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MENGAWAL BATASAN PENGGANTIAN DALAM SISTEM REAKSI 

AUTOKATALIK: MODEL BRUSSELATOR 

 

ABSTRAK 

Tindak balas autokatalitik adalah salah satu tindak balas di mana kepekatan 

perantara reaktan terbentuk sebagai produk dengan berkala. Tesis yang dikemukakan ini 

menggunakan model brusselator yang merupakan salah satu sistem tindak balas 

autokatalitik. Autokatalisis telah banyak dieksplorasi dalam bentuk model untuk asal 

kehidupan sebagai asas untuk organisasi diri. Pengayunan kimia adalah serupa dengan 

ayunan di mana autokatalisis menggantikan maklum balas positif. Secara amnya, reaksi 

ini berlaku secara merata dengan kadar yang berbeza-beza hingga pada satu titik di mana 

ia mencapai keseimbangan. Fenomena dinamik yang kompleks seperti bistabil, ayunan, 

ketidakstabilan deterministik, dan pembentukan pola spasial atau gelombang secara 

rawak mungkin berlaku dalam sistem autokatalitik, yang tidak diinginkan dalam 

pengeluaran kimia. Pembezaan antara autokatalisis orde pertama dan orde tinggi terbukti 

sangat berguna. Kedua-dua keadaan di mana zarah autokatalitik tunggal aktif di bahagian 

reaktan diklasifikasikan sebagai autokatalisis peringkat pertama 
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OBSERVING THE LIMIT OF OSCILLATIONS IN AUTOCATALYTIC 

REACTION SYSTEM: THE BRUSSELATOR MODEL 

 

ABSTRACT 

Autocatalytic reaction was one of the reactions where the concentrations of 

reactants intermediates form as products with periodicity. The presented by this thesis 

was using the Brusselator model which was one of the autocatalytic reaction systems. 

Autocatalysis has been widely explored in the form of models for the origin of life as a 

basis for self-organization. Chemical oscillation was analogous to oscillation where 

autocatalysis replaces positive feedback. In general, these reactions proceed evenly with 

varying the rates until at one point where it reaches equilibrium. Complex dynamical 

phenomena such as bistability, oscillations, deterministic instability, and random forming 

of spatial patterns or waves may occur in autocatalytic systems, which were undesirable 

in chemical production. The differentiation between first order and higher-order 

autocatalysis proved to be extremely useful. Both situations in which a single 

autocatalytic particle was active on the reactant side were classified as first-order 

autocatalysis. 
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CHAPTER 1 INTRODUCTION 

INTRODUCTION 

Chapter 1 introduces the overview of this research and significance of the autocatalytic 

reaction system. In general, this chapter summarizes the research background of 

autocatalytic reaction system, the problem statement, and the objectives of this final year 

project. 

1.1 Research Background 

Every living organism has chemical oscillators. Some examples include systems 

like unit of time clocks and central system swinging activity, as well as numerous organic 

chemical processes at the cellular level including the glycolytic pathway, peroxidase-

catalyzed reaction, and protein synthesis. Scientists were fascinated with oscillatory 

chemical reactions because they are commonly used as illustrative examples of the 

behavior that can occur in reactions regulated by non-linear dynamic rules found in 

chemistry, biology, and engineering. Understanding periodical processes at the molecular 

level was critical since it holds the key to advanced phenomena such as animal sleep 

induction or bird migratory behavior, among others. 

The phenomenological dynamics of oscillatory chemical reactions reveal that 

reactant, intermediate, and product concentrations will fluctuate intermittently in area, as 

during development, or in time, as during unit of time rhythms. Because the reactants 

were converted to product and then back to reactants, it appears that an oscillatory 

reaction would need the system's free energy to oscillate, defying the second rule of 

physics. In fact, this phenomenon was driven by the Gibbs-free-energy decrease of an 

overall chemical action occurring outside of thermodynamical equilibrium. Such 

oscillatory systems are related to thermodynamically open systems. In enzyme-catalyzed 
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processes, a biological cell was an open system that may take in nutrients and release 

waste products. These reactions were complicated and need a number of fundamental 

stages, the bulk of which involve nonlinear dynamics. If a suitable feedback mechanism 

was available, long-lasting chemical oscillations will develop. This may be accomplished 

by continuously supplying reactants and withdrawing product from the reaction vessel. 

