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PEMBANGUNAN KONKRIT MEMADAT SENDIRI SUPERSULFATED 

DENGAN MENGANDUNGI PRODUK SAMPINGAN PERINDUSTRIAN 

YANG TINGGI 

ABSTRAK 

Produk sampingan industri ialah salah satu bahan simen alternatif yang 

menarik dan berupaya mengurangkan penggunaan sumber asli serta menggalakkan 

aktiviti kitar semula. Salah satu cara penggunaan bahan ini dalam komposisi yang 

tinggi adalah dengan menggunakannyya di dalam sistem pengikat supersulfated.  

Walau bagaimanapun, pengetahuan rangka kerja terkini mengenai sifat-sifat pengikat 

supersulfated adalah terhad dan perlu diberi perhatian. Oleh itu, penyelidikan ini 

bertujuan untuk menilai sifat-sifat konkrit memadat sendiri (SCC) supersulfated 

dengan menggabungkan produk sampingan industri dalam komposisi yang tinggi iaitu 

serbuk sanga relau bagas tergiling (GGBS), abu terbang dengan sebahagian kecil 

gipsum dan simen. Selain itu, sisa kuari granit (GQW) digunakan sebagai agregat halus 

dan sanga relau arka elektrik (EAF) dan batu granit sebagai agregat kasar dalam 

pembangunan SCC. Komposisi pengikat terdiri daripada 80% GGBS dan 20% abu 

terbang dicatatkan sebagai kandungan optimal untuk digunakan sebagai pengikat 

primer dalam pengikat supersulfated. Kombinasi ini diaktifkan dengan menambahan 

campuran 0-10% OPC-gipsum. SCC supersulfat telah dibiarkan di bawah keadaan 

pengawetan lembap sehingga 270 hari. Pemeriksaan sifat-sifat segar, kejuruteraan, 

pengecutan pengeringan, ketahanan dan struktur mikro kemudiannya dijalankan untuk 

membangunkan pengetahuan rangka kerja komprehensif SCC supersulfated. Semua 

SCC supersulfated hanya memerlukan nisbah air (w/b) sebanyak 0.27-0.33 untuk 

pengikat dengan kandungan tetap bahan pemplastikan polikarboksil (SP) sebanyak 
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0.6% untuk mencapai keperluan sifat segar SCC yang diinginkan. SCC Supersulfated 

yang mengandungi 4% OPC and 6% GGBS mempamerkan sifat-sifat kejuruteraan dan 

ketahanan optimal sepanjang proses pengawetan yang berpanjangan. Semua SCC 

supersulfated menunjukkan ketahanan yang lebih baik di bawah persekitaran yang 

agresif berbanding SCC yang mengandungi 100% simen. Walau bagaimanapun, SCC 

rosak pada kadar yang lebih tinggi apabila terdedah kepada 5% asid sulfurik untuk 

SCC yang mengandungi sanga EAF. Pengembangan kekuatan bahan berdasarkan 

kajian struktur mikro pada pengikat supersulfated ditentukan oleh pembungkusan 

zarah padat pada matrik pengikat dengan kehadiran produk hidrasi yang kurang. 

Sebagai kesimpulan, pengikat supersulfat diperbuat daripada GGBS dan abu terbang 

dalam komposisi yang tinggi adalah bahan pengikat yang bernilai untuk pembuatan 

SCC disamping menyediakan saluran untuk kitar semula bahan buangan dalam jumlah 

yang besar. 
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DEVELOPMENT OF SUPERSULFATED SELF-CONSOLIDATING 

CONCRETE INCORPORATING HIGH VOLUME OF INDUSTRIAL BY-

PRODUCT 

ABSTRACT 

An industrial by-product is one of the attractive alternatives to cement 

materials that can reduce the consumption of natural resources as well as encouraging 

recycling activity. One of the high-volume utilisations is by using it in supersulfated 

binder system. However, current limited knowledge framework established about the 

properties of supersulfated binder need to be addressed. Thus, this research was aims 

to evaluate the properties of supersulfated self-consolidating concrete (SCC) 

containing combination of high-volume industrial by-products namely ground 

granulated blast furnace slag (GGBS), fly ash with small portion of gypsum and 

cement. Apart from that, the granite quarry waste (GQW) was used as fine aggregate, 

and electric arc furnace (EAF) slag and granite stone were used as the coarse 

aggregates in the development of SCC. The binder composition consists of 80% GGBS 

and 20% fly ash was recorded as optimum percentage to be used as primary binder 

phase in supersulfated binder. The combination was activated with the addition of 0-

10% blended OPC-gypsum. The supersulfated SCC was cured under moist curing 

condition and tested up to 270 curing ages. The examination of fresh, engineering, 

drying shrinkage, durability and microstructure properties was later conducted to 

develop a comprehensive knowledge framework on the properties of the supersulfated 

SCC. All supersulfated SCC only required water to binder (w/b) ratio of 0.27-0.33 

with a fixed 0.6% of the polycarboxylate superplasticiser (SP) to achieve the desired 

SCC fresh properties requirement. Supersulfated SCC containing 4% OPC and 6% 



xxvi 

GGBS exhibited the optimum engineering and durability properties over prolong 

curing. All supersulfated SCC regardless type of coarse aggregate exhibited better 

resistance under aggressive environment compared to the 100% cement SCC. 

