
MIGRATION FROM A RELATIONAL DATABASE

TO A DOCUMENT-ORIENTED DATABASE

BASED ON DOCUMENT-ORIENTED DATA

SCHEMA

HAMOUDA SHADY M S

UNIVERSITI SAINS MALAYSIA

2020

MIGRATION FROM A RELATIONAL DATABASE

TO A DOCUMENT-ORIENTED DATABASE

BASED ON DOCUMENT-ORIENTED DATA

SCHEMA

by

HAMOUDA SHADY M S

Thesis submitted in fulfilment of the requirements

for the degree of

Doctor of Philosophy

July 2020

ii

ACKNOWLEDGEMENT

 بسم الله الرحمن الرحيم

(76.) سورة يوسف ن نَّشَاء وَفوَْقَ كُلِِّ ذِي عِلْمٍ عَلِيم} }نَرْفَعُ درََجَاتٍ مِِّ

First of all, I would like to thank “Allah”, our creator, for giving me his blessings and

the opportunity to complete my PhD.

Now, I would like to share my happiness by acknowledging some of the numerous

people who have helped me directly or indirectly in shaping my academic career over

the past years. I would like to express my deepest gratitude to my learned supervisors

Assoc. Prof. Dr. Zurinahni Zainol (main supervisor) for her encouragement,

innovative suggestions, and invaluable help during the entire period of my PhD in

Universiti Sains Malaysia.

Most importantly, I would like to thank my family. Their support, encouragement,

patience, and unwavering love were undeniably the foundation. I thank my parents,

Mohammed and Najah, for their faith in me and for allowing me to be as ambitious as

I wished. It was under their watchful eye that I gained the drive and ability to tackle

challenges head-on. I would also like to thank my friends Dr. Mohammed Anbar and

Dr. Omar Elejla unconditional support and guidance as needed. Last but not the least,

I wish to dedicate this work to my wife Amal and my kids Yamen, and Mohammed.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENT ... ii

TABLE OF CONTENTS .. iii

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

LIST OF ABBREVIATIONS ... xii

LIST OF APPENDICES .. xiii

ABSTRAK ... xiv

ABSTRACT ... xvi

CHAPTER 1 INTRODUCTION .. 1

1.1 Relational database ... 1

1.2 NoSQL database ... 3

1.3 Motivation .. 5

1.4 Research Problem ... 7

1.5 Research Questions .. 10

1.6 Objectives ... 10

1.7 Contributions .. 11

1.8 Scope .. 11

1.9 Thesis Structure .. 12

CHAPTER 2 BACKGROUND AND LITERATURE REVIEW 14

2.1 Big Data .. 14

2.2 Relational Database .. 17

2.2.1 ER Model of Structured Data ... 18

2.3 NoSQL Database .. 19

2.3.1 NoSQL Database Types ... 20

2.3.2 Document-Oriented Database .. 22

iv

2.4 Related Work .. 25

2.4.1 Conceptual Model of Document-oriented Database 26

2.4.2 Document-Oriented Database Based on Normalization and De-

normalization .. 33

2.4.3 Migration from Relational Databases to Document-Oriented

Databases .. 36

2.4.3(a) Conversion to CSV File ... 36

2.4.3(b) Query Model .. 37

2.4.3(c) Metamodel ... 39

2.4.3(d) Embedded and Reference Models 40

2.4.3(e) Normalization Rule Model .. 43

2.4.3(f) Uniform Mid-model .. 44

2.4.3(g) Stanescu et al. (2017) Method 44

2.4.4 Discussion of Migration Methods .. 46

2.5 Summary .. 49

CHAPTER 3 RESEARCH METHODOLOGY.. 51

3.1 Research approach .. 51

3.2 Case Studies ... 55

3.3 Datasets .. 59

3.4 System Requirements ... 60

3.5 Evaluation ... 61

3.6 Summary .. 63

CHAPTER 4 DOCUMENT-ORIENTED DATA SCHEMA (DODS) 64

4.1 Introduction .. 64

4.2 Stages of Designing a DODS ... 65

4.3 DODS Components .. 65

4.4 DODS Specifications ... 66

4.5 DODS Features .. 74

v

4.6 Summary .. 78

CHAPTER 5 ENHANCED TRANSFORMATION RULES TO MAP THE

ENTITY RELATIONAL SCHEMA TO THE DOCUMENT-ORIENTED

DATA SCHEMA .. 80

5.1 Introduction .. 80

5.2 Enhancement of the Transformation Rules .. 80

5.2.1 Embedded and reference documents

5.2.1(a) Embedded Document... 82

5.2.1(b) Reference Document ... 83

5.3 Proposed Transformation Rules ... 84

5.4 Case Studies ... 88

5.4.1 CASE STUDY 1: Company Schema ... 88

5.4.2 CASE STUDY 2: Airbnb Company Schema 92

5.4.3 CASE STUDY 3: W3school Schema .. 95

5.5 The DODS Evaluations Using Transformation Rules 98

5.5.1 First Evaluation: Flexibility of the Schema 98

5.5.2 Second Evaluation: DODS Features with Semi-structured Features

 104

5.5.2(a) Evaluation of DODS features with semi-structured

features based on CASE STUDY 1 (Company schema; Elmasri,

2008) 104

5.5.2(b) Evaluation of DODS features with semi-structured

features based on Case Study 2 (Airbnb schema) 117

5.5.3 Third Evaluation: Embedded and reference document for a

document-oriented database based on the DODS (CASE STUDY 1)