Another essential aspect of most chemical systems that exhibit oscillations was 

autocatalysis, which was a way for providing feedback to a periodic reaction in which the 

progress of the reaction is favored by the product produced. Autocatalysis was the 

increase of chemical activity of reactions by product created throughout a reaction. The 

simplest example of autocatalysis is the reaction: 

𝐴 + 𝑋 → 2𝑋  (Equivalent 𝐴 → 𝑋) 

whose rate law given as −
𝑑[𝐴]

𝑑𝑡
= 𝑘[𝐴][𝑋] 

Chemical oscillations were caused by the existence of one or more contact action 

stages in a complex process. Autocatalysis, on the other hand, will result in an explosion 

as the product concentration rises. Therefore, an inhibition step was additionally 

necessary. The steady state was stabilized when autocatalysis and inhibition appear at the 

same time, and the net rate of rise of all relevant species was zero. As a result, oscillations 

will appear to be beneficial only if the inhibition step was delayed in some way (Nicolis 

& Portnow, 1973). 

In 1920, Lotka revised a hypothetical set of chemical reaction (1)-(3) 

𝐴 + 𝑋 → 2𝑋          (1) 

𝑋 + 𝑌 → 2𝑌          (2) 

𝑌 → 𝑃           (3) 
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Longer temporal oscillations in the concentrations of intermediates X and Y occur 

during the whole process A to P. This can happen if the system is maintained out of range 

through exchanging reactants and products with the surrounding (Field et al., 1974). 

The chemical mechanism of Field, Karas, and Noyes for the oscillatory Belousov 

reaction has been generalized by a model composed of 5 steps involving 3 independent 

chemical intermediates, the behavior of the resulting differential equations has been 

numerically examined, and it had been shown that the system traces a stable closed plane 

in 3-dimensional space, an equivalent plane was obtained from alternative part points and 

even from the purpose appreciate steady state resolution of the differential equations. 

Limit cycle behavior appears to be present in the model. The limit cycle model may be 

simplified to a system defined by two plane variables by linking the concentrations of 

two intermediates; this coupled system can be analyzed using theoretical approaches 

already developed for such systems (Field et al., 1974). 

Since a Lotka mechanism comprises two contact action reactions, it shows this 

unique behavior; nevertheless, catalysis was not required for sustained oscillation. A 

minimum of one step inside the mechanism must provide feedback, so that the step's 

product influences its net rate in addition to rule reversibility. The feedback causes 

nonlinearity in the differential equations that describe the process, the system may display 

all of the complexity that come with nonlinear dynamic laws. If the oscillations were to 

be sustained, the system should be far away from equilibrium. Nonlinear kinetic equations 

and periodic behavior were caused by chemical systems containing a lot of possible types 

of feedback, according to Ross and colleagues. As its Lotka mechanism causes persistent 

oscillations in intermediate concentrations, the open system shows a closed plane inside 

the plane of X and Y concentrations. The frequency and amplitude of such oscillations, 

on the other hand, were determined by the initial intermediate concentrations as well as 
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the kinetic constants. Furthermore, if the oscillatory system becomes perturbed, the planes 

inside the X and Y planes will change. A system with limit cycle behavior, on the other 

hand, can approach a limiting periodic behavior defined purely by the kinetic constants 

and unaffected by the starting concentrations of the oscillatory intermediates (Field et al., 

1974). 

A chemical scheme exhibiting limit cycle behavior (1)-(4) 

𝐴 → 𝑋            (4) 

𝐵 + 𝑋 → 𝑌 + 𝐷          (5) 

2𝑋 + 𝑌 → 3𝑋           (6) 

𝑋 → 𝐸            (7) 

has been proposed by Prigogine and their colleague in Brussels. This appears to be a 

single spectacular chemical theme showing limit cycle behavior with only two 

intermediate species, as demonstrated by the capital of Belgium cluster's ability to build 

advanced spatial and temporal patterns similar to those seen in biological systems. 