However, the concrete deteriorates at a higher rate upon exposure to 5% sulfuric acid 

for SCC containing EAF slag. The microstructure study on supersulfated paste shows 

that the strength development of the material was governed by the dense particle 

packing of the binder matrix that resulted in a rigid interlocking particle in the presence 

of a scarce amount of hydration products. In conclusion, the supersulfated binder made 

with a large volume of GGBS and fly ash is a valuable binder material for making SCC 

while providing a channel for extensive volumes recycling of the waste materials.  
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CHAPTER 1  
 

INTRODUCTION 

1.1 Background 

The construction industry is one of the critical drivers in boosting Malaysian’s 

economic development and the civil engineering subsector is the lead contributor in 

this industry followed by non-residential, residential, and specialised construction 

subsectors as of 2016 (Ministry of Finance, 2017). The construction industry provided 

socio-economic infrastructure towards providing essential amenities and subsequently 

facilitates economic development. However, the growth of the construction industry 

also contributed to the high of carbon dioxide (CO2) emission to the environment. The 

increasing trend of CO2 emission in Malaysia indicated that it is higher than the 

neighbouring countries such as Thailand and Indonesia (The World Bank, 2014). 

According to Malaysia’s biennial update report (BUR) to the United Nations 

Framework Convention on Climate Change (NFCCC) in 2016, the manufacturing and 

construction industry was the third-largest contributor of CO2 emission in Malaysia. 

These industries had contributed to 11% of CO2 emission with a total of 208,258 Gg 

being CO2 emitted. The largest contributor was the energy industry, followed by the 

transportation industry. Cement production, limestone and dolomite use, and iron and 

steel production contributed to 4, 3 and 1% CO2 emission respectively. Currently, the 

cement industry is the third-largest industrial energy consumer and represents 7% of 

the total world’s CO2 emission. The arising of global population and urbanisation will 

eventually increase the demands on for cement and concrete (IEA, 2018). 

According to the International Energy Agency’s (IEA) Reference Technology 

Scenario, direct carbon emission from the cement industry is expected to increase a 
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further 4% from the expected growth of cement production and this translates into 12-

23% globally by 2050, due to increasing urban population.  According to Davidovits 

(2013), the production of one tonne of Portland cement could generate 0.95 tonnes of 

CO2. From that value, 0.55 tonnes come from releasing the CO2 chemical using the 

clinkering process and another 0.40 tonnes from the combustion of coal. At the same 

time, the making of OPC needs an abundant amount of natural resources and this 

indirectly caused the depletion of the natural resources.  

Carbon captures, energy-efficient technology, waste heat recovery, alternative 

fuels and the alternative binder production are among the initiatives that had been 

applied in cement plants to mitigate the CO2 emission (Ishak and Hashim, 2015). As 

an ambitious target to limit the global temperature rises to 2 °C by 2100, lowering the 

clinker content with an alternative binder is one of the mitigation measures that yield 

the most substantial cumulative CO2 emission. It is because clinkering is the most 

energy-intensive process that involves the calcination of calcium carbonate and also 

heating of raw materials up to 1450 °C. The alternative binder can be the usage of 

well-known industrial by-products. Such industrial by-products are ground granulated 

blast furnace slag (GGBS), fly ash, silica fume (SF), rice husk ash (RHA) and palm 

oil fuel ash (POFA) as supplementary cementitious materials (SCMs). However, it 

only reduces CO2 released by not more than 15%. This contributed to the emergence 

of geopolymer and alkali-activated technologies to fully utilise the use of industrial 

by-products materials. However, it still required high temperature curing and the need 

for chemical activators that may not be feasible in large-scale construction application.  

Nevertheless, Malaysia’s efforts to reduce up to 45% of greenhouse gas 

emission intensity of Malaysian Gross Domestic Product (GDP) by 2030 lead to the 
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establishment of the Green Technology Master Plan (2017-2030). The master 

framework which supports the National Green Technology Policy towards directions 

of Eleventh Malaysian Plan is one of the government initiatives to move forward with 

sustainable development. Greening the building sector is one of the critical factors on 

its life cycle approach and this includes sustainable construction practice together with 

the increase of the number of green building materials as well as making policy 

amendments to allow for the usage of recycled materials in construction (KeTTHA, 

2017). 

On the other hand, GGBS is one of the famously known recycled materials or 

interchangeably known as industrial by-product material that is widely used in the 

construction industry.  It is also one of the by-products of the iron production industry 

that comes from the iron blast furnace. It is distinctively different from the electric arc 

furnace (EAF) slag that originates from the electric arc furnace used in the steel making 

process. These by-products had been proven to have excellent properties to be used as 

a binder and aggregate substitution in concrete (Horii et al., 2015, Faleschini et al., 

2015) and the utilisation of slag can contribute to zero waste in the steel and iron 

making industry. World crude steel production showed an increasing trend each year 

with 1689 million tonnes of crude steel produced in 2017 and EAF slag is expected to 

increase due to the growing rate of recycling of scrap steel in the future. 

Likewise, the flue gas produced in pulverised coal-fired furnace also releases 

a pozzolanic, by-product material namely fly ash from its separation of dust particles 

from the flue gas in the electrostatic precipitator. In 2016, Malaysia produced 

1,332,600 tonnes of coal with the face value of RM159,950 million from 5 of the local 

coal mines. The coal is mainly consumed by the cement production plants, power 
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generation and iron and steel making industry (Malaysian Minerals, 2016). Even 

though currently natural gas is the primary source of power generation, it is expected 

that in the coming years; the coal demand will continuously increase and it could 

become the number one fuel sources of power generation in Southeast Asia. This is 

due to the addition of power generation capacity, taking advantages of the abundance 

of young coal fleets across this region (Burnard et al., 2016). It will also subsequently 

increase the generation of fly ash which will in turn obligate appropriate disposal and 

recycling measures to be put in place for sustainable management of the waste. 

