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SKEMA-SKEMA LELARAN BARU DALAM PENYELESAIAN BERANGKA

PERSAMAAN PEMBEZAAN SEPARA HIPERBOLIK PECAHAN-MASA

DUA DIMENSI

ABSTRAK

Dalam literatur, skema-skema berangka seperti kaedah perbezaan terhingga,

kaedah unsur terhingga, kaedah isipadu terhingga, kaedah unsur sempadan dan kaedah

spektral telah digunakan untuk pendiskretan pelbagai jenis persamaan pembezaan pec-

ahan (PPP). Kaedah-kaedah sebegini mengalihkan PPP kepada suatu sistem persamaan

linear serentak besar dan jarang yang boleh diselesaikan dengan kaedah-kaedah lelaran

yang berdasarkan skema lelaran berorientasikan titik pada domain pendiskretan penuh

Ωh, di mana h ialah jarak grid dalam dua-dua arah x dan y. Dalam semua jenis kaedah

lelaran ini, operasi aritmetik yang besar diperlukan untuk penumpuan, kerana nilai-

nilai sebelumnya perlu disimpan jika nilai-nilai baru ingin dikira. Sejak beberapa

dekad yang lalu, ramai sarjana dan penyelidik telah membangunkan banyak algoritma

cepat efisien untuk mengurangkan kos pengiraan. Permintaan yang meningkat bagi

simulasi resolusi lanjutan dalam masa komputer yang singkat telah terus mencabar

penyelidik untuk menghasilkan algoritma pengiraan yang pantas, teratur dan lebih

efektif dalam menyelesaikan PPP. Salah satu cara untuk mencapai penumpuan pan-

tas adalah dengan penggunaan kaedah lelaran berkumpulan yang berdasarkan skema

lelaran berorientasikan kumpulan menggunakan kurang daripada h−2/2 atau h−2/4

(bergantung pada kaedah yang digunakan) titik lelaran pada domain ruang. Dalam

xivxvixvixvixv



tesis ini, skema-skema lelaran kumpulan baru untuk menyelesaikan persamaan resapan

gelombang pecahan dua dimensi kedua-dimensi, persamaan resapan gelombang lem-

bap pecahan dan persamaan pembezaan telegraf hiperbolik pecahan, diterbitkan yang

menggunakan keupayaan pengiraan yang kurang dan seterusnya mengurangkan masa

pelaksanaan per lelaran tanpa menjejaskan ketepatan penyelesaian. Analisis kestabi-

lan dan penumpuan bagi skema-skema lelaran titik dan kumpulan yang diterbitkan

akan dibuktikan dengan menggunakan algoritma norma Fourier dan matriks masing-

masing.

xv
xviixviixviixvi



NEW ITERATIVE SCHEMES IN THE NUMERICAL SOLUTION OF

TWO-DIMENSIONAL TIME-FRACTIONAL HYPERBOLIC PARTIAL

DIFFERENTIAL EQUATIONS

ABSTRACT

In literature, numerical schemes such as finite difference method, finite element

method, finite volume method, boundary element method and spectral methods have

been utilized for the discretization of many types of Fractional Differential Equations

(FDEs). Such types of methods lead FDEs into a large and sparse system of simul-

taneous linear equations which can be solved by iterative methods that are based on

the point-oriented iteration schemes on the whole discretization domain Ωh, where h is

the grid spacing in both x and y directions. In all such type of iterative methods, large

arithmetical operations are required for convergence, because previous values have to

be stored if the recent value is to be calculated. Over the past decades, many schol-

ars and researchers have established numerous proficient fast algorithms to reduce the

computation cost. The increasing demand for advanced resolution simulations in less

computer time have continuously challenged the researchers to come up with more

effective, well-organized and fast computational algorithms in solving the FDEs. One

of the ways to achieve faster convergence is by the utilization of group iterative meth-

ods which are based on group-oriented iteration schemes that utilize less than h−2/2

or h−2/4 (depending on the method used) iterative points of the spatial domain. In

this thesis, new group iterative schemes for solving the second-order two-dimensional

xvixviiixviiixviiixvii



fractional wave diffusion equation (FWDE), fractional damped wave diffusion equa-

tion (FDWDE) and fractional hyperbolic telegraph differential equation (FHTDE) are

derived which utilize less computational efforts and hence reduce the execution of

time per iteration without deteriorating the solution accuracies. The stability and con-

vergence analysis of the derived points and group iterative schemes will be established

by using the Fourier and matrix norm algorithms respectively.

xviixixxixxixxviii



CHAPTER 1

INTRODUCTION

1.1 Introduction

During the middle of last decade, Fractional Differential Equations (FDEs) have

assumed more prominence over the Partial Differential Equations (PDEs) due to non-

local property and its realistic natural phenomena, since FDEs describe values on each

point continually and distinguished the gaps between the two integers. This was moti-

vated by the fact that many significant applications of FDEs have been found in various

and extensive fields of engineering (Bagley and Torvik, 1984; Mainardi, 1997), finance