Although step (3) was third order within the concentrations of transient intermediates, the 

subject has been disputed, it clearly illustrates that chemical systems will develop 

extremely advanced temporal and spatial order (Field et al., 1974). 

 The experimental behavior of the Belousov reaction strongly implies a limit 

cycle's stable limiting plane of intermediate concentrations. The current research 

demonstrates that intended chemical actions were frequently reduced to a simpler generic 

mechanism that behaves like a limit cycle (Field et al., 1974). 
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1.2 Problem statement 

 There were various models that describe this autocatalysis reaction in order to 

approach it. The concentrations of reactants, intermediates, and product change with 

periodicity during autocatalysis. Chemical oscillation was similar to electrical oscillation 

in that feedback is replaced by autocatalysis. Oscillatory responses have been observed 

in a variety of conditions. In general, the reactions operate smoothly at different rates until 

they reach equilibrium. These reactions cause concentration oscillations to be observed. 

The Belousov-Zhabotinskii reaction (B-Z reaction) and the Bray-Liebhafsky reaction 

were two examples of oscillatory reactions (Kumar, 2020b). There are approximately 

three models that can simply tell about the autocatalysis model. The Brusselator model, 

which was one of the most basic explanations for this model, then followed by the 

oregonator model and the lotka volterra mechanism. Moreover, this model was chosen 

because it was one of the simplest autocatalytic reactions, the Brusselator model was 

chosen as a reference to examine the limit of the oscillations. 

1.3 Objectives 

The objectives of this study are: 

i. To observe the dynamics oscillation occurs in the autocatalysis reaction systems. 

ii. To study effect of the concentration of activator and inhibitor in the reaction 

systems. 

iii. To determine the limit of oscillation in autocatalysis systems based on the 

Brusselator model. 

iv. To observe the exact point at which the oscillations will continuously oscillate. 
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CHAPTER 2 LITERATURE REVIEW 

LITERATURE REVIEW 

In previous chapter, the introduction about the autocatalytic reaction already been 

summarize and the observation for the study for the oscillations system also was being 

introduce using the suitable or the simplest model to describe this autocatalytic reaction 

systems. Chapter 2 presents the previous discoveries and reviews available from credible 

scientific data and references that are related to this final year project topic. This chapter 

covers the overview of the  Brusselator model on the stability and the oscillations of this 

model on where it begins to oscillate. Besides, this chapter also presents important 

references and information required on studying the limit of the oscillation in 

autocatalytic reaction using the Brusselator model as a reference. 

2.1 Brusselator model description 

Once reverse reactions are neglected and the concentrations of A and B are held 

constant, the Brusselator from reaction (4) – (7) was understood to show oscillating 

behavior within the species X and Y. Its applicability as a model for any possible 

oscillating chemical system has been questioned, despite the reality that each real 

chemical reaction should be reversible to some extent, and it has been claimed that the 

reversible Brusselator oscillates if the two principles of detailed balance and conservation 

of matter are violated. The reversible Brusselator was theoretically examined in situations 

where all the requirements of detailed balance were met, as well as the consumption of A 

and B; the system described was closed, and matter was carefully maintained. Oscillating 

behavior was possible for a limited number of reaction parameters (rate constants, initial 

concentrations, etc.) and should be described consistently. Oscillations have a finite range 

and last a certain amount of time once they occur. The oscillating behavior within the 

irreversible system can be obtained as the limiting case of the reversible system when 
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they cease continuously followed by a monotonic decrease to equilibrium (Gray et al., 

1988). 

The irreversible Brusselator was not the simplest method of its sort for pointing 

out any of the higher than behavior, and it comes with its own set of problems. In a 

relatively basic open system continuous stirred tank reactor, it exhibits infinities in 

intermediate concentrations and oscillating amplitudes, and it loses oscillations. 