The present study has attempted to develop a new formulation of innovative 

binder materials by incorporating a high volume of industrial by-products in the 

making of self-consolidating concrete. This contributed to the reduction of CO2 

emission from the construction industry and shifting the continuous dependence on 

natural materials towards recycling of industrial by-products which will subsequently 

eliminate the land area required for landfills. 

1.2 Statement of Problem 

Concrete is one of the widely use composite material in the world. Even though 

we already moving forward from lime based, clay bake binder, the modern and 

industrialised Portland cement do not always give positive contribution towards the 

environment. Carbon captures, energy-efficient technology, waste heat recovery, 

alternative fuels and the alternative binder production are among the initiatives that 

had been applied in cement plants to mitigate the CO2 emission. Alternatives binder is 

one of the initiatives that not only can reduce the CO2 emission, but also capable of 

reducing the continuous need for natural raw materials in the making of OPC that cause 

the depletion of natural resources. Not only that, it also allowed the utilisation 
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industrial by-products as a binder instead of dumping in landfills. However, the 

incorporation of industrial by-products as alternative binder often use as SCMs in low 

volume and can only reduce the CO2 released by not more than 15% (Bonavetti et al., 

2014, Vijayagowri et al., 2015). The slow strength development of most of the 

industrial by-product makes them only suitable to be used in high volume for specific 

application such as in mass concrete application or with high early strength cement 

(Gholampour and Ozbakkaloglu, 2017). The elimination of OPC and fully utilised 

industrial by-products as a binder can be accomplished by executing alkali-activated 

or geopolymer technologies to increased strength development. Nevertheless, these 

binder existing binder technologies required chemical ingredients with high alkalinity 

or high temperature curing that might not be reliable and could pose a handling hazard 

if implemented in big-scale construction. 

Existing alternative binder named supersulfated cement used to have a 

reputation in Europe in the early 1900s as its capabilities to incorporate high-volume 

industrial by-products up to 85% without affecting its strength performance. However, 

the change in the pig iron manufacturing process had altered the chemical 

compositions of its by-products, namely GGBS that subsequently made it less reactive 

to be used as a primary binder in supersulfated cement. Few researchers have 

conducted studies on improvement in supersulfated cement to make it practical to be 

used as a binder for concrete production. Such improvement to initiate sufficient 

reactivity was again included chemical activator thus makes it no different than an 

alkali-activated binder. Moreover, the existing studies also more focused on the 

hardening mechanism of low alumina GGBS as primary binder materials without an 

in-depth analysis of its durability and engineering performance. Therefore, a new 
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formulation of binder materials that can activate the GGBS without chemical activator 

and elevated curing temperature needs to be developed. 

On the other hand, the making of self-consolidating concrete (SCC) requires a 

high volume of binder to achieve its desired fresh properties. Thus, incorporating 

supersulfated binder is one of the ways to cater to this need since incorporating OPC 

in high volume may not be sustainable. However, there is limited knowledge 

framework on the properties of the supersulfated SCC that has been established 

compared to conventional concrete. The limited knowledge was not only in terms of 

rheological properties but also in term of engineering, durability, and shrinkage 

performance. Such gap of knowledge is especially critical for supersulfated SCC 

material containing high volume GGBS and fly ash where there is a distinct absence 

of knowledge framework on the properties of such materials in the present body of 

literature. 

1.3 Research aims and objective 

This research is designed to evaluate the suitability and performance of the 

combination of high-volume low reactivity GGBS, fly ash and the small inclusion of 

gypsum and/or OPC (supersulfated binder) in the production of self-consolidating 

concrete for implementation in structural load-bearing applications. The inclusion of 

these high-volume industrial by-products in concrete not only reduce the amount of 

waste to be landfilled but also promoting the sustainable way of recycling. Moreover, 

SCC made with high-volume GGBS-fly ash with various gypsum/OPC combinations 

was assessed in terms of rheological, engineering, durability and microstructure 

development. The overall objectives of this research are listed as follow: 
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a) To develop a suitable SCC mix composition which enables large volume reuse 

of industrial by-products to be used and low alkalinity level for ease of 

handling for construction. 

b) To establishing the knowledge framework on the rheological properties and 

engineering performance of supersulfated SCC.  

c) To study the durability and drying shrinkage of supersulfated SCC with GGBS 

and fly ash as the primary binder phase. 

1.4 Significance of the research 

 

The evolution of manufacturing process of pig-iron iron produced slag output 

with different chemical composition compared than when they first been introduced, 

thus its manifest low in early strength. The significant of this research of not only can 

solve the problems that discussed prior, but also to bridge the gap of knowledge of 

currently available literature of supersulfated and slag-activated binder. The new 

formulation will reshape on how the supersulfated binder being made, with 

combination of multiple supplementary cementitious materials (SCMs). The usage of 

SCMs from by-products of coal and ironmaking industries can improved the quality 

of the environment by eliminating the large disposal site needed over time. At the same 

time, it also avoiding cost for landfill disposals. Not only that, the use of industrial by-

products will reduce the demand of OPC and subsequently alleviate the carbon dioxide 

emission associate with its production. 

 

Moreover, also intended to encourage concrete producers on effectively use 

industrial by-products in concrete with valuable economic and environmental benefits 

without limiting their applications. This research also aiming to develop a 
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supersulfated binder that are adaptable and versatile. The comprehensive body of 

knowledge derived from this research can be applied not only into SCC production but 

also for conventional concrete even when exposure to aggressive environment. The 

supersulfated SCC in this research was designed to eliminate the need of viscosity 

modifying admixture (VMA) and making it suitable to be used in SCC with normal or 

high-density aggregates.  