 137

5.6 Summary .. 153

CHAPTER 6 MIGRATING FROM A RELATIONAL DATABASE TO A

DOCUMENT-ORIENTED DATABASE: CASE STUDY 154

6.1 Implementation of Data Migration ... 154

6.1.1 The Implementation of Migration Process Based on the TR 155

vi

6.2 Case Study of Database Migration ... 158

6.3 Prototype Interface ... 166

6.4 Summary .. 172

CHAPTER 7 EVALUATION AND DISCUSSION .. 173

7.1 Experimental Evaluation .. 174

7.2 First Evaluation: Migration Accuracy .. 174

7.3 Second Evaluation: Performance of Migration Time................................... 185

7.4 Third Evaluation: Performance Test of Relational Database and Document-

oriented Database Based on the DODS (CASE STUDY 1) 188

7.5 Summary .. 192

CHAPTER 8 CONCLUSION AND FUTURE WORK.................................. 193

8.1 Conclusion .. 193

8.2 Findings .. 196

8.3 Limitations ... 197

8.4 Future Works .. 198

REFERENCES ... 199

APPENDICES

LIST OF PUBLICATIONS

vii

LIST OF TABLES

Page

Table 2.1 Chen’s model notations for an ER model (Lee et al., 2002) 19

Table 2.2 Evaluation criteria for document-oriented database (Lombardo et

al., 2012) ... 25

Table 2.3 Evaluation of semantic properties of conceptual model with semi-

structured models (Ganguly & Sarkar, 2012) 31

Table 2.4 Handling of relationships (Hanine et al., 2016) 41

Table 2.5 Stanescu et al. (2017) transformation rules .. 43

Table 3.1 Number of records in different datasets based on CASE STUDY 1 60

Table 3.2 System Requirements for Migration ... 61

Table 4.1 DODS Specifications .. 72

Table 5.1 Symbols and type of notations .. 85

Table 5.2 Comparison of DODS features with semi-structured models in Table

2.3 ... 136

Table 5.3 Evaluation queries based on datasets 2 and 3 140

Table 5.4 Execution times for the above queries in seconds 152

Table 6.1 The ER schema and DODS based on the schema of Figure 5.3 159

Table 7.1 Number of records in different datasets based on CASE STUDY 1 .. 174

Table 7.2 Data migration between relational database (CASE STUDY 1) and

database migration .. 185

Table 7.3 Migration time between the DODS and Stanescu et al. (2017)

algorithm ... 186

Table 7.4 Database operations and query statements based on CASE STUDY

1 .. 189

Table 7.5 Performance test of a relational database (Oracle) and a document-

oriented database (MongoDB) in Millisecond 190

viii

LIST OF FIGURES

Page

Figure 1.1 Scalability of data size depending on the data structure (Ruflin et

al., 2011) .. 4

Figure 2.1 Overview of literature review .. 14

Figure 2.2 Big data taxonomy (Pokorny, 2013) .. 15

Figure 2.3 Growth of big data (Feng et al., 2015) ... 16

Figure 2.4 Data models of NoSQL databases (Grolinger et al., 2013) 22

Figure 2.5 Flow diagram of migration (Chickerur et al., 2015) 37

Figure 2.6 Example of logical model metadata ... 40

Figure 3.1 Research Steps ... 51

Figure 3.2 Stages of the migration method.. 52

Figure 4.1 Stages of designing a DODS. ... 65

Figure 5.1 Embedded document .. 83

Figure 5.2 Reference document ... 84

Figure 5.3 ER schema for the company database (Elmasri, 2008)...................... 89

Figure 5.4 Diagram of a DODS ... 90

Figure 5.5 Airbnb dataset .. 93

Figure 5.6 ER schema for W3schools (Rocha et al., 2015b) 96

Figure 5.7 The DODS for W3schools ... 97

Figure 5.8 ER schema after changing the relationship between product and

supplier ... 100

Figure 5.9 ER company schema after adding two multi-value attributes for

employee .. 102

Figure 5.10 DODS after add two multi-value attributes for employee entity 103

Figure 5.11 DODS schema after adding fields .. 105

ix

Figure 5.12 Example of no strict structure in the DODS 106

Figure 5.13 The DODS schema with no strict participation of data 108

Figure 5.14 Example of no strict participation. ... 109

Figure 5.15 DODS schema with hierarchical structure for employee collection

 .. 110

Figure 5.16 Example of hierarchical structure .. 111

Figure 5.17 Diagram of the DODS .. 112

Figure 5.18 Example of ordering ... 114

Figure 5.19 Example of irregular structure of data ... 115

Figure 5.20 Disjunction between employee and project collections 116

Figure 5.21 Example of disjunction between project and employee 117

Figure 5.22 Example of no strict structure .. 119

Figure 5.23 Example of no strict participation/instance 120

Figure 5.24 Example of hierarchical structure .. 121

Figure 5.25 Example of ordering ... 122

Figure 5.26 Example of irregular structures of data .. 123

Figure 5.27 Example of disjunction in Document#2 ... 124

Figure 5.28 Example of self-evolution .. 125

Figure 5.29 Example of mixed contents (Document#2)...................................... 126

Figure 5.30 Example of abstraction ... 127

Figure 5.31 Example of explicit separations of structure and content

(Document#1) .. 128

Figure 5.32 Example of partial relationship/participation (Document#1) 129

Figure 5.33 Example of N-array relationship (Document#2).............................. 129

Figure 5.34 Example of inheritance (Docuemnt#2) .. 130

Figure 5.35 Example of constraints. .. 131

Figure 5.36 Example of functional dependencies (Document#2) 133

x

Figure 5.37 Example of symmetric relationships (Document#1)........................ 133

Figure 5.38 Example of a flexible schema .. 135

Figure 5.39 Example of a timestamp (Document#1) .. 135

Figure 5.40 Left-Outer join ... 139

Figure 5.41 Query 1 results for the embedded and reference documents 141

Figure 5.42 Query 2 results for the embedded and reference documents 142

Figure 5.43 Query 3 results for the embedded and reference documents 143

Figure 5.44 Query 4 results for the embedded and reference documents 144

Figure 5.45 Query 5 results for the embedded and reference documents 145

Figure 5.46 Query 6 results for the embedded and reference documents 146

Figure 5.47 Query 7 results for the embedded and reference documents. 147

Figure 5.48 Query 8 results for the embedded and reference documents 149

Figure 5.49 Query 9 results for the embedded and reference documents 150

Figure 5.50 Query 10 results for the embedded and reference documents 151

Figure 5.51 Execution time for queries (Q1–Q10) of embedded and reference

documents based on datasets 2 and 3 ... 152

Figure 6.1 Company classes .. 161

Figure 6.2 A document-oriented database (MongoDB) for the company

schema .. 165

Figure 6.3 Main interface of prototype .. 167

Figure 6.4 Migration process interface .. 168

Figure 6.5 Migration process interface with entering data 174

Figure 6.6 Interface of EMPLOYEE collection .. 171

Figure 6.7 Interface of the PROJECT collection ... 171

Figure 6.8 Interface of the DEPARTMENT collection 172

Figure 7.1 Number of employee records (EMPLOYEE Entity) 176

Figure 7.2 Number of department records (DEPARTMENT Entity) 177

xi

Figure 7.3 Number of project records (PROJECT Entity) 178

Figure 7.4 Number of dependent records (DEPENDENT Entity) 179

Figure 7.5 Number of department_location records (DEPARTMENT Entity) 180

Figure 7.6 Verification of dependent information (SSN. # 344) 181

Figure 7.7 Verification of department information (Location. “VAUGHAN”)