However, it deserves to be included in the history of the issue with the Lotka-Volterra 

plan because the system was far from equilibrium and the rates of the reverse reactions 

were adjusted to an appropriate zero. Then, over the duration of interest, the 

concentrations of the pool-chemical species A and B (the initial reactants) and D and E 

(the final products) were maintained constant. This leaves just 2 different concentrations, 

those of the intermediates X and Y, for an isothermal oscillating system's minimal range 

(Gray et al., 1988). 

These chemical oscillations were caused by non-equilibrium conditions, which 

can be defined as the spontaneous development of symmetry-breaking and therefore the 

production of chaotic patterns in dissipative systems. If the trajectories approach the limit 

cycle as time approaches time it was known as a stable or attractive limit cycle. Then if 

the trajectories approach the limit cycle as time approaches minus-infinity it was an 

unstable or non-attractive limit cycle. The uncertain Brusselator system was used to 

establish a theoretical knowledge of non-equilibrium state instability that can be well 

depicted. The goal of is to research a system that continuously interacts with its 

surroundings, that is working faraway from thermodynamic equilibrium (Mcdowell, 

2008). 
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Consider an activator-inhibitor Brusselator model that represents an autocatalytic 

oscillatory chemical reaction. The straight-line behavior of the solutions of the 

Brusselator model numerically was studied varied forms of pattern formation of the 

Brusselator model arising in chemical reactions with the numerical investigation and 

observe the periodic traveling wave solutions of the Brusselator model exploitation 

numerical bifurcation analysis has additionally been studied. The slow stable manifold of 

the Brusselator model for the primary time and this study advances the field from the 

previous related work (Nazimuddin & Al, 2020). The reaction–diffusion Brusselator 

system contains a combine of variables intermediates with reactant and products 

chemicals whose concentrations were controlled. The system represents a helpful model 

for study of cooperative processes in chemical dynamics. In recent years, a lot of attention 

has been paid in literature within the development of numerical schemes for the numerical 

solutions of reaction–diffusion Brusselator system such as second order finite-difference 

scheme (Jiwari & Yuan, 2014). 

2.2 Governing equation of the Brusselator model 

 As showing the reaction of the Brusselator model from (4) – (7) denote that the 

concentrations of A, B, D, E, X and Y by [A], [B], [D], [E], [X] and [Y] respectively. 

Then the development of the concentrations of species as a function of the time t using 

mass action law as given as follows: 

𝑑[𝐴]

𝑑𝑡
=  −𝑘1[𝐴]         (8) 

𝑑[𝐵]

𝑑𝑡
=  −𝑘2[𝐵][𝑋]          (9) 

𝑑[𝐷]

𝑑𝑡
=  𝑘2[𝐵][𝑋]          (10) 

𝑑[𝐸]

𝑑𝑡
=  𝑘4[𝑋]           (11) 
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𝑑[𝑋]

𝑑𝑡
=  𝑘1[𝐴] − 𝑘2[𝐵][𝑋] + 𝑘3[𝑋]2[𝑌] − 𝑘4[𝑋]      (12) 

𝑑[𝑌]

𝑑𝑡
=  𝑘2[𝐵][𝑋] − 𝑘3[𝑋]2[𝑌]        (13) 

where kj,(j= 1,2,3,4) is the reaction rate. 

 As the species D and E have no effect on others, the equations (10) and (11) can 

be ignored. To simplify the equation, assume that [A] and [B] are kept constant, much 

like the reactant, i.e. [A]=a and [B]=b, where a,b > 0. For kj (j= 1,2,3,4), all reaction 

rates have been set to unity. Therefore, the ordinary differential equations that describe 

the Brusselator chemical reaction are as follow: 

𝑑[𝑋]

𝑑𝑡
= 𝑎 +  [𝑋]2[𝑌] − (𝑏 + 1)[𝑋]  

           (14) 

𝑑[𝑌]

𝑑𝑡
=  𝑏[𝑋] − [𝑋]2[𝑌]  