1.5 Scope of the research 

In order to achieve the objective of the research, the scopes of this research are:  

a) Assessment physical and chemical properties of material used in this research 

(GGBS, fly ash, gypsum and OPC)  

b) Establishing the optimum hybridisation matrix for mortar containing GGBS 

and fly ash binder. 

c) Choosing the suitable type of gypsum sources to be add into GGBS-fly ash 

binder to create supersulfated binder. 

d) Establishing the suitable fine to coarse aggregate ratio for supersulfated SCC 

containing WQD as fine aggregate together with granite stone or EAF slag as 

coarse aggregate.  

e) Study on the rheological properties of various mix proportion on supersulfated 

SCC 

f) Investigating the influences of supersulfated binder with various gypsum and 

OPC content in term of engineering, drying shrinkage and durability of SCC. 

 

Hence, the limitations of this study are: 
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a) The amount of gypsum and OPC used are limited to not more than 10% of the 

total binder content. 

b) The superplasticizer used was fixed for all mix design and water content was 

added to get the desired flow diameter including for fully OPC mix. 

c) The industrial by-product used in this study for coarse and fine aggregates were 

fixed to 100%.  

d) With exception of drying shrinkage, the study does not consider a curing 

exposure under normal air as only curing by plastic wrapping were considered.  

1.6 Thesis layout 

The thesis consists of six chapters to cover the significant aspect of engineering 

properties and structural behaviour of supersulfated self-consolidating concrete. In 

Chapter One, the background of this research investigation was briefly discussed 

particularly concerning the increasing trend of CO2 admission in a relationship with 

the world’s cement production industry and the sustainable use of industrial by-

product. In addition to that, this chapter also discussed the problems of the current 

trend in innovative binder technology and the significance of this research, and the 

scope of work covered throughout this research.  

In Chapter Two, the use of industrial by-product mainly GGBS and fly ash in 

concrete were discussed thoroughly.  The implementation of GGBS in innovative 

binder technology such supersulfated cement, sulfate-based cement and sulfate-

activated cement very review in depth. Not only that, the incorporation of industrial 

by-products as binder or as aggregate replacement in SCC application were critically 

reviewed. The influence of these materials such as GGBS, fly ash, GQW, and EAF 
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slag in terms of fresh, durability, engineering and hardening mechanism were reviewed 

and discussed.  

Chapter Three thoroughly discussed the experimental programme and relevant 

test methodology applied to investigate the essential parameters of the characteristics 

and performance of the materials used in this research program. Chapter Four 

discussed the fresh properties of supersulfated paste and SCC including the standard 

consistency, setting time. There was also a detailed assessment on the engineering 

properties of the supersulfated self-consolidating concrete, namely the ultrasonic pulse 

velocity test (UPV) and drying shrinkage for non-destructive test and compressive and 

flexural test for a destructive test of hardened concrete.  

A detailed analysis of the durability of supersulfated self-consolidating 

concrete was thoroughly discussed in Chapter Five. The durability analysis, for 

supersulfated pastes were X-Ray Diffraction (XRD) analysis, surface area analysis via 

Brunauer-Emmett-Teller (BET), material characterisation via Thermogravimetric and 

analysis (TGA). For supersulfated SCC, water absorption, porosity, intrinsic air 

permeability, resistance to sulfate attack, chloride permeability, and resistant under 

sulfuric acid were sufficiently elaborated. Apart from that, microstructure analysis 

binder of supersulfated pastes by Scanning Electron Microscopy (SCM) also presented 

to further justify the hardening mechanism and relationship with the durability 

performance in an earlier subsection.  

To conclude, Chapter Six presented the overall conclusion and summary from 

the experimental works mentioned the preceding chapter. Recommendation for future 

research was also suggested in this chapter. 
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CHAPTER 2  
 

LITERATURE REVIEW 

2.1 Introduction 

In this chapter, the background of past studies on the properties of concrete 

fabricated using industrial by-product had been intensively discussed either in 

conventional or self-consolidating concrete. Factors influencing the rheological, 

engineering properties, durability properties and hardening mechanism of the industrial 

by-products by implementing them as innovative binder or aggregates replacement in 

concrete or mortar had also been discussed and reviewed in detail. 

2.2 The recycling of industrial by-product as a concrete constituent 

Civil engineering works undeniably cause the depletion of natural resources and 

growing demands for building materials, making the efforts of various researchers to 

contribute towards the creation of more sustainable materials imperative. These lead to 

investigations that were primarily aimed at lessening the dependence on the extraction 

of natural resources. Also, due to its decreasing availability and also the concern about 

creating a better environment. Innovative and new materials have been developed and 

studied to solve the increasing demands for new and sustainable construction materials. 

Such materials are based on waste materials or also known as an industrial by-product 

or recycle materials. Table 2.1 shows various categories and nature of solid waste and 

their recycling application potentials compiled by Grubeša et al. (2016). Concrete, the 

well-known composite material widely used in various structural areas of civil 

engineering consists of ordinary Portland cement (OPC), coarse and fine aggregate and 

water is the most used man-made material in the world. However, cement, as the 

traditional binder material with excellent binding properties in concrete, contributed to 
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CO2 emission during the production process. On the other hand, the aggregate is an 

unreactive particle in concrete that contributed to the concrete strength and occupied a 

substantial portion of the concrete’s volume such as rock, gravel, sand and crushed 

stone. It is also typically derived and dependent on depleting natural resources. 