 .. 182

Figure 7.8 Verification of project information (DNUMBER. #76) 182

Figure 7.9 Verification of employee information (SUPERVISION #88) 183

Figure 7.10 Verification of many-to-many relationships between EMPLOYEE

and PROJECT (SSN# 2190) .. 184

Figure 7.11 Performance of migration time .. 187

xii

LIST OF ABBREVIATIONS

ACID Atomicity, Consistency, Isolation, and Durability

ACK Acknowledgment

BASE Basically Available, Soft State, Eventual consistency

BSON Binary encoding of JavaScript Object Notation

CAP Consistency, availability, and partition tolerance

CRUD Create, Retrieve, Update, and Delete

CSV Comma-separated values

DODS Document-oriented data schema

ER Entity relational

EReX Entity relational extended to XML

ERX Entity relational for XML

GN-DTD Graphical notations-data type documentation

GOOSSDM Graph object-oriented semi-structured data model

JSON JavaScript Object Notation

NoSQL Not only structured query language

ORA-SS Object relationship attribute model for semi-structured data

QODM Query-oriented data modelling

RDBMS Relational database management system

SQL Structured query language

TR Transformation rules

UML Unified Modeling Language

XER Extensible ER

XML EXtensible markup language

XSEM Conceptual model for XML

XUML Executable of Unified Modeling Language

xiii

LIST OF APPENDICES

APPENDIX A CASE STUDY 2

APPENDIX B IMPLEMENTATION OF MIGRATION PROCESS

xiv

MIGRASI DARI PANGKALAN DATA HUBUNGAN KE PANGKALAN

DATA BERORIENTASI DOKUMEN BERDASARKAN SKEMA DATA

BERORIENTASI DOKUMEN

ABSTRAK

Data raya adalah isu penting yang muncul sebagai salah satu teknologi paling

penting di dunia moden. Kebanyakan kajian menonjolkan ketidakupayaan pangkalan

data hubugan untuk mengendalikan data raya. Cabaran ini telah membawa kepada

penyampaian "pangkalan data pertanyaan bahasa berstruktur (NoSQL) bukan sahaja"

sebagai konsep teknologi pangkalan data baru. Salah satu jenis pangkalan data NoSQL

yang paling berkuasa adalah pangkalan data berorientasikan dokumen yang

menyokong data skema dan penyimpanan yang fleksibel dalam format separa

berstruktur. Baru-baru ini, ramai penyelidik terpaksa berhijrah dari pangkalan data

hubungan ke pangkalan data berorientasikan dokumen kerana kebolehan skalabiliti,

ketersediaan, dan prestasi. Walau bagaimanapun, kaedah penghijrahan mereka

menghadapi tiga isu; isu pertama ialah tidak ada spesifikasi yang dapat mengenali

untuk menentukan skema untuk pangkalan data berorientasikan dokumen, dan kedua,

tidak ada cara untuk normalisasi dan de-normalisasi data untuk melaksanakan

dokumen tertanam dan rujukan. Yang ketiga adalah penghijrahan dari pangkalan data

hubungan ke pangkalan data yang berorientasikan dokumen tidak menganggap semua

sifat yang terdahulu, terutama tentang cara mengendalikan berbagai jenis hubungan.

Penyelidikan ini mencadangkan metodologi untuk menangani isu penghijrahan

melalui tiga fasa: pertama, reka bentuk skema data yang berorientasikan dokumen

(DODS) berdasarkan model entiti-hubungan (ER); kedua, mencadangkan peraturan

transformasi untuk memetakan skema hubungan entiti kepada skema data

xv

berorientasikan dokumen berdasarkan data normalisasi dan de-normalisasi; ketiga,

memindahkan pangkalan data hubungan ke pangkalan data berorientasikan dokumen.

Kajian ini menyediakan enam penilaian; penilaian ini memberi tumpuan kepada

pengesahan kebolehpercayaan penghijrahan dari pangkalan data hubungan ke

pangkalan data berorientasikan dokumen berdasarkan skema yang dicadangkan. Akhir

sekali, skema yang dicadangkan menyediakan ciri-ciri baru untuk perwakilan

konseptual dari pangkalan data berorientasikan dokumen. Kajian ini menilai skema

fleksibiliti, membandingkan ciri DODS dengan ciri separa struktur, dan menilai

prestasi data dinormalisasi dan dinormalisasi untuk pangkalan data berorientasikan

dokumen berdasarkan DODS. Penilaian seterusnya adalah fokus pada pengesahan

kebolehpercayaan migrasi dari pangkalan data relasional ke pangkalan data

berorientasikan dokumen berdasarkan skema yang dicadangkan. Akhirnya, hasil

proses penghijrahan menunjukkan semua sifat pangkalan data hubungan dan data yang

telah dipindahkan tanpa kehilangan data atau pertindihan berbanding kaedah

penghijrahan sebelumnya. Hasilnya juga menunjukkan bahawa penghijrahan data

mempunyai prestasi yang lebih baik daripada pangkalan data hubungan dan kaedah

penghijrahan sebelumnya.

xvi

MIGRATION FROM A RELATIONAL DATABASE TO A

DOCUMENT-ORIENTED DATABASE BASED ON DOCUMENT-

ORIENTED DATA SCHEMA

ABSTRACT

Big data is a crucial issue that has emerged as one of the most important

technologies in the modern world. Most studies have highlighted the inability of a

relational database to handle big data. This challenge has led to the presentation of the

“not only structured query language (NoSQL) database” as a new concept of database

technology. One of the most powerful types of NoSQL databases is the document-

oriented database that supports a flexible schema and store data in a semi-structured

format. Recently, many researchers have migrated from relational databases to

document-oriented databases because of scalability, availability, and performance.