To simplify the notation, define that x=[X] and y=[Y] 

 Therefore, the represent Brusselator chemical reaction given by (14) in a compact 

form as follows: 

�̇� =  𝑎 + 𝑥2𝑦 − (𝑏 + 1)𝑥  

          (15) 

�̇� =  𝑏𝑥 − 𝑥2𝑦  

From equations (15) the equilibrium points were obtained by solving the nonlinear 

equations 

𝑎 + 𝑥2𝑦 − (𝑏 + 1)𝑥 = 0         (15a) 

 𝑏𝑥 − 𝑥2𝑦 = 0          (15b) 
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where there were some parameters that was inadmissible if a=0 from (15a) as taking x=0. 

Thus, making equation where b-xy = 0 or xy = b. Using this, it can be simplified that 

(15a) as 

𝑎 + 𝑏𝑥 − (𝑏 + 1)𝑥 = 0 or 𝑥 = 𝑎       (16) 

Therefore, the unique of equilibrium was obtained as: (𝑥, 𝑦) = (𝑎,
𝑏

𝑎
). 

Assume that 𝑏 = 𝑎2 + 1, the brusselator chemical model (15) will exhibits Hopf 

bifurcation and will show a stable limit cycle (Vaidyanathan, 2015). 
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CHAPTER 3 METHODOLOGY 

METHODOLOGY 

This chapter discloses the information on the methods applied in this final year project. 

It includes the general research flow diagram, MATLAB© software used and the 

importance parameters for doing the research. 

3.1 Overview of the research methodology 

Figure (1) shows the activity of the research. First of all, the equation of the model 

shall be prepared to understand on how the simulation will be run. One of the models had 

been chosen which was Brusselator model to run the simulation in the MATLAB©. It 

was used to observe the limit cycle and its oscillation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The flow diagram of thesis and report writing. 

Start 
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3.2 Design of experiment (DOE) 

 MATLAB© were used to study the behavior of the Brusselator model on the 

dynamical systems. For the first part of this study, effect of the activator concentration, 

A was studied to observe on the dynamical changes in the systems by various it values. 

Then, the inhibitor concentration, B was studied by observing its dynamical systems . 

After observing the dynamical systems, the equilibrium points for both in changing of the 

parameter activator concentration, A and inhibitor, B were observed by looking at the 

value of the exact point at which the limit of the point before it continuously oscillate or 

forming the stable limit cycle. The limit point cycle was being observed by those 2 

parameters which were activator concentration, A, and inhibitor concentration B, in a 

MATLAB© software. Table 1 below show the important parameter to study the behavior 

systems of this Brusselator model. 

Table 1 : The important of variables and parameters 

Variables or parameters Unit 

A Concentration (mole/l) 

B Concentration (mole/l) 

x Concentration (mole/l) 

y Concentration (mole/l) 

t time (dependable) 

 

3.3 Thesis and report writing 

 The data and results were presented. In the report writing, the dynamical behavior 

of each variable or parameters was being observed and the limit point cycle for both 

parameters which were activator concentration, A and inhibitor concentration, B were 

observed, respectively. Conclusion and suggestions were made based on the results 

obtained. 
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CHAPTER 4 RESULT AND DISCUSSION 

RESULT AND DISCUSSION 

4.1 Difference mode of spiral or limit cycle and its oscillation by changing the value 

activator concentration, A and constant the value inhibitor concentration, B. 

 

The parameter A which was acts as activator concentration in the reaction was the 

first parameter considered in this works where it was referring to active parameter of the 

solution.  The system was analyzed with different values of parameters activator 

concentration, A to observe on the oscillations and the limit of the cycle to specify the 

exact of the point at where the equilibrium point was formed in the reaction. 

Figure (2), Figure (3), and Figure (4) were numerically solved using MATLAB© 

software. By applying this software at which the parameters inhibitor concentration, B 

was then set as constant. Based on the varying of parameters of A activator concentration, 

it showed that as increasing this parameter activator concentration, A will cause the 

reaction from having a limit cycle at initial stage until then a spiral was formed when the 

activator concentration, A was enough to bind with the inhibitor concentration, B. 