Currently, the high demand of natural aggregate causes exhaustion of aggregate quarry 

which can contribute to the new quarry opening which can increase the transportation 

distance and costs as the sources become scarce (Qasrawi, 2014).  A sustainable 

approach to replace natural aggregate in concrete with industrial by-product can reduce 

the depletion of the available land for landfill, stockpiles or illegal dumping activities. 

Such approach would be able to respond to the impending crisis due to the exhaustion 

of natural aggregate. 

2.3 The utilisation of industrial by-product as binder materials in concrete 

The most common reactive industrial by-product materials that show 

cementitious properties include ground granulated blast furnace slag (GGBS), cement 

kiln dust (CKD) and waste gypsum while materials with pozzolanic properties such as 

fuel ash, calcined clay (metakaolin), silica fume, risk husk ash (RHA), palm oil fuel ash 

(POFA), wood ash, volcanic ash, waste glass, or sewerage sludge incineration ash. 

Cementitious and pozzolanic materials have widely been used as SCMs to replace OPC 

as a binder in concrete partially due to the existence of reactive component such SiO2, 

Al2O3 and CaO in their chemical compositions as shown in Figure 2.1. The emergence 

of binary, ternary or quaternary blends of these materials also attracted researchers’ 

interests not only to achieve excellent properties but also to accommodate and maximise 

the use of these materials depending on their availability in various regions across the 

world. These contributed to the development of innovative binder technology such as 
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blast furnace slag cement, pozzolanic cement, supersulfated cement, alkali-activated 

cement, sulfate activated cement and geopolymer. Other than that, these binder 

materials have also been used as mineral admixtures to improve the properties of 

concrete, mortar or paste. 

Table 2.1 Categories and nature of solid waste and their recycling application 

potential  

(Grubeša et al., 2016) 

 

Categories of solid waste Source details 
Recycling and application in 

building application 

Agro organic 

Bagasse, rice and wheat straw 

and husk, cotton stalks, 

sawmill waste, ground nut 

shells, banana stalks, and jute, 

sisal, vegetable residue 

Plasterboard, insulation boards, 

wall panel, printing paper and 

corrugating media, roofing 

sheets, fuel, binders, fibrous 

building panels, brick, acid-

proof cement, coir fibre, 

reinforced composites, cement 

board 

 

Industrial waste (inorganic) 

Coal combustion residue, slag, 

bauxite red mud, waste glass, 

rubber tires, construction 

debris 

Cement, bricks, blocks, tiles, 

paint, aggregate, cement, 

concrete, wood substitute 

products, ceramic products, 

subbase pavement materials 

 

Mining/mineral waste 

Coal washery waste, mining 

overburden waste, quarry dust, 

tailing from the iron, copper, 

zinc, gold, aluminium 

industries 

 

Bricks, tiles aggregate, 

concrete surface finishing 

materials, fuel 

Non-hazardous other process 

waste 

Waste gypsum, lime sludge, 

limestone waste, marble 

processing residue, broken 

glass and ceramics, kiln dust 

Gypsum plaster, fibrous 

gypsum board, bricks, blocks, 

cement clinkers, supersulfated 

cement, hydraulic binders 

 

Hazardous waste 

Metallurgical residue, 

galvanising waste, tannery 

waste 

 

Cement, bricks, tiles, ceramics 

and boards 

 

Currently, an emergence of geopolymer technology enables the elimination of 

OPC by activating the unary or more amorphous to semi-crystalline three-dimensional 

aluminosilicate materials as precursors with alkali activator (Davidovits, 2011). The 

general types of alkali-activator are sodium hydroxide (NaOH) and sodium silicate 
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(Na2SiO3) to form similar or better properties as conventional OPC concrete. 

Geopolymer technology should not be mistaken for the well-known alkali-activated 

materials (AAMs) technology as the same terminology. Aluminosilicate rich materials 

with a high content of silica (Si) and alumina (Al) are essentials for geopolymer 

formation with co-existence of calcium aluminosilicate hydrate (C-A-S-H) and sodium 

aluminosilicate hydrate (N-A-S-H). The terminology is still being debated as a recent 

study by Liu et al. (2016) had proven that the geopolymerisation product of fly ash-

based geopolymer is unlikely to contain hydrates. Regardless, both technologies had 

proven to be beneficial especially towards a better environment but introducing 

relatively high alkali content into the mix design can be unpractical especially in mass 

production. Geopolymeric alkaline elements might be dangerous as they are classified 

as corrosive and irritant products thus appropriate safety procedures for handling are 

necessary (Davidovits, 2011). 

 

Figure 2.1 The chemical composition of primary cementitious materials  

(Aitcin, 2008) 
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2.3.1 Fly ash 

Long before the discovery of artificial pozzolan, the Greeks used Santorine 

earth, which was volcanic ash from Santorine’s volcanic explosion that covered the 

surface Thera island as a binding material or also known as a natural pozzolan. Later, 

the ancient Romans found the non-hydraulic cement made of natural pozzolan, namely 

volcanic ash and pumice (Li, 2011). Roman architect, Marcus Vitruvius has described 

in his book De Architectura, the principals of the formation of foundation and marine 

concrete based on the combination of volcanic ash and hydrated lime mortar which was 

capable of binding volcanic rock fragments under self-reinforcing framework (Jackson 

et al., 2018). Later, in 1756, John Smeaton begins experimenting with the combination 

of slaked lime and pulverised pozzolans in order to rebuild Eddystone Lighthouse, off 

the coast of Cronwell, England, which could withstand the severe marine environment. 

However, not until 19th century, the now famously known artificial pozzolanic 

material, fly ash or also known as pulverised fuel ash was found extensively used as a 

binder material in concrete due to its pozzolanic behaviour. Fly ash, a by-product of 

combustion of coal for the generation of energy, accounts for approximately 70-85% of 

all coal ash produced from around the world.  