However, their migration methods are facing three issues; the first issue is that there

are no specifications that can be recognized to define a schema for a document-

oriented database, and second, there is no method to normalize or de-normalize data

in order to implement the embedded and reference document. The third is the

migration from the relational database to a document-oriented database does not

consider all the properties of the former, especially on how to handle various types of

relationships. This study proposed a methodology to handle the migration issues

through three phases: first, design a document-oriented data schema (DODS) based on

the entity-relational (ER) model; second, enhance transformation rules to map the

entity relational schema to the document-oriented data schema based on normalization

and de-normalization data; third, migrate a relational database to a document-oriented

database. The study evaluates the flexibility schema, compare the DODS features with

xvii

the semi-structure features, and evaluate the performance of normalized and de-

normalized data for a document-oriented database based on DODS. The next

evaluations will be focusing on the verification of the reliability of the migration from

a relational database to a document-oriented database based on the proposed schema.

Finally, the proposed schema provides new features for the conceptual representation

of a document-oriented database. In addition, transformation rules have been applied

to three case studies. The result showed that all the properties of the entity-relationship

schema have been migrated to the document-oriented data schema in terms of strategy

to apply the embedded and reference documents in the migration to avoid data

redundancy and improve the database performance. By the end, the result of the

migration process showed all the relational database properties and data to have been

migrated without data loss or duplication compared to the previous migration methods.

The result also showed that data migration has better performance than a relational

database and the previous migration methods.

1

CHAPTER 1

INTRODUCTION

Nowadays, business applications need databases that can support extreme

scales, deal with all kinds of data formats, respond in quickly delivery level with high

performance. The new business applications requirements that encompass flexibility

in data model structure support the next generation of web applications, and handles

complex data types, presents a challenge for organizational systems.

According to Katal et al. (2013), data size is expected to reach 35 zettabytes

by 2020 and grow at a rate of 40 % per year (Manyika et al., 2011). This huge volume

of data has become a big problem for big companies. For instance, Walmart performs

around 267 million transactions per day while Facebook generates around 3 billion

pieces of content per day (Chen & Zhang, 2014). This flood of data has caused many

issues and challenges pertaining to big data. Stanescu et al. (2016) revealed the

challenges of big data, such as the method of dealing with the increasing data volume.

In addition, Assunção et al. (2015) presented one of the important issues related to big

data and that is the need for the semi-structured data type for storage, and handling of

large amounts of data with flexibility schema (Yaish & Goyal, 2013). Information

technology in the big organization is trying to shift from structure data to semi-

structured data (Wang et al., 2018).

1.1 Relational database

Various studies confirmed that the relational database cannot cope with the

large volumes of data as it has restrictions towards meeting scalability, flexibility, and

performance challenges (Anagnostopoulos et al., 2016; Assunção et al., 2015; Atzeni

et al., 2014; Bhogal et al., 2015; Chickerur et al., 2015; Goyal et al., 2016; Gudivada

et al., 2014; Liang et al., 2015; Mehmood et al., 2017; Ogunyadeka et al., 2016). For

2

instance, Assunção et al. (2015) discussed the problems that occur in a relational

database which is a challenge in handling big data; the problems are how to process

data variety and data velocity. The relational database has structured data, fixed

schema, vertical scalability, and stores data in the table that follows the same schema

(Grolinger et al., 2013). Currently, a relational database management system

(RDBMS) is inefficient in handling applications and software requirements of big data,

such as supporting horizontal scaling for a distributed environment, and inability to

achieve effective data portability (Ogunyadeka et al., 2016; Chickerur et al., 2015;

Liang et al., 2015; Hashem et al., 2015). Therefore, many organizations are looking

forward to the next generation of data management to support their business

application (Atzeni et al., 2016, Rodríguez-Mazahua et al., 2016).

These issues and challenges have led to the development of a Not only SQL

(NoSQL) database as a new technology to overcome the limitations of the relational

database, such as designing a schema without strict constraints (Atzeni et al., 2014;

Hashem et al., 2016). In addition, the NoSQL database can accept all types of

structured, semi-structured, and unstructured data, and has many features, such as a

support-distributed system, flexible schema, horizontally scalable, and easy replication

(Chickerur et al., 2015; Lombardo et al., 2012; Rocha et al., 2015a).

Nowadays, big organizations are looking forward to the NoSQL database as

the next generation of data management to support their business application (Atzeni

et al., 2016, Rodríguez-Mazahua et al., 2016). This is due to the exponential increase

in the amount of data and the need for flexibility schema with semi-structured data. In

addition, new technology like cloud, mobile, and social media has caused

organizations to consider migrating from the traditional relational database to NoSQL

database since their application cannot satisfy the scalability and availability

3

requirements (Goyal et al., 2016; Gudivada et al., 2014; Han et al., 2012; Kanade et

al., 2014; Bansel et al., 2016). Therefore, they consider the NoSQL database as an

alternative to the relational database (Dharavath and Kumar, 2015, Anagnostopoulos

et al., 2016, Bhogal and Choksi, 2015). For instance, Gannett has moved from a

relational database to NoSQL database to improve its digital publishing platform.

Also, Marriott relays the NoSQL database to modernize its reservation system.

Telefonica has also migrated from Oracle to MongoDB to personalize their customer

services, be more agile, and save cost (Couchbase).

1.2 NoSQL database

NoSQL database has a different data model concept that is classified according

to the storage and retrieval of data; therefore, each database has different ways of

designing, storing, and processing data. The NoSQL database is classified into a key-

value database, column database, document-oriented database, and graph database.

The key-value database uses a hash table that consists of a key and a set of

values (Grolinger et al., 2013; Nayak et al., 2013). The values can be a set of simple

or complex data, and the key is used to retrieve these data. The column database stores

data in columns and rows (Tauro et al., 2012). Each row has many columns called

column families, which may hold numerous columns and act as keys for these

columns. In addition, the graph database stores data as nodes that are considering the

entities (Jayathilake et al., 2012). The properties of the nodes represent the attributes,

whereas the edges represent the relationships among the nodes (Kaur et al., 2013).

Finally, the document-oriented database uses to manage and store data in document

format and collections. The central concept of a document-oriented database is the

notion of a document whose contents are encapsulated or encoded in some standard

format to store and retrieve the data, such as JavaScript Object Notion (JSON) or

4

Binary encoding of JavaScript Object Notation (BSON), and EXtensible markup

language (XML) (Li et al., 2014). Each document has a unique primary key (Mapanga

et al., 2013). The document can have different data types, such as complex data

structure, nested objects, array, and embedded document (dos Santos Ferreira et al.,

2013).