As change the value of activator concentration A and fix the value of inhibitor 

concentration B. Therefore, there were some changes from stable spiral or limit cycle to 

unstable spiral which make the oscillation to occur at certain time then disappeared. 
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(a)      (b) 

Figure 2: (a)Phase plane model of the activator A = 1 and inhibitor B = 3                             

(b) Concentration vs time 

 

           

  (a)       (b) 

Figure 3: (a)Phase plane model of the activator A = 1.5 and inhibitor B = 3 (b) 

Concentration vs time 

 

   

(a)       (b) 
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(c) 

Figure 4: (a) Phase plane model of the activator A=3 and B=3.  Magnified from the 

Figure 4(a) and (c) Concentration vs time. 

 

4.2 Difference mode of spiral or limit cycle and its oscillation by constant the value 

activator concentration, A and changing the value inhibitor concentration, B. 

 

The parameter B which was acts as inhibitor concentration in the reaction was the 

others parameter considered in this works where it was referring to inhibitor parameter of 

the solution.  The system was analyzed with different values of parameters inhibitor 

concentration, B to observe on the oscillations and the limit of the cycle to specify the 

exact of the point at where the equilibrium point was formed in the reaction. 

Figure (5), Figure (6), and Figure (7) were shown at which the parameter activator 

concentration, A was set as constant. Based on the varying of parameters of B inhibitor 

concentration, it showed that as increasing this parameter inhibitor concentration, B will 

cause the reaction from having a spiral at initial stage until then a limit cycle was formed 

when the inhibitor concentration, B was excess to bind with the activator concentration, 

A. 
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As change the value of inhibitor concentration B and fix the value of activator 

concentration A. Therefore, there were some changes from stable unstable to stable spiral 

or limit cycle which make the oscillation to occur from discontinuous oscillation to 

continuous oscillations. 

   

   (a)      (b) 

Figure 5: (a)Phase plane model of the activator A = 1 and inhibitor B = 1.5                

 (b) Concentration vs time 

 

    

(a)      (b) 

Figure 6: (a)Phase plane model of the activator A = 1 and inhibitor B = 2 (b) 

Concentration vs time 
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   (a)       (b) 

Figure 7: (a)Phase plane model of the activator A = 1 and inhibitor B = 3                              

(b) Concentration vs time 

4.3 Equilibrium points for the difference value activator concentration, A and constant 

the value inhibitor concentration, B. 

As reaching the equilibrium point, it must have the exact point at which this point 

shows the equilibrium point where it was the limit point where the oscillation may occur. 

This limit point or equilibrium point was determined by using Matcont in MATLAB© 

software by set the activator concentration, A as the point where it will change until it 

reached the equilibrium point and the inhibitor concentration B will remain as constant. 

    

   (a)      (b) 
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   (c)      (d) 

Figure 8: Bifurcation diagram for Hopf point or the equilibrium point (a) Activator 

concentration, A vs concentration x (b) Activator concentration, A vs concentration y          

(c) Inhibitor concentration, B vs concentration x (d) Inhibitor concentration, B vs 

concentration y. 

 From Figure (8) it shows that the point at which the point was reached the 

equilibrium point when set the activator concentration, A as the manipulated variable or 

the variable that change the value and the observed variable were both concentration x 

and y where it varies as the activator concentration, A is changing. There is only one point 

of the equilibrium where later as it goes beyond that the stable limit cycle is form which 

makes the oscillation will continuously oscillate. The H point show the Hopf point where 

it was the point at which the oscillation will begin as it goes beyond the Hopf point. It 

shows that the First Lyapunov was (-0.4). This H point indicate that the beginning points 

for the oscillation to occur. 

Table 2 : The exact point or equilibrium point for constant the inhibitor 

concentration,B. 

Parameters Concentration (mole/L) 

x 1.414215 

y 2.121318 

A 1.414215 

B 3 
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Table 2 above show that at where the point for the oscillation to begin as set the 

inhibitor concentration B as constant and other values changes.  