The laboratory study on fly ash for use in concrete was started in the United 

States by Raymond E. Davis and his associates as the availability of fly ash from coal-

burning fired plant in 1930s growing (Davis et al., 1937, ACI, 2003). Soon after, the 

Bureau of Reclamation begins to use fly ash for the repair of tunnel spillway at Hover 

Dam in 1942. Fly ash was subsequently started to be used in large scale when 110,000 

tons of fly ash or approximately 30% of total cement weight used during the 

construction of Hungry Horse Dam on the Flathead River, Montana in 1948 (Bensted 
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and Barnes, 2002). It was the only known fly ash specification written by Bureau for 

that construction project before the specification covering the used of fly ash in concrete 

established by ASTM in 1953. Later, a new cement that consist of fly ash as blended 

cement material was first patented in the early 1950s by M. Fouilloux in France (Jarrige, 

1967). During this period, fly ash was extensively used in cement plant by blended with 

finish cement product, interground with cement clinker or blended with other materials 

in cement raw batch to achieved certain chemical composition in kiln feed. 

Furthermore, in the 1980s, French researcher, Joseph Davidovits had proposed that the 

magnificent ancient Egypt structure; the Great Pyramid of Giza was made from the 

granular limestone aggregate bound with alkali aluminosilicate-based binder which was 

cast in situ. The binder resemblance chemistry of aluminosilicate materials of pozzolan, 

namely fly ash and metakaolin called geopolymeric reaction had contributed to the 

invention of geopolymer cement. Since then, fly ash had been widely used as 

construction materials, not only limited as a binder in concrete but also as a soil 

stabilisation material, road or sub-base and structural fill.   

In Malaysia, fly ash is still abundant and this resulted from the combustion of 

coal to generate electricity. Based on Malaysian Energy Commission (2017), the power 

sector utilises 23 million tons of coal annually in Peninsular Malaysia. As of December 

2016, Malaysia had 1938.37 million tonnes of coal reserves which comprised mainly 

of bituminous, sub-bituminous, anthracite, lignite and coking coal types. For the fly ash 

to be used as construction materials, a few countries have their own standards of 

reference to understand their reactivity based on its chemical composition. Table 2.2 

shows the most relevant standards used around the world and the type of fly ash 

available was grouped in different categories. For example, the reactivity of fly ash as 

described in  American Standard, ASTM C618 (ASTM, 2019) reference standard can 
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be classified as Class C or F. The fly ash classification is customarily based on its lime 

(CaO) content which often belongs to Class F fly ash for low CaO content and Class C 

fly ash for high silicon dioxide (SiO2). However, some Class C fly ash may possess 

some cementitious properties if it contains higher than 10% of CaO. In Malaysia, the 

Malaysian standard MS EN 450 (Standards Malaysia, 2014) for fly ash is adopted from 

the European (EN) Standard, EN 450 (BSI, 2012).  

Fly ash also contains some carbonaceous matter that is taken as equivalent to its 

loss on ignition (LOI). For a technical and aesthetical reason, it is essential for the LOI 

values to be maintained at the maximum of 7% according to MS EN 450: Part 1 

(Standards Malaysia, 2014) or 10% as recommended by ASTM C618 (ASTM, 2019) 

The high carbon content in fly ash may reduce the effectiveness of air-entraining 

admixtures or unsatisfactory water reduction of the water reducers when in used with 

chemical admixtures due to the highly absorptive nature from the interaction of fly ash 

and variability of carbon content (Cheah et al., 2014).  

The reactivity of fly ash is also different based on its geographical location. For 

instance, the fly ash sourced from 4 different power plant in USA based on the study by 

Cross et al. (2008) were produced by burning on same type of sub-bituminous coal and 

same combustion process. Such coal and combustion process produce high calcium fly 

ash that competent to produced cementless, 100% fly ash concrete. Similarly, fly ash 

sourced from Lampang, Thailand based on research by Chindaprasirt et al. (2011) was 

derived from lignite coal which also contained high in calcium. Table 2.3 shows the 

chemical composition of fly ash that comes from different locations around the world 

in the making of various types of binder for concrete or mortar applications. Fly ash 

from different coal origins would expect to have differences in term of chemical, 



18 

physical and mineralogy. Thus, it will affect their ability and reactivity when used as a 

binder. Fly ash produced from anthracite or bituminous coal predominantly contains 

crystalline phases that are inert which are composed of aluminosilicate glasses with 

varying amount of quartz, magnetite, mullite and hematite. This type of fly ash needs 

support from an alkaline activator to react actively and to form cementitious hydrates. 

In contrast, fly ash from lignite and sub-bituminous coals contain calcium-alumino-

silicate glasses with a variety of crystalline phases including the phases found in 

anthracite and bituminous. Calcium bearing glass and some of these phases, when 

reacted with water, will react rapidly and exhibit their pozzolanic and hydraulic nature 

(Thomas, 2007). 

 

Table 2.2 Fly ash requirement to be used in concrete by various relevant 

standards. 