Based on Figure 1.1, the document-oriented database can be a suitable type to

represent a semi-structured data format and support scalability in data size (Ruflin et

al., 2011).

Figure 1.1 Scalability of data size depending on the data structure (Ruflin et al.,

2011)

The difference between the key-value, column, document-oriented, and graph

database is that the document-oriented database supports the transparency of the data

(Atzeni et al., 2016). The document-oriented database use to store, retrieve, and

manage data using a semi-structured data format, as well as provides high

performance, availability, and scalability (Stanescu et al., 2016). Also, the document-

oriented database can define a field into a document, and the application can query this

Unstructured semi-structured structured

RDBMS

Graph

Docume

nt

Column

Key-value

D
a
ta

 s
iz

e
sc

a
la

b
il

it
y

harder

simpler

Data structure

5

document by using the fields. In addition, the document-oriented databases can create

an index over fields, and these indexes can help optimize queries that are used as a

reference to the fields (Hashem et al., 2016). This capability means that a document-

oriented database can be more suitable than other NoSQL database for storing a large

amount of data that needs to be retrieved based on more complex criteria (Corbellini

et al., 2017). Therefore, this study uses the document-oriented database to achieve the

objectives of this thesis.

Finally, the low efficiency of relational databases is a problem for the current

applications and demand migration of their system from relational databases to a

document-oriented database (Corbellini et al., 2017; Dharavath et al., 2015; Karnitis

et al., 2015; Yoon et al., 2016). This is because the concept of a document-oriented

database is to be fast and efficient in data processing in terms of scalability, variability,

agility, and performance (Grolinger et al., 2013). Moreover, a document-oriented

database supports flexible schema, semi-structured or unstructured data, and

horizontal scalability (Rodríguez-Mazahua et al., 2016).

1.3 Motivation

With the rise of big data, a relational database has been unable to fit the

dimensions of big data, especially data velocity and variety (Abourezq et al., 2016).

According to Younas (2019), storing and managing big data requires new data models

and technologies. Also, the increasing use of web applications has raised the demand

to use a document-oriented database because traditional databases are unable to handle

the rapidly growing data volume (Corbellini et al., 2017). In addition, there is a need

to deal with semi-structured data with a flexible schema for different applications

(Goyal et al., 2016).

6

The document-oriented database provides a new characteristic solution to

adapt to big data challenges. The first one is that it supports horizontal scalability by

automatically spreading data over many servers and adding more machines to a pool

of resources (Chandra, 2015). A relational database supports vertical scalability by

adding more hardware infrastructure to the existing machines. This comes with many

problems, such as expensive and difficult hardware limitations, complex joint

operations, non-reliability in some cases, and data distribution over many servers

(Chandra, 2015, Atzeni et al., 2014). The second characteristic is its high availability

towards highly distributed databases through availability and partition-tolerance in the

data store, while RDBMS supports consistency and availability (Grolinger et al., 2013;

Chandra, 2015). Therefore, the low efficiency of the relational database becomes a

problem for the current application and demand migration of their system from a

relational database to a document-oriented database (Corbellini et al., 2017; Dharavath

et al., 2015; Karnitis et al., 2015; Yoon et al., 2016).

As Abdelhedi et al. (2018) mentioned, a document-oriented database has

proven to be the most adapted solution that supports a larger volume of data and

provide flexible schema. Moreover, Younas (2019) found that the document-oriented

database can be suitable for high development productivity and low maintenance cost

of modern Web 2.0 applications for two main reasons: First, these applications have a

constant evolution of data schema and benefits from the flexible schema of the

document-oriented database; second, Web 2.0 applications support data models such

as JSON with tight integration with popular programming languages such as Python,

JavaScript, and Ruby. Therefore, many programming languages can support a

document-oriented database as it can provide high throughput than many other

databases (Bathla et al., 2018).

7

This study discusses the factors that motivate studying the migration from a

relational database to a document-oriented database. First, there is a need for a

conceptual model that can represent a schema for a document-oriented database. In

addition, there is a need for a method to migrate all the database properties from a

relational database to be adapted with a document-oriented database. At the same time,

the issue of how to normalize and de-normalize data in a document-oriented database

is still not handled.

1.4 Research Problem

Migration from a relational database to the document-oriented database has

become an important topic in the era of big data (Chouder et al., 2017; Kim et al.,

2018). Big organizations, such as Telefonica, Financial giant RBS, Travelers

insurance, Cisco, etc have begun to transform their relational database to a document-

oriented database (Gudivada et al., 2014). However, Oliveira et al. (2018) found that

there is no information about the migration methods and scenario configuration; also,

there are no investigations to understand the migration process or the methodology of

their migration. At the same time, a framework and methodology for migrate from a

relational database to a document-oriented database are needed (Lee at al., 2015;

Győrödi et al., 2015; El Alami at al., 2016; Hanine et al., 2016; Karnitis et al., 2015;

Stanescu et al., 2017). Therefore, migration is becoming a challenge in this study area

(Kim et al., 2018).

Evidently, many researchers have proposed methods to migrate the relational

databases to the document-oriented database (Chickerur et al., 2015; Corbellini et al.,

2017; Dharavath et al., 2015; El Alami et al., 2016; Goyal et al., 2016; Győrödi et al.,

2015; Hanine et al., 2016; Imam et al., 2018; Kanade et al., 2014; Karnitis et al., 2015;

C.-H. Lee et al., 2015; Mason, 2015; Rocha et al., 2015a; Stanescu et al., 2016, 2017;

8

Yoon et al., 2016; Zhao et al., 2013). For instance, El Alami et al. (2016); Hanine et

al. (2016); Mason (2015); Stanescu et al. (2016, 2017) have focused on migrating a

relational database to a document-oriented database based on the concept of embedded

and reference documents.

However, these migration methods are facing various issues; the first issue is

that there is no specification that can be recognized to define a schema for a document-

oriented database (Mohan, 2013; Moore et al., 2014; Kanade et al., 2014) due to the

various ways of storage, management, and implementation in document-oriented

database (Tauro et al., 2012; Goyal et al., 2016). The lack of presenting a schema leads

to present many challenges and complex problems in migration as because design a

schema for the document-oriented database is important for defining the principles and

overcoming the issues of relationship types for document-oriented databases (Roy-

Hubara, 2019). Also, it may lead to incorrect or inappropriate schema design especially

when handling the relationships based on normalizing and de-normalizing data. In

addition, the migration methods still need to improve on how to represent all database

properties, such as entity types (whether it is a strong entity or weak entity), attributes

types (whether is it ordinary, multi-value, composite, primary key, foreign key), and

the types of the relationships (1:1, 1: M, M: M, and unary). For instance, the method

of Stanescu et al. (2017), did not migrate all the database properties in a proper way

specially, the multi-values, weak entity, relationship types. Some migration result is

an embedded document while it should be migrated by using array data type as it

contains one field with many values. In addition, if there is any table refereed by more

than two other tables and has more than one foreign key. These cases were missing in

the Stanescu et al. (2017) algorithm.