(Scalas et al., 2000; Raberto et al., 2002), hydrology (Benson et al., 2000; Liu et al.,

2003), medical sciences (Santamaria et al., 2006; Henry et al., 2008; Margin et al.,

2009; Hall and Barrick, 2008), physics (Metzler and Klafter, 2000; Saichev and Za-

slavsky, 1997; Zaslavsky, 2002, 1994, 2005), bio sciences (Magin, 2006), chemistry

(Yuste et al., 2004), and other sciences (including viscoelasticity (Mainardi, 2010),

control system (Agrawal et al., 2010), signal analysis (Zhou et al., 2010), operator the-

ory (Torbati and Hammond, 1998) etc.). The main benefit of FDEs is the formulation

of the memory, hereditary characteristics of numerous substances and the procedure

that are decreed by the anomalous diffusion in the fractional environment which can

never be considered by PDEs (Torbati and Hammond, 1998).

As far as the geometrical and physical interpretation of integer-order differentials

and integrals are concerned, they have the clear physical interpretation in calculus

1



(Oldham and Spanier, 1974). Fractional derivative and integral are more specific in

description than the ordinary or integer-order derivative and integral in many cases and

hence fractional derivative and integral give more deep result and realistic phenomena

(Kiblas et al., 2006). Podlubny (2002) has developed innovative interpretation and he

narrated the physical interpretation of fractional derivative to theory of relativity by

introducing two type of time namely, individual and intergalactic time. Intergalactic

time means the traveling at a speed closer to speed of light which is possible in theories

only. Miller and Ross (1993) has also explored in detail the physical interpretation of

fractional derivative. The geometrical interpretation of integer order differential and

integration, can be seen in classical geometry, whereas some researchers seek the geo-

metrical interpretation of fractional differential and integral in fractal geometry, as the

classical geometry is the subclass of fractal geometry (Torbati and Hammond, 1998).

In different field of science, numerous problems have been successfully described

by models using mathematical tools from FDEs in relation to the time-fractional,

space- fractional and time-space fractional derivatives. Some types of FDEs can be

solved analytically with the help of some particular types of transforms and special

functions such as Laplace transform (Jumarie, 2009; Agrawal, 2002), Fourier trans-

form (Chen et al., 2007; Orsingher and Beghin, 2004), Mellin transform (Liu et al.,

2003), Fox functions (Wyss, 1986; Schneider and Wyss, 1989), Wright functions (Goren-

flo et al., 2000) and Green functions (Momani and Odibat, 2007; Huang and Liu, 2005)

etc. Most of these approaches are appropriate for the solution of linear FDEs but gen-

erally not applicable for non-linear FDEs. For such types non-linear FDEs it is quite

difficult to obtain purely explicit analytic solution which usually contains special func-

tions. Then, scholars and researchers are always looking forward to some suitable

2



and excellent numerical approximations to the exact analytic solutions. For discretiz-

ing the research problems in term of PDEs, the most commonly used and easier to

implement method is the finite difference method as compared to any other method

in literature, since it is universal applicable for both linear and non-linear problems

(Evans, 1997). Several types of finite difference methods related to group iterative ap-

proach such as standard and rotated five point, and standard and rotated seven point

schemes have been utilized in the past few years (Othman and Abdullah, 2000b; Saeed

and Ali, 2009, 2011; Teng and Ali, 2014; Kew and Ali, 2015). The rotated schemes

can be obtained by rotating an angle of 45◦ (clockwise) with respect to the standard

mesh. On the basis of standard and rotated five point as well as seven point discretiza-

tion techniques, a series of four-point and eight point explicit group methods have

been introduced. Abdullah (1991) established four point Explicit Decoupled Group

(EDG) method by describing the PDE on the basis of rotated (skewed) grids. Kadal-

bajoo and Rao (1997) introduced a new Explicit Group (EG) method for solving block

tridiagonal linear system derived from standard five point finite difference discretiza-

tion for parabolic PDE. Othman and Abdullah (2000a) derived EG iterative method

and modified four point EG iterative method from standard five point approximations

formula with h and 2h grid spacing respectively. They also developed EDG itera-

tive method from h-spaced rotated five point approximations formula and their results

derived from modified four point EG method are compared which were much better

than EG and EDG iterative methods. Since then, active investigation has been con-

ducted to examine the capabilities of various group iterative methods by utilizing the

rotated finite difference approximation rather than the traditional standard finite differ-

ence approximation in solving numerous types of PDEs. Tan et al. (2010) found the
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significant results from group iterative methods which were derived from standard and

skewed five point meshes in solving the 2D convection-diffusion equation. Ali and

