by genetic manipulation of PHA-production-related genes to optimize the bacterial production system (Fukui et al., 1998; Tsuge, 2002; Budde et al., 2010; Budde et al., 2011; Kawashima et al., 2015). Through metabolic engineering, metabolic process of the production strains can be modified in order to improve the PHA yield as well as to alter the PHA monomer composition for production of tailor-made PHA. Since the amount of the substrates (e.g. 3HV-CoA, 3HHx-CoA and 4HB-CoA) that can be synthesized from common intermediates of the central metabolism are limited or even not synthesizable in naturally occurring PHA-producing microorganisms, modification or introduction of new metabolic pathways into the PHA-producing microorganisms can help in supplying or enhancing these monomeric substrates.