9

Second, there is no technique method to normalize or de-normalize data in

order to implement the embedded and reference document for handling the various

types of relationships (Guimaraes et al., 2015; Khan and Mane, 2013; Hanine et al.,

2016; Mehmood et al., 2017). Handling relationships based on embedded and

reference documents has not been considered in document-oriented databases despite

its importance probably because it is not recommended in creating a collection for each

entity or using a reference document for all because of the need to execute a complex

joint operation. Furthermore, storing all the entities as embedded documents into one

collection is not beneficial because it will cause many redundant and inconsistent data

(Atzeni et al., 2016). In addition, it will load all the data when updated and may reduce

performance. According to Mehmood et al. (2017), normalization (reference

document) and de-normalization (embedded document) are the two techniques that

must be considered when designing a schema. These techniques can affect the

performance and storage effectively as the databases grow rapidly. González-Aparicio

et al. (2017) observed that the normalization of the data model is one of the important

research issues and there are no standard principles of normalization in the document-

oriented database.

Finally, the migration from a relational database to a document-oriented

database does not consider all the database properties, especially on how to handle

various types of relationships (Colombo et al., 2019; El Alami et al., 2016; Győrödi et

al., 2015; Hanine et al., 2016; Stanescu et al., 2017). As because migration without

any specification or methodology to normalize and de-normalized the various types of

relationships will cause incorrect migration. In addition, the data migration may be

missing or duplicated that will affect the performance.

10

1.5 Research Questions

This study aims to answer the questions that need to be addressed for the

research area, such as:

i) How can a schema for a document-oriented database be designed?

ii) How can a relational database schema be mapped so that it can be

adapted with a document-oriented database schema?

iii) How can a relational database be migrated to a document-oriented

database?

1.6 Objectives

The main goal of this study is to migrate from a relational database to a

document-oriented database based on a document-oriented data schema. To achieve

the objectives, this study proposed the following:

i) To propose a feature and specification for designing a document-oriented

data schema (DODS) based on the entity-relationship (ER) model in order

to represent a conceptual schema for the document-oriented database.

ii) To enhance the transformation rules to map a relational schema to a

document-oriented data schema in order to define a strategy of

normalization and de-normalization of data in a document-oriented

database.

iii) To migrate the relational database to a document-oriented database based

on a document-oriented data schema through a methodology that can

cover all database properties (entities, fields, relationships, data, and

constraints) in migrations.

11

1.7 Contributions

This study overcomes the issues presented in the migration of a relational

database to a document-oriented database by proposing specifications and features for

designing a schema for a document-oriented database. This schema can be used as a

conceptual model for a document-oriented database and can be used as a road map to

migrate from a relational database to a document-oriented database. This migration

method can be efficient and reliable for use in migrating from a relational database to

a document-oriented database.

The main contributions of this study are summarized as follows; a new schema

for a document-oriented database that represent conceptual data for a document-

oriented database.

 Also, enhancing the transformation rules to map a relational schema to

document-oriented schema. Theses transformations rules can overcome the issues of

handling the relationships of a complex database and can be used to implement

normalization and de-normalization data in a document-oriented database.

Finally, migrate a relational database to a document-oriented database to fulfill

the gaps of migrating all ER properties such as entities, fields, relationships, data, and

constraints.

1.8 Scope

This study focused on two dimensions of big data; the first one is data variety,

especially in a semi-structured data format, and the second one is the increasing

volume of data with a consideration of the speed performance. Moreover, this study

focused on a document-oriented database using the MongoDB database as a database

management system. This study does not consider the distributed processing

performance of a document-oriented database.

12

1.9 Thesis Structure

This thesis is structured as follows:

Chapter 2 presents a brief discussion on the database management system, the

concepts of formatted, structured, and semi-structured data, and issues related to semi-

structured data models. It also summarizes the NoSQL database, discusses and

analyses the related models for migrating a relational database to a document-oriented

database.

Chapter 3 presents the research methodology of the proposed method. It

explains the research approach, the case study of this study, and the evaluations

performed to evaluate the proposed method.

Chapter 4 describes the specification and features of DODS and the mapping

of the specification of the ER schema to a document-oriented data schema.

Chapter 5 presents transformation rules to transform ER specifications to

DODS using case studies. The DODS perform the following evaluations; (i) evaluate

the flexibility schema; (ii) compare the DODS features with the semi-structure

features; (iii) evaluate the performance of normalized and de-normalized data for a

document-oriented database based on DODS;

Chapter 6 discusses the migration of a relational database to a document-

oriented database using a case study.

Chapter 7 evaluates the proposed method through following evaluations; (i) the

migration process through migration accuracy; (ii) the performance of the migration

time between this study and Stanescu et al. (2017) to check whether this study can

migrate all the database properties; (iii) evaluate the performance of the database

operations between relational databases using Oracle and document-oriented database

using MongoDB.

13

Chapter 8 presents the research conclusion, the main finding of the research,

and the limitation; this chapter also presents the recommendations for future work.

14

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

This chapter presents an overview of big data, relational databases, and the

NoSQL database. It also highlights the NoSQL database and provides details for each

model. The literature review discusses the methods of migrating from relational

databases to document-oriented databases.