Kew (2012) derived four point group iterative methods on the behalf of standard and

rotated five point finite difference approximations considering h and 2h grid spacing

for the solution of 2D hyperbolic equation and established its consistency by apply-

ing Taylor’s series and convergence by eigenvalue arguments. Ali and Saeed (2012)

constructed a specific splitting-type preconditioner in block formulation applied to a

class of group relaxation iterative methods derived from the centred and rotated finite

difference approximations to increase the rate of convergence. Kew and Ali (2015) uti-

lized both standard and rotated seven point finite difference approximations for solving

the three dimensional hyperbolic telegraph PDE. Likewise the PDEs, finite difference

schemes are also appropriate for discretization of FDEs. In this regard, recently Bal-

asim (2017) discretized the 2D time-fractional diffusion, advection diffusion and cable

equations by utilizing the standard and rotated five point finite difference schemes. On

utilizing the basic idea of standard and skewed meshes (h or 2h spacing), he developed

Fractional Standard Point (FSP), Fractional Rotated Point (FRP), Fractional Explicit

Group (FEG), Fractional Explicit De-coupled Group (FEDG), Modified Fractional Ex-

plicit Group (MFEG) and Modified Fractional Explicit De-coupled Group (MFEDG)

iterative methods and found significant numerical results. In this thesis, our research

work is continuation of Balasim (2017) research work for solving the second-order

two-dimensional wave-diffusion, damped wave-diffusion and hyperbolic telegraphic

equations of fractional order. In all types of these equations, α ∈ (1,2) are used, which

made the case more complicated to achieve convergence due to the appearance of in-

teger "2" in the second-order differential operator which we use in the definition of
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Caputo’s fractional derivative. To apply suitable finite difference approximation on

the time-fractional hyperbolic telegraph differential equation is not a straightforward

task due to involvement of the double time-fractional derivatives in the equation. The

crucial part is to find an appropriate finite difference approximation formula for the

spatial derivative that works well with the time-fractional derivative, which is compu-

tationally inexpensive and easy to solve. Several two-dimensional higher-order FDEs

are still left unsolved by group iterative methods and stability and convergence are the

challenging tasks for interested scholars in this areas of research. Moreover, so far the

grouping strategies have not been investigated on hyperbolic PDEs.

1.2 Motivation

To construct numerical approximation equations, most of the scholars discretized

their proposed problems by utilizing various types of discretization techniques such

as finite difference method (Zhang, 2009), finite element method (Zhu et al., 2017),

boundary element method (Katsikadelis, 2011), finite volume method (Liu et al., 2014)

and spectral methods (Bhrawy, 2016) which are further classified in three types of

methods namely, collocation, Tau and Galerkin methods. The discretized schemes in

this way generate a sparse system of simultaneous linear equations of the following

form,

Au = b. (1.1)

Here, iterative methods are very important in solving system of linear equations. In the

literature, many iterative methods have been suggested for solving the linear system by

various authors like Saad (1996), Hackbusch (1995) and Young (1971). To solve the

linear system in Eq. (1.1), these types of iterative methods utilize all the grid points of
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solution domain Ωh, (h is grid spacing in both x and y direction such that h = ∆x = ∆y)

including the boundary points to achieve the convergence. Due to the involvement of

all the grid points of solution domain Ωh, these iterative methods are forced to utilize

a lot of arithmetic operations in the iterative loop that suffer into large computational

complexities and hence, iterative methods consume more execution time per iteration.

To overcome this issue we suggest the use of quarter-sweep approach via the modi-

fied group explicit methods which are only possible for implementation of finite differ-

ence approximation with 2h grid spacing. The main concept of quarter-sweep approach

is based on time reduction techniques (the procedure that reduces the CPU-timings for

attaining the convergence) that utilize quarter grid points of the solution domain and

these points are treated as iterative points that take a part in the iterative process. Just

by utilization of only the quarter grid points of the solution domain, iterative process

reduces computational complexity of the algorithm and hence ultimately decrease in

execution of time per iteration. The remaining grid points that do not take a part in the

iterative process are called direct points which can directly be evaluated by fractional

standard point method.

The quarter-sweep technique by using modified group explicit methods is an ef-

ficient technique to speed up the rate of convergence. On the basis of this concept,

Othman and Abdullah (2000a) proposed Modified Explicit Group (MEG) iterative

method for solving the 2D Poisson equation by utilizing the quarter grids stencil of

the solution domain and it was found that it is much better and faster than the results

obtained from EDG iterative method derived from utilizing the half grids stencil of

the solution domain for the same 2D Poisson equation (Abdullah, 1991). Later, sev-
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eral researchers utilize this technique for other types of PDEs via MEG as well as

Modified Explicit De-coupled Group (MEDG) iterative methods. Ali and Ng (2007)

proposed MEDG iterative method using quarter-sweep approach and showed that this

method is more rapid in convergence than EDG method which they derived by using

half-sweep approach in solving 2D Elliptic PDE. Sulaiman et al. (2010) derived four

point block MEGSOR iterative scheme utilizing quarter grid stencil and found that it

better than four point block EDGSOR scheme derived from half grid stencil. Ali and