  

   (a)      (b) 

 

(c) 

Figure 9: Phase plane of model at constant inhibitor concentration, B and 

various activator concentration, A. 

Therefore, as getting this limit point cycle point, it can be seen from the Figure 

(10) below show that oscillation was occurred as it goes beyond the point of parameter 

even though in a small changing of values. 
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Figure 10: Concentration of x and y vs time 

4.4 Equilibrium points for the constant value activator concentration, A and difference 

the value inhibitor concentration, B. 

Same goes to the inhibitor concentration, B as reaching the equilibrium point, it 

must have the exact point at which this point shows the equilibrium point where it was 

the limit where the oscillation may occur. These changes until it reached the equilibrium 

point and the activator concentration A will remain as constant. 

      

   (a)      (b) 
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   (c)      (d) 

Figure 11: Bifurcation diagram for Hopf point or the equilibrium point (a) Activator 

concentration, A vs concentration x (b) Activator concentration, A vs concentration y          

(c) Inhibitor concentration, B vs concentration x (d) Inhibitor concentration, B vs 

concentration y. 

From Figure (11) it shows that the point at which the point was reached the 

equilibrium point when set the inhibitor concentration, B as the manipulated variable or 

the variable that change the value. The observe variable were both concentration x and y 

where it varies as the inhibitor concentration, B was changing. There was only one point 

of the equilibrium where later as it goes beyond that the stable limit cycle is form which 

makes the oscillation will continuously oscillate. The H point show the Hopf point where 

it is the point at which the oscillation will begin as it goes beyond the Hopf point. It shows 

that the First Lyapunov was at (-0.5). This H point indicate that the beginning points for 

the oscillation to occur. 

Table 3 : The exact point or equilibrium point for constant the activator concentration, 

A 

Parameters Concentration (mole/L) 

x 1 

y 2 

A 1 

B 2 
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Table 3 above show that at where the point for the oscillation to begin as set the 

activator concentration, A as constant and other values changes.  

  

  (a)       (b) 

 

(c) 

Figure 12: Phase plane of model at various inhibitor concentration, B and 

constant activator concentration, A. 
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 Therefore, as getting this limit point cycle point, it can be seen from the Figure 

(13) below show that oscillation was occurred as it goes beyond the point of parameter 

even though in a small changing of values. 

 

Figure 13: Concentration of x and y vs time 

Limit cycles and bifurcations are included in this model, which has more intricate 

dynamics. From the perspective of dynamical systems, this is a wide field to investigate. 

Using this paradigm, mathematical models based on autocatalytic reactions can be further 

developed (Kumar, 2020a). The spatial homogeneous solutions of the reaction–diffusion 

system are the equilibrium and periodic solutions of the ODE system.  Diffusion can 

cause the stability of the solutions to change.(Liao & Wang, 2016). A solution from any 

arbitrary starting condition rapidly relaxes toward some attractive where the dynamics 

develop slowly in the Brusselator model (Nazimuddin & Al, 2020). 
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4.5 Sustainability 

 The Sustainable Development Goals (SDGs) are a collection of 17 global goals. 

These goals are designed to be a blueprint to achieve a better and more sustainable future 

for all. In this blueprint, it recognizes that ending poverty and other deprivations must be 

handled together with strategies that improve health and education, reduce inequality, and 

economic growth while at the same time tackling the climate change and working to 

preserve our natural resources such as oceans and forests. This research is closely related 

to Goal 4 which is quality education. This goal is to ensure access on understanding the 

knowledge of the systems which are most important in mathematics, engineering, biology 

and etc. In this study, it can be said that by perform this understanding on the dynamical 

systems many of important parameters and solving the problems were being applied to 

observe on the importance parts. Those things are valuable to understand for the coming 

future. It also explains about the limit of the cycle which means it can be studied that the 

reaction in autocatalytic reaction systems. Also based on this knowledge, it can be applied 

for the future analysis on how these systems can be related to our live simultaneously.               
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