Figure 2.1 Overview of literature review

2.1 Big Data

Big data becomes an important research topic in developing technologies that

can manage and process large volumes of data (Rodríguez-Mazahua et al., 2015;

Stanescu et al., 2016; Truica et al., 2015). Big data is characterized by five main

Literature
Review

Big Data Review

Relational Databases

NoSQL Types

NoSQL Database Types

Document-oriented Database

Related Work

Conceputal Model of Document-
oriented Database

Document-Oriented Database
Based on Normalization and

De-normalization

Migration from Relational
Database to Document-oreinted

Database

Discussion of Migration
Methods

Summary

15

dimensions known as the 5V characteristics (Chen et al., 2013; Katal et al., 2013;

Pokorny, 2013; Rodríguez-Mazahua et al., 2016). These dimensions are 1) volume,

which concerns the data scalability as data grow every day; 2) velocity, which

represents the speed of data and indicates the critical point of big data by measuring

the performance of transactions; 3) variety, which represents the data format, such as

structured, semi-structured, and unstructured; 4) veracity, which is concerned with

data accuracy; and 5) value, which describes the importance of data. According to

Bhogal et al. (2015), the 5Vs of big data should be evaluated using the NoSQL

database in the future. The problem of big data will become increasingly prominent as

solutions continue to be developed to meet emerging needs (Ahuja et al., 2013). The

elements of the big fata taxonomy are described in Figure 2.2.

Figure 2.2 Big data taxonomy (Pokorny, 2013)

16

Figure 2.2 shows many issues and challenges pertaining to big data that need

to be addressed in research and industries. According to Stanescu et al. (2016), dealing

with increases in data volume and storing and analyzing these data are pressing

concerns for big data. Assunção et al. (2015) presented another important issue which

the method of handling and processing a semi-structured data with a flexible schema.

Semi-structured data (Yaish et al., 2013) are required to store and handle large

amounts of data with flexibility schemas, which have emerged as one of the biggest

data models for handling large amounts of data (Qureshi et al., 2011). Figure 2.3

describes the growth of structured, semi-structured, and unstructured data (Feng et al.,

2015). Semi-structured data have the biggest data growth, with more than 2.5 trillion

gigabytes as of 2014.

Figure 2.3 Growth of big data (Feng et al., 2015)

As shown in Figure 2.3, semi-structured data captured and stored data have

become huge and need to process flexible schemas and speed through distributed

systems (Lombardo et al., 2012). Hashem et al. (2016) stated that NoSQL database

0

0.5

1

1.5

2

2.5

3

3.5

2000 2002 2004 2006 2008 2010 2012 2014

T
ri

ll
io

n
s

o
f

G
ig

a
b

y
te

s

(Z
et

ta
b

y
te

s)

Year

Growth of big data

structured data

Unstructured data

Semistructured data

17

distribution supports flexible schemas and it can handle and process semi-structured

data.

Atzeni et al., (2013) explained that an efficient model needs to be designed for

semi-structured data due to a lack of semi-structured data models with flexible

schemas. These issues and challenges must be addressed by researchers when

designing a method or algorithm to retrieve information from large amounts of data

(Qureshi et al., 2011). These requirements contribute significantly to the development

of semi-structured data (Yaish & Goyal, 2013).

Relational databases store data in the form of tables with records and rigid

structures to organize the data that slow down data access and make it inconvenient

(Liang et al., 2015). Recently, many organizations have been facing critical problems

with relational databases in terms of handling increasing data volumes and the big data

application demand for flexible data schemas (Kanade et al., 2014, Madison et al.,

2015). These firms are aiming to adapt to the demands of scalability, high availability,

and storage of huge amounts of data. Therefore, the low efficiency of relational

databases poses a problem for current applications and requires system migration from

a relational database to NoSQL database (Corbellini et al., 2017, Yoon et al., 2016,

Dharavath & Kumar, 2015, Karnitis & Arnicans, 2015). Goli-Malekabadi et al. (2016)

considered variety an important dimension for big data management because it

describes the type and nature of data.

2.2 Relational Database

A relational database is based on the relational model, which allows the

definition of data structures, storage and retrieval operations, and integrity constraints.

In the relational database, the data and relationship are organized into tables (Zhao et

al., 2013). Each table has rows (records) and columns (attributes). Additionally, the

18

model uses SQL to access and process data (Neves et al., 2015). The schema represents

the interaction between the database designer and the end-user to depict the data

structure.

As Kune et al. (2016) stated, most organizations use a relational database as

structured data to store and access their data. However, with the rise of big data,

relational databases have been failing to fit the dimensions of big data, especially data

velocity and variety (Abourezq et al., 2016). Thus, organizations encounter problems

with speed and the increasing size of data. For this reason, the relational database

application has become a bottleneck when data increase and require added scalability

(Moore et al., 2014).

Migrating a relational database involves structuring data to a document-

oriented database, which is a semi-structured data format. This section reviews the

specification of structured data to cover all the ER properties in the migration.

2.2.1 ER Model of Structured Data

An ER model is a graphical representation of the conceptual view of a database

(relational database) and describes the requirements of any application through entities

and relationships (J.-W. Lee et al., 2002). The following table describes the standard

notations used to design an ER model.

19

Table 2.1 Chen’s model notations for an ER model (Lee et al., 2002)

Abstraction Components ER Model

Entity

Relationship

Attribute

Aggregation/Decomposition

Cardinality 1 N

Connector

The main abstraction components are used to represent the schema of the ER

model and can be described as follows.

i) The entity is represented by a rectangular shape with the name “entity”.

ii) The relationship is represented by a diamond shape between two entities.

iii) The attributes are represented by an oval shape with the name “attribute.”

iv) The aggregation/decomposition is represented by a diamond and a line

between two entities to describe the joint operations.

v) The cardinality is represented by a line shape with the types of relationships

between two entities.

2.3 NoSQL Database

Ahuja et al. (2013) indicated that the principal concept of the NoSQL database

is to store data as key-value pairs. Key considers the field of the entity, while the values

are associated with the key. These values can be any kind of data structure and differ

from those in the relational database, where all the field data should have the same

structure and may have null values. In addition, this key-value pair can be stored in a

document, which can represent a field with a record in the relational database.

20

Consequently, a set of related documents is stored and represented through a collection

that considers the table of the relational database.

NoSQL database overcomes big data requirements by supporting flexible

schemas. These databases can accept all types of structured, semi-structured, and

unstructured data more easily than a relational database (Chandra, 2015).