Foo (2012) suggested four point MEDGAOR iterative scheme utilizing quarter grid

stencil and found that it is more superior than four point EDGAOR scheme derived

from half grid stencil in terms of CPU timings and number of iterations. Ali and Kew

(2012) proposed an excellent comparison among the four types of group relaxation

methods. They derived EG iterative method using the full grids stencil, EDG method

iterative using the half grids stencil and, MEG and MEDG iterative methods by using

2h-spaced quarter grids stencil (quarter grid points to be utilized as iterative points with

2h-spacing in solution domain) for two-dimensional hyperbolic telegraph equation and

find that MEDG method has the least number of iterations, total number of iterations

and elapsed timings as compared to the other method tested. Ali and Aziz (2013) intro-

duced MEDG (SOR) method on the basis of quarter-sweep technique for 2D Helmholz

equation and find significant results in terms of least CPU-timings when compared to

EDG (SOR) method which was derived from half-sweep technique. Recently, Bal-

asim (2017) utilized this approach by using MEG and MEDG iterative methods for

fractional parabolic PDEs and found significant results as compared to EG and EDG

iterative methods.

In addition, the group iterative method derived from h grid-spacing is also very
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effective for solving the linear system (1.1) iteratively for many types of PDEs, where

a group of 4-points behaves like single point in iterative process and this process con-

tinuously going on until a certain time level is achieved . The main advantage of this

concept is also based on the computational reduction technique that reduces compu-

tational complexity of the complicated algorithm generated by corresponding approx-

imation equations. In their earlier work, Evans and Abdullah (1983b) introduced the

concept of group method in solving the heat equation by coupling two values of ap-

proximations, obtained from asymmetric schemes, in a group. The results obtained

were in implicit form but they can easily be converted into explicit form with excel-

lent accuracies. In the same year, Evans and Abdullah (1983a) proposed 4-point EG

method for the solution of 2D parabolic equation where two level scheme were consid-

ered. Evans (1985) used 4-point block EG iterative method to solve the sparse system

of simultaneous linear equations. Later, Evans and Yousif (1986) applied EG iterative

method on solving the elliptic PDE in three-dimensional space. In recent years, Kew

and Ali (2015) utilized EG iterative scheme on solving three dimensional telegraph

equation and find efficient results in comparison with point based methods.

1.3 Research Objectives

In the past few years, after the implementation of grouping methods on several

types of PDEs, for the first time, Balasim (2017) applied the grouping strategies on

FDEs by using finite difference method. These types of FDEs include two-dimensional

time-fractional parabolic differential equations i.e. the diffusion, advection and cable

equations of fractional orders. Our main objective is to apply the same grouping strate-

gies on two-dimensional time-fractional hyperbolic differential equations i.e. frac-
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tional wave-diffusion, damped wave-diffusion and telegraph equations. These types

of hyperbolic PDEs of fractional order are solved by explicit group iterative methods

derived from h and 2h-spaced standard and rotated five point Crank-Nicolson finite dif-

ference approximations. To deal with the fractional case, we use Caputo’s fractional

derivative. When we utilized h-spaced Crank-Nicolson finite difference discretization

along with Caputo’s fractional derivative we name the methods as FEG and FEDG,

while we use 2h-spaced Crank-Nicolson finite difference discretization along with Ca-

puto’s fractional derivative we name the methods as MFEG and MFEDG. The follow-

ing points are the research objectives of our research work in this thesis.

• To formulate standard and rotated five-point Crank-Nicolson iterative schemes

based on both h and 2h grid spacing for solving 2D time-fractional hyperbolic

PDEs.

• To formulate group iterative schemes by utilizing the standard and rotated five-

point Crank-Nicolson iterative schemes based on both h and 2h grid spacing for

2D time-fractional hyperbolic PDEs.

• To establish the stability and convergence for the point as well as group iterative

schemes.

• To conduct the comparative studies, perform the numerical experiments on 2D

time-fractional hyperbolic PDEs and analyze the results.

1.4 Methodology

This section presents the methodology for solving the 2D-FHTDE, while the pro-

cedure for two-dimensional FWD and FDWD equations are similar. Solving the 2D-
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FHTDE is not straightforward and simple as two-dimensional FWDE and FDWDE be-

cause of the involvement of double time fractional derivatives in the equation. Suitable

finite difference approximation formula for the spatial and time fractional derivatives

at some appropriate point that works well need to be found. The following are the step

by step procedure when 2D-FHTDE is solved by point and group iterative methods:

• Formulate two separate expressions for the time-fractional derivatives by utiliz-

ing the first and second differential operators in the Caputo’s fractional derivative

(Miller and Ross, 1993).

• For spatial derivatives, utilize standard Crank-Nicolson finite difference approx-

imation by using both h and 2h-grid spacing.

• Utilize both approximations for space and time derivatives in 2D-FHTDE and

collect the newly developed standard point finite difference scheme at point

(xi,y j, tk+1/2).