 

Standard 
Type/ 

Categories 

Loss of 

ignition 

(%) 

Moisture 

(max %) 

Silicon 

Trioxide, 

SO3 (max 

%) 

SiO2 

(min 

%) 

SiO2 + 

Al2O3 

+ Fe2O 

(min 

%) 

Total 

Chloride 

(max %) 

Fineness 

at 45 μm 

retained 

(max %) 

Europe 

EN  450 – 1 

: 2012 

A 5 - 

3 

- 

70 0.1 40a, 12b B 7 - - 

C 9 - - 

USA 

ASTM 

C618 : 2019 

Class N 10 

3 

- - 7 - 

34 Class F 6 - - 70 - 

Class C 6 - - 50 - 

Japan 

JIS A 6201 

:2015 

I 3 

1 

- 

> 45 

- - 10 

II 5 - - - 40 

III 8 - - - 40 

IV 5 - - - 70 

China 

GB/T 1596: 

2017 

I 5 

1 3 

- - - 12 

II 8 - - - 25 

III 15  - - 45 

India 

IS 3812 – 1 

: 2013 

Siliceous 

5 2 3 

35 70 

0.05 34 
Calcareous 25 50 

Australia 

AS 3582 – 

1: 1998 

Fine 

(Special) 
4 

1 3 

- - - 
25 

Fine 4 - - - 

Medium 5 - - -  

Coarse 6 - - - 45 

Canada 

CSA A3001 

: 2013 

F 8 

5 

- - - - 

34 CI 
6 

- - - - 

CH - - - - 
a For category S cement 
b For category N cement 
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All cementitious materials, including fly ash and GGBS, consisted of alkali 

metal ions. However, instead of being present as water-soluble sulfate just like OPC, 

they are concentrated in the glassy structure of their particles with low content of soluble 

alkali metal ions. The reaction of this glass particles liberates the alkali metal ions but 

does not affect the alkalinity of the concrete compared to OPC since the lower ratio of 

CaO: SiO2 in calcium silicate hydrate (C-S-H) caused higher alkali metal ions to be 

removed from the solution (Jackson and Dhir, 1996). Fly ash has been widely used as 

binary or ternary binder materials in various types of concrete not only in conventional 

(Cheah et al., 2019b) but also geopolymer (Ken, 2017) and alkali-activated concrete. 

Besides, for the use of fly ash in concrete, it is essential for the ash to exhibit consistency 

in the overall composition rather than small scale variations. 
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Table 2.3 The main chemical composition of fly ash used by various researchers 

from a different geographical location 

 

Authors 

Fly ash 

sources 

location 

Composition (%) 

CaO SiO2 Al2O3 Fe2O3 LOI 

Cementless binder 

(no cement and alkali-

activator) 

      

Cross et al. (2008) USA* 

28.89 32.37 17.52 5.43 0.23 

27.00 35.05 18.63 6.46 0.19 

27.60 35.10 18.40 4.90 0.80 

26.88 33.99 21.39 5.86 0.40 

Zhong et al. (2012) China 6.49 48.90 33.80 5.08 - 

Binary blended 
      

Guo et al. (2010) USA 20.00 38.00 19.00 9.00 3.50 

Siddique et al. (2012) India 2.23 58.55 28.20 3.44 4.17 

Arezoumandi and Volz 

(2013) 
USA 26.28 33.46 19.53 6.28 0.34 

Darmawan et al. (2015) Indonesia 25.50 26.20 9.20 31.0 - 

Zhao et al. (2015) China < 3.00 56.79 28.21 5.31 3.90 

Nežerka et al. (2019) 
Czech 

Republic 
4.20 48.80 24.20 12.50 5.53 

Triple blended 
      

Barbhuiya (2011) Thailand 13.78 42.54 23.59 12.36 - 

Yu and Leung (2017) Hong Kong* 
4.99 51.40 30.84 4.98 1.69 

7.29 49.05 25.93 7.58 0.77 

Matos et al. (2019) Brazil* 
1.10 69.30 18.90 6.20 0.20 

2.07 56.03 29.41 6.16 0.50 

Alkali – activated 
      

Ismail et al. (2014) Australia < 0.1 62.93 24.91 5.22 2.64 

Marjanović et al. (2015) Serbia 7.98 55.23 21.43 7.42 1.66 

Karim et al. (2015) Malaysia 3.04 58.95 20.24 5.18 3.16 

Luga et al. (2017) Turkey 1.77 61.81 19.54 0.98 2.20 

Wang and Ma (2018) China 4.9 49.1 34.8 4.5 - 

Geopolymer 
      

Xie et al. (2009) China 1.88 70.4 30.9 5.38 - 

Chindaprasirt et al. (2011) Thailand 13.34 45.03 23.98 10.68 0.58 

Kumar and Kumar (2011) India 1.71 60.48 28.15 4.52 1.59 

Ryu et al. (2013) Korea 2.90 55.30 25.80 5.50 3.20 

Xie and Kayali (2016) Australia* 
4.67 58.60 20.20 9.25 - 

25.77 43.03 14.90 8.94 - 

Kalaw et al. (2016) Philippine 5.30 66.50 28.80 2.5 2.18 

Hung et al. (2017) Vietnam 2.56 54.42 23.90 8.14 4.31 

* Research consists of two types of fly ash with different composition 
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2.3.2 Ground granulated blast furnace slag (GGBS) 

Blast furnace process is one of the famous steelmaking routes for worldwide 

steel production. The method uses coke and coal as the primary source of fuel and 

reductant materials, flux materials such as dolomite or limestone. At the same time, 

sinter, pellet and lump ore act as iron-bearing components blasted with a high-

temperature flame of 1500 °C. It is later transformed into two separate products, namely 

pig iron or liquid hot metal and molten slag formed from the gangue materials such as 

the coke and coal ash and the ore burden. The hot liquid metal was collected from the 

bottom of the furnace and transported in liquid before the refinement process to become 

steel can take place by removing other elements such as silicon, carbon, sulphur, 

phosphorus and manganese (Geerdes et al., 2009). On the other hand, the low-density 

molten slag that floats on hot liquid metal is later quenched rapidly with water to a form 

glassy and granulated slag. It was then ground into a fine powder known as the ground 

granulated blast furnace slag (GGBS) which will be reviewed thoughtfully in this 

section. 