2.3.1 NoSQL Database Types

NoSQL database is classified as key-value, column, document-oriented, and

graph databases. These categories have different ways of storing and managing data

and have varied means of data modeling. Bansel et al. (2016); Grolinger et al. (2013);

Gudivada et al. (2014); Tauro et al. (2012); Yaish et al. (2013) explained the types of

NoSQL database as follows.

a) Key-value database: This type stores data as key-value pairs. A value can contain

any data type and store any number length of values. This value is identified by

a key, which is used as an index. The storage concept of a key-value pair can be

a hash table, which is similar to a database with two columns (key and value) but

is inefficient in query and update operations (Bansel et al., 2016; Grolinger et al.,

2013; Nayak et al., 2013). In particular, this model can be used in forums and

online shopping. Popular examples of this model include social networks, Riak,

Voldemort, and Redis. The advantage of this model is that new types of data can

easily be added to the database as new key-value pairs; its disadvantage is that it

does not have a data type, which has a significant impact on the query. Thus,

communication with the database is limited to three operations only: put, get, and

delete. Additionally, this database uses quick and efficient data management in

distributed systems (e.g., Facebook and Amazon).

21

b) Column-oriented database: This database stores data in columns and rows. Each

row has columns called column families (Tauro et al., 2012), which may hold

many columns and act as keys for the columns. In addition, a row having the

same column is not important because it may have different columns, and each

row can be identified by a primary key, which can be a unique row key (Naheman

et al., 2013). This model also supports index and query more than the key-value

model, and the concepts of its data storage are similar to those of relational

databases (Jayathilake et al., 2012). A relational database uses rows to store and

process attributes, whereas this model uses columns and does not support joint

transactions on tables (Kune et al., 2016). Popular databases of this model include

Cassandra, HBase, Google Bigtable, SimpleDB, and DynamoDB.

c) Graph database: A graph database stores data as nodes, which are considered

entities (Jayathilake et al., 2012), and the properties of nodes represent the

attributes (Kaur et al., 2013). The edges represent the relationships between the

nodes. A graph database has powerful speed with related data and this is useful

when the information of data has associative information and data have

considerable connectivity and relationships. In short, it represents data as a graph,

which can benefit social networks. Neo4j is one of the best databases for this

model because of its good performance and scalable structure.

d) Document-oriented database: In this database, each document contains the data

as a key-value database. The data store the value and may have any data type.

The value associated with the key is used to identify the values (Hashem et al.,

2016). It can also be suitable for representing complex data and support flexible

schemas that can store semi-structured data (dos Santos Ferreira et al., 2013). A

document-oriented database stores data in flexible schemas and has consistency,

22

partition tolerance, and master-slave replication (Bhogal et al., 2015). This type

of database is ideal for storing and managing big data-sized collections of

documents. The sample databases of this model are CouchDB and MongoDB.

 In summary, the difference between the types of NoSQL database that exists

is that the data is represented by each model (Figure 2.4).

Figure 2.4 Data models of NoSQL database (Grolinger et al., 2013)

Many parameters, such as performance, consistency, scalability, and

flexibility, should be considered in choosing suitable NoSQL database for

applications, as proposed by (C.-H. Lee et al., 2015; Yaish et al., 2013). According to

Arora et al. (2013), the document-oriented model has high consistency because it

replicates data through the master-slave mode. It has high scalability, which can

support current Web 2.0 applications. It also uses database collection and a memory-

mapped file and thus has variable performance for a document-oriented database. In

addition to that, flexibility is high in a document-oriented database because it works

with JSON/binary JSON (BSON). It also supports the index and the secondary index

for any attribute. Therefore, this study focuses on a document-oriented database.

2.3.2 Document-Oriented Database

Document-oriented databases are renowned NoSQL database for storing large

amounts of information in terms of flexibility and simplicity (Imam et al., 2018).

23

Document stores provide more complex data structures and richer capabilities than

key-value systems (Younas, 2019). In document stores, the unit of data is called a

document, which is an object that can contain an arbitrary set of fields, values, and

even nested objects and arrays. The document-oriented database supports search and

indexing by document field and attribute. Some of them can even support queries with

constraints, aggregations, sorting, and evaluations (Younas, 2019). Unlike key-value

stores, document stores generally support secondary indexes, nested objects, and lists

(Younas, 2019).

Colombo et al. (2019) focused on document-oriented databases as hierarchical

records and denoted documents whose fields either specify a primitive value or are, in

turn, records composed of multiple fields. The documents are partitioned into

collections, which are then grouped in a database. Typical applications of document-

oriented databases include event logging and content management.

As stated by Bathla et al. (2018), one of the advantages of document-oriented

databases is the ease of adding new attributes to some documents. This feature is

different from a relational database’s fixed schema structure, where each new attribute

is to be added to all records; if the values are not known, then many null values will

be added.

Document-oriented databases have many databases that can be used as

database management systems. This study focuses on MongoDB databases to migrate

from relational databases to document-oriented databases. The reasons for selecting

MongoDB are discussed in this section.

Yaish et al. (2013) stated that MongoDB can be chosen for applications that

have similar properties as those of relational databases. MongoDB is an open-source

database with a flexible schema, which means it can accept any field, and having the

24

same fields or structures is not important; it also accepts any data type for the common

fields (Rafsanjani et al., 2009). It stores data in BSON, which enables binary

serialization on data (K. S. Kumar et al., 2017). In addition, MongoDB is horizontally

scalable and features rich queries and an embedding model; it reduces workload,

executes complex queries (Lombardo et al., 2012), and offers additional functionality.

MongoDB has many other features (Padhy et al., 2011), such as support for

full and secondary indexes, query use of JSON object to deal with data, and use of

MapReduce to query complex operations and aggregation operations through

JavaScript functions (Ruflin et al., 2011). Also, MongoDB can scale horizontally

through database sharding in cases with the heavy workload by automatically splitting

the large database to many tables and processes on multiple servers (R. Kumar et al.,

2015). Furthermore, MongoDB can accept any kind of data structure, such as event,

time, geospatial, and other data types.

Additionally, document-oriented databases work on the master-slave storage

architecture and fault tolerance, which is the main feature of MongoDB (Bathla et al.,

2018). MongoDB allows data to be organized in the form of collections and not on

tables. It supports the querying of specified records from this collection. Many

programming languages are supported by this storage system (Bathla et al., 2018). It

is widely used for storing healthcare records in the form of documents (Kaur et al.,

2015). It can also provide higher throughput than many other databases.

Karnitis et al. (2015) evaluated the performance of SQL, MySQL, CouchDB,

Couchbase, MongoDB, and PostgreSQL. The result showed that CouchDB performs

well but has two problems: data modeling and lack of support for embedded

documents. MongoDB is a suitable database model for applications that require good

performance and have similar requirements to those of relational databases.