• Similarly a rotated point finite difference scheme at point (xi,y j, tk+1/2) can be

constructed by using rotated Crank-Nicolson finite difference approximation for

both h and 2h-grid spacing in 2D-FHTDE.

• Apply both standard point finite difference schemes based on both h and 2h-

spacing on a group of four points and find two group iterative schemes in matrix

form.

• Apply both rotated point finite difference schemes based on both h and 2h-

spacing on a group of four points and find two independently sets of group

iterative schemes in matrix form.
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• Study the stability and convergence analysis of rotated point finite difference

scheme by Fourier analysis and group iterative schemes by matrix norm method.

• Perform numerical experiment to support the effectiveness of four group itera-

tive schemes over the point iterative schemes with the help of some computer

softwares.

• Compare the numerical results with any other method in the literature (if avail-

able) in terms of execution of time, total number of operations and number of

iterations.

1.5 Organization of the Thesis

The organization of this thesis is comprised of the following chapters:

Chapter 2 includes the fundamental mathematical concepts required for this thesis,

introduction to fractional calculus and detailed literature review of hyperbolic differ-

ential equations of fractional order. The basic mathematical concepts includes frac-

tional derivatives and integrals, finite difference approximations and iterative methods.

In Chapters 3-5 the derivations of point and group iterative schemes based on h and

2h-grid spacing for the solution of 2D time-fractional hyperbolic PDEs are explored.

The stability and convergence of point and group iterative schemes for FWD, FDWD

and FHTDEs are proven by Fourier and matrix norm respectively. The computational

complexity, numerical experiments, discussion of results and graphical representations

of all three types of FDEs are present. Finally, in Chapters 6 overall conclusion of all

the chapters of this thesis and related future work are given.

11



CHAPTER 2

BASIC CONCEPTS AND LITERATURE REVIEW

2.1 Introduction

This chapter comprised on the literature review and basic mathematical concepts

which are relevant to our proposed point and group iterative schemes for the numer-

ical solution of FDEs. To solve the fractional part of FDEs we need to utilize the

basic definitions of fractional derivatives like Riemann-Liouville, Grünwald-Letnikov

and Caputo’s fractional derivatives. The solution of certain FDEs using the finite dif-

ference methods lead to large sparse linear system. Such type of system of linear

equations can be solved by iterative methods. There are three main types of iterative

methods in literature namely, Jacobi iterative method, Gauss-Seidel iterative method

and Successive Over-Relaxation (SOR) iterative method.

2.2 Special Functions

This section briefly describes some special type of functions namely Euler’s Gamma

function, Beta function and Mittag-Leffler function which are useful for the numerical

solution of several types of problems in fractional calculus where the order of deriva-

tive is not an integer.
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2.2.1 Euler’s Gamma Function

Euler was the first who discovered the gamma function in 1729 when he was ex-

ploring the interpolation problem for the factorial function. Gamma function is actu-

ally the generalization of factorial function in which the non-integers values are also

considered. Euler’s Gamma Function plays so much significant role for solving the

many types of FDEs. There are numerous approaches leading to the comprehensive

definition of gamma function Γ(z) including the Euler limit defined by the following

relation (Saedpanah, 2009),

Γ(z) = lim
N→∞

N!Nz

z(z−1)(z−2) · · ·(z−N)
.

Another equivalent approach is Euler infinite product for all z expect for non-positive

integers Carpinteri and Maindardi (1997),

Γ(z) =
1
z

∞

∏
p=1

(1+ 1
p)

z

1+ z
p

, p ∈ N

and some other are defined in terms of generalized Laguerre polynomials but the most

preferred approach is from integral transfer definition which is so called Euler’s inte-

gral of second kind (Samko et al., 1993),

Γ(z+1) =
∞∫

0

e−ttzdt, R(z)> 0. (2.1)

Integration by parts leads the recurrence formula Γ(z+1) = zΓ(z) to

Γ(z+1) = zΓ(z) = z(z−1)Γ(z−1) = · · ·z(z−1)(z−2) · · ·2.1.Γ(1) = z!,
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since Γ(1) = 1 which give us Γ(z+1) = z!. Therefore, we have the following factorial

function in the form of integral transform as (Oldham and Spanier, 1974),

z! =
∞∫

0

e−ttzdt, R(z)> 0. (2.2)

Euler’s Gamma Function has the following properties,

• Γ(z+1) = zΓ(z), R(z)> 0

• Γ(p) = (p−1)!, p ∈ N

• Γ(1− z) =−zΓ(−z). R(z)> 0.

2.2.2 Beta Function

The Beta function is Euler’s integral of first kind and it is denoted by β (z,w) and

defined as (Oldham and Spanier, 1974; Samko et al., 1993; Podlubny, 1999),

β (z,w) =
∞∫

0

tz−1(1− t)w−1dt, R(z),R(w)> 0. (2.3)

The relationship between Gamma and Beta functions is defined by the following rela-

tion

β (z,w) =
Γ(z)Γ(w)
Γ(z+w)

, R(z),R(w)> 0. (2.4)

Beta function is appropriate to utilize rather than amalgamations of gamma function

because it is analytically continuous to entire complex plane.
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2.2.3 Mittag-Leffler function

A Swedish mathematician Gosta Mittag-Leffler introduced this function in 1902.