 GGBS, the by-products of iron and steel making industry was first used in 

Germany as a binder constituent back in 1862 after its latent hydraulic potential in the 

granulated form, or vitrified form which was discovered by Emil Langen (Papadakis 

and Venuat, 1968, Bensted and Barnes, 2002). Three years later, the first commercial 

production as slag-lime cement began in the same country. However, the first standard 

on the usage of slag cement was only issued after almost half a century later in 1903. 

Following that, Hans Kühl discovered the possibility of sulfate activation of GGBS 

using calcium sulfate (Keil, 1952) then was known as the supersulfated cement. SiO2, 

CaO, MgO and Al2O3 are four primary compounds in GGBS and resembled a mineral 
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whose compositions correspond to the melilite phase, a solid solution phase between 

gehlenite (C2AS) and akermanite (C3MS2) as well as a standard component in 

commercial silicate glasses (Song and Jennings, 1999, Li et al., 2010). Except for SiO2 

that decreases its reactivity if the content is increased, other primary compound 

increases the reactivity if the content increases (Pal et al., 2003). These primary 

compounds in GGBS can also generate C-A-S-H colloid as their hydration product (Wu 

et al., 2015) and can make up about 95% of the GGBS. The balance is typically made 

up of other components such as manganese (MnO2), sulphur (S), potassium (K2O), 

phosphorus (P) and titanium (TiO2). Based on MS EN 15167: Part 1 (Standards 

Malaysia, 2010) for GGBS to be used in concrete, mortar or grout, the ratio by mass of 

CaO + MgO / SiO2 should exceed 1 to ensure the high alkalinity, without which the 

GGBS can be hydraulically unreactive.  

According to Haha et al. (2011), GGBS with higher MnO2 content had shown 

faster hydration kinetics regardless of the activator used to activate it. The main factors 

that govern the cementitious properties of GGBS are the chemical composition, 

fineness, glass content and the concentration of alkali in the reacting system (Siddique 

and Bennacer, 2012). The cementing properties of GGBS are typically observed after 

three days, but some hydration might occur immediately after it comes in contact with 

water, and the protective layer is formed on the surface of GGBS particles. It was 

usually used in conjunction with alkalis, gypsum or lime that act as accelerators or 

activators to promote GGBS hydration with different hydration products as shown in 

Table 2.4 (Ramachandran et al., 2002, Mozgawa and Deja, 2009). However, according 

to Li (2011), the strength contribution may also become apparent as early as 7 days after 

hydration. 
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Table 2.4 The hydration products of GGBS activated with various activators 

(Ramachandran et al., 2002, Mozgawa and Deja, 2009) 

 

Activators Crystalline Phases Comments 

NaOH, Na2CO3, Na 

Silicate 

C-S-H, C4AH13, C2AH8, 

Mg(OH)2, C-A-S-H 

Some Si is included in 

C4AH13; Ca/Si ratio of C-

S-H is less than in OPC 

paste 

Ca(OH)2 C-S-H, C4AH13 C2AH8 is not present 

Gypsum, Hemihydrate, 

Phosphogypsum 
C-S-H, AFt, Al(OH)3 

SO4 in slag may act as an 

internal activator 

OPC 

C-S-H, AFm, Aft, 

Hydrogarnet, 

Hydrocalcite-like phase, 

Vicatite (C3-S2-H3) 

Any one paste may not 

have all these phases 

 

GGBS generally has fineness around 4500 to 4800 cm2/g. According to Mun et 

al. (2007), the high fineness only contributed to the early strength development since 

the high surface area of GGBS accelerates the hydration and filling action once it comes 

in contact with water.  The strength performance of high fineness GGBS is comparable 

to low fineness GGBS at 28 days, as shown in Figure 2.2. GGBS with particle size less 

than 10 µm can contribute to the early-age strength up to 28 days, while 10 to 45 µm 

contribute to later age strength and particles with size higher than 45 µm are challenging 

to hydrate (Li, 2011). Likewise, high temperature curing for concrete containing GGBS 

also only affect the early age and similar strength could be achieved at 14 days of curing 

regardless any curing temperature up to 50 °C (Turuallo and Soutsos, 2015).  However, 

it was suggested by  Neville (2011) that proper curing such as moist curing for concrete 

containing high volume GGBS is necessary since poor curing can lead to the 

evaporation of the capillary pore water which can prevent further hydration process.   
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Figure 2.2 Compressive strength development of GGBS and OPC mortar with 

different fineness  

(Mun et al., 2007) 

 

The usage of a high volume of GGBS favours the heat of hydration compared 

to standard OPC concrete which makes it a suitable material for the mass concrete 

application. According to Lee et al. (2015), the decrease in reaction degree when 

increasing the GGBS content in GGBS-OPC blended concrete was due to the shortage 

of Ca(OH)2 sources from the OPC. When compared to other industrial by-products, it 

was proven in the study by Han et al. (2017) that the reaction degree is higher in GGBS 

compared to fly ash as shown in Table 2.5. When the hydration degree of GGBS and 

fly ash achieved 100%, the heat of hydration of per gram of GGBS is 530 J and 285 J 

for fly ash. The amount of hydration heat of GGBS was considered high compared to 

OPC which is only 468 J/g when calculated based on mineral composition and the heat 

of hydration of each mineral composition of the OPC itself. Other than that, by 

increasing the OPC replacement with GGBS shows a reduction in water demand to 