This function is generalization of exponential function in a straightforward way. Sev-

eral scholars often express analytical solution of their research problems in terms of

Mittag-Leffler function in fractional calculus. The classical Mittag-Leffler function of

one parameter Eα(z) is defined as (Rehman, 2011),

Eα(z) =
∞

∑
k=0

zk

Γ(αk+1)
, z ∈C,R(α)> 0 (2.5)

where Γ is the Gamma function. The one parameter Mittag-Leffler function always

interpolates between exponential function ez and hypergeometric function 1
z−1 for 0 <

α < 1. The following are the calculated functions at particular values of α for one

parameter Mittag-Leffler function

• E0(z) = 1
z−1 , E1(z) = ez, E2(−z2) = cos(x), E2(z2) = cosh(x)

• E3(z) = 1
2 [e

z1/3
+2e−1/2z1/3

cos(
√

3
2 z1/3)]

• E4(z) = 1
2 [cos(z1/4)+ cosh(z1/4)].

The two parameter Mittag-Leffler function Eα,β (z) is generalization of the one param-

eter Mittag-Leffler function Eα(z) and it coincides with one parameter Mittag-Leffler

function when β = 1. The two parameter Mittag-Leffler function Eα,β (z) is defined as

(Rehman, 2011),

Eα,β (z) =
∞

∑
k=0

zk

Γ(αk+β )
, z ∈C,R(α),R(β )> 0. (2.6)
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The two parameter Mittag-Leffler function Eα,β (z) has the following properties (Kil-

bas et al., 2004),

•
∞∫
0

e−ttβ−1Eα,β (tαz)dt = 1
z−1 , | z |< 1

•
∞∫
0

e−ztEα,β (zα)dt = 1
z−z1−α . | z |< 1.

There are many generalization of two parameter Mittag-Leffler function Eα,β (z) in the

form of generalized hyperbolic function, generalized trigonometric function and other

can be seen in Gorenflo et al. (1998).

2.3 Fractional Differential and Integral Operators

In this section we introduce some fundamental definitions of fractional order dif-

ferentiation and integration, such as Riemann-Liouville fractional integral, Riemann-

Liouville fractional derivative, Grünwald-Letnikov fractional derivative and Caputo’s

fractional derivative.

2.3.1 Riemann-Liouville (R-L) Fractional Integral

The most well-known notation for fractional order integral of a function f (x) are

cD−α
x f (x) and cIα

x f (x) where, c and x are the lower and upper limits of the fractional

integral operator respectively and these are generally called as the terminals of the

fractional integral and α is the order of integration (Podlubny, 1999). There are several

approaches to define fractional ordered differentiation and integration but the most

important and easy to implement is the renowned Cauchy’s integral formula for p-fold
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integral of any function f (x) (Rehman, 2011),

cD−p
x f (x) = cIp

x f (x) =
x∫

c

xp−1∫
c

· · ·
x1∫

c

f (x0)dx0 · · ·dxp−2.dxp−1 (2.7)

=
1

(p−1)!

x∫
c

f (ξ )
(x−ξ )1−p dξ , p ∈ N. (2.8)

From equation (2.8), we can attain the fractional order integral by replacing the integer

p by real number α and discrete form of factorial (p− 1)! by Gamma function Γ

provided that the integral on the right hand side converges. The Riemann-Liouville

integral is defined as follows (Diethelm, 2010),

cD−α
x f (x) = cIα

x f (x) =
1

Γ(α)

x∫
c

f (ξ )
(x−ξ )1−α

dξ , R(α)> 0. (2.9)

When α = 0, then cI0
x = I is the identity operator. According to Riemann, lower limit in

the fractional integral (2.9) may be any arbitrary number, but Liouville choose infinity

as a lower limit i.e. c =−∞ and when c = 0 then 0Iα
x is called the Riemann-Liouville

fractional integral and is quite appropriate for further manipulations. Moreover, for the

function of the type f (x) = xδ , δ >−1 and α > 0, the fractional Riemann-Liouville

integration is defined as (Kiblas et al., 2006),

cD−α
x xδ = cIα

x xδ =
Γ(δ +1)

Γ(α +δ +1)
xδ+α . (2.10)

2.3.2 Riemann-Liouville (R-L) Fractional Derivative

The famous notation for the fractional operator of a function f (x) is denoted as

cDα
x f (x), where α is the order of differentiation with c and x represent the two limits
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attached to the fractional differentiation operation. Riemann-Liouville calculate the

fractional derivative by using Lagrange’s rule for the differential operator and frac-

tional integral by associating with a real function from the set of real numbers to itself

for each value of the parameter α > 0. The Riemann-Liouville fractional derivatives

of order α of the function f (x) can be defined as (Klages et al., 2008),

0Dα
x f (x) =

1
Γ(1−α)

d
dx

x∫
0

f (ξ )
(x−ξ )α dξ , 0 < α < 1. (2.11)

The generalization form of Eq. (2.11) is given by the following expression (Das, 2008),

cDα
x f (x) =

1
Γ(p−α)

dp

dxp

x∫
c

f (ξ )

(x−ξ )α+1−p dξ , (p−1)< α < p. (2.12)

2.3.3 Caputo Fractional Derivative

In 1967, Caputo introduced the idea of fractional derivative which he later uti-

lize his definition in the theory of viscoelasticity. Both Caputo’s fractional derivative

and Riemann-Liouville fractional derivative utilize the definition of Riemann-Liouville

fractional integral but the order of fractional integral with integer differential operator

is interchanged. Caputo’s fractional derivative is defined as as (Podlubny, 1999),

0Dα
x f (x) =

1
Γ(1−α)

x∫
0

f ′(ξ )
(x−ξ )α dξ , 0 < α < 1. (2.13)
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The most generalization form of Eq. (2.13) is the following expression (Miller and

Ross, 1993),

cDα
x f (x) =

1
Γ(p−α)

x∫
0

f (p)(ξ )

(x−ξ )α+1−p dξ , p−1 < α < p, p ∈ N. (2.14)

For the function of the type f (x) = xp, p ∈ N. The Caputo’s fractional derivative is

defined as:

cDα
x (x

p) =


0, f or p ∈ N, p < dαe

Γ(p+1)
Γ(p+1−α)x

p−α , f or p ∈ N, p≥ dαe.

Here dαe denotes the ceiling value of α . It is the smallest integer greater than or equal

to α . Moreover if f (x) = c is any constant function then its the Caputo’s fractional

derivative will be zero similar the integer order derivative i.e. cDα
x c = 0. The relation-

ship between Riemann-Liouville fractional integral and Caputo’s fractional derivative

is to be outlined as follows (Klages et al., 2008),

cDα
x f (x) = cDp

x 0Ip−α
x f (x), p−1 < α < p, p ∈ N, (2.15)

cDα
x f (x) = cIp−α

x cDp
x f (x), p−1 < α < p, p ∈ N. (2.16)

The fractional derivative of the composition of two analytical functions f and g on the

interval (c−h,c+h) for 0 < α < 1 is defined as (Kiblas et al., 2006),

cDα
x [ f g](x) =

(x− c)−α

Γ(1−α)
g(c)( f (x)− f (c))+(cDα

x (g(x)) f (x)

19



+
∞

∑
p=1

(
α

p

)
(cIp−α

x g(x))cDp
x f (x). (2.17)

Another property of Caputo’s fractional derivative is the linearity property Hilfer (2000)

i.e.

cDα
x (λ f (x)+µg(x)) = λ cDα

x f (x)+µcDα
x g(x), (2.18)

where λ and µ are constants. The Caputo’s derivative utilized the physical boundary

conditions where as Riemann-Louiville derivative required fractional order boundary

conditions. Furthermore, Riemann-Liouville fractional derivative exists for a class of

integrable function while existence of Caputo’s fractional derivative depends on the

integrability of p times the differentiable functions.

2.3.4 Grünwald-Letnikov Fractional Derivative

Grünwald and Letnikov independently worked on fractional differentiation approx-

imately at the same time when Riemann and Liouville established Riemann-Liouville

non-integer differentiation for solving many types of FDEs. Later, many other au-

thors utilized Grünwald-Letnikov non-integer differentiation operator to build numeri-

cal techniques for FDEs. Grünwald-Letnikov define the definition of fractional deriva-

tive of a function as follows (Kiblas et al., 2006),

cDα
x f (x) = lim

∆x→0

1
(∆x)α

d x−c
∆x e

∑
p=0

ω
p
α f (x− p∆x), x≥ 0 (2.19)

where ωα
p = (−1)p(α

p

)
= (−1)p α(α−1)···(α−p+1)

p! = Γ(p−α)
Γ(−α)Γ(p+1) . Here the binomial co-

efficient
(

α

p

)
is calculated by the utilization of the Gamma function Γ. To compute the

coefficients ωα
p , where α is fractional order differentiation, in Eq. (2.19), we need the
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following recurrence formula so that our calculation can easily be calculated by some

computer software. The recurrence formula is given by,

ω
α
0 = 1 and ω

α
p = (1− 1+α

p
)ωα

p−1, p = 1,2,3, · · · ,dx− c
∆x
e.

The shifted Grünwald-Letnikov formula can be written as (Oldham and Spanier, 1974),

cDα
x f (x) =

1
(∆x)α

[ x−c
∆x ]

∑
p=0

ω
α
p f (x−∆xp)+O((∆x)q), x≥ 0. (2.20)

Grünwald-Letnikov formula is frequently used in discretization of FDEs. For this pur-

pose we need the shifted Grünwald-Letnikov schemes, since unshifted scheme always

generate unstable numerical methods (Ali et al., 2017).

2.4 Finite Difference Method

Finite difference method (FDM) is utmost common, efficient, frequent and uni-

versally applicable method for the solution of various types of PDEs. The numerical

solutions obtained from FDM are actually the values of discrete points in the solution

domain which we are called them grid points as shown in Figure 2.1. We usually pre-

fer the space between the grid points in both x and y directions should be uniform and

grid spacing between the points in x-direction is denoted by ∆x or hx, likewise space

between the grid points in y-direction is denoted by ∆y or hy. One can also be utilized

the unequal (non-uniform) grid spacing in both coordinate directions but the difference

between successive pairs of grid points in each direction should be the same. If (i, j)

represents the coordinates of the grid point P in solution domain as shown in the Figure
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Figure 2.1: Discretization of discrete grid points

2.1, then the grid point (i+1, j) will show its position is immediately to the right of the

grid point (i, j) in positive x-direction and likewise the grid point (i− 1, j) will show

its position is immediately to the left of the point (i, j) in negative x-direction. Simi-

larly, the grid point (i, j+1) will move immediately one step up in positive y-direction

and grid point (i, j−1) will move immediately one step down in negative y-direction.

Finite difference approximation techniques are basically applied on as an alternative

source of the derivatives to find out the approximate solution by converting the de-

sire research problem in the form of PDEs into the easily solvable algebraic difference

equations (Atkinson and Han, 2009).

2.4.1 Taylor Series Expansion Applied to Finite Difference Method

The partial derivatives in PDEs are replaced by the finite difference approxima-

tions at each grid point which are approximated by the neighboring values utilizing

the Taylor series expansion. The general interpretation of Taylor’s series expansion

says that if we know the value of a function and its derivatives at some particu-
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lar point, say (xi,y j, tk) then we can easily find the values of function at its nearby

points (xi +hx,y j, tk) and (xi−hx,y j, tk). The Taylor series expansions about the point

(xi,y j, tk), the exact expression for f (xi +hx,y j, tk) and f (xi−hx,y j, tk) are defined as

follows (Smith, 1985),

f (xi +hx,y j, tk) = f (xi,y j, tk)+
(hx)

1!
fx(xi,y j, tk)+

(hx)
2

2!
fxx(xi,y j, tk)

+
(hx)

3

3!
fxxx(xi,y j, tk)+ ..., (2.21)

and

f (xi−hx,y j, tk) = f (xi,y j, tk)−
(hx)

1!
fx(xi,y j, tk)+

(hx)
2

2!
fxx(xi,y j, tk)

− (hx)
3

3!
fxxx(xi,y j, tk)+ · · · . (2.22)

Since all the three points (xi,y j, tk), (xi+hx,y j, tk) and (xi−hx,y j, tk) are the grid points

and with the help of Taylor series expansions, we are able to find out the values of the

(xi+hx,y j, tk) and (xi−hx,y j, tk) that allows us to rearrange the Eqs. (2.21) and (2.22)

to finite difference approximations to the derivatives. In particular, if hx is very small

and any higher order term of hx is smaller than hx, then for any function f (xi,y j, tk),

Eqs. (2.21) and (2.22) can be truncated after a finite number of terms. For example, if

the term of magnitude (hx)
3 and higher order are neglected, then the Eqs. (2.21) and

(2.22) become,

f (xi +hx,y j, tk)≈ f (xi,y j, tk)+
(hx)

1!
fx(xi,y j, tk)+

(hx)
2

2!
fxx(xi,y j, tk), (2.23)
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and

f (xi−hx,y j, tk)≈ f (xi,y j, tk)−
(hx)

1!
fx(xi,y j, tk)+

(hx)
2

2!
fxx(xi,y j, tk). (2.24)

We have neglected the (hx)
3 and its higher order terms, therefore both Eqs. (2.23) and

(2.24) are second order accurate. If the terms of order (hx)
2 and higher order terms are

neglected, then Eqs. (2.21) and (2.22) are reduced to the following equations,

f (xi +hx,y j, tk)≈ f (xi,y j, tk)+
hx

1!
fx(xi,y j, tk), (2.25)

and

f (xi−hx,y j, tk)≈ f (xi,y j, tk)−
hx

1!
fx(xi,y j, tk). (2.26)

The Eqs. (2.25) and (2.26) are first order accurate because we have neglected (hx)
2

and its higher order in the Eqs. (2.21) and (2.22). The truncation error is the amount

of quantity by which the solution of a PDE fails to satisfy the approximate solution

at some grid point. The truncation error can be reduced by retaining more terms in

the Taylor series expansion of the corresponding derivatives and hence reduced the

magnitude of (hx) (Mattheij et al., 2005).

2.4.2 Simple Finite Difference Approximation to a Derivative

In this subsection, we will derive some simple finite difference approximation to

first and second order derivatives in both x and y directions. For this purpose, let us
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