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PEMPROFILAN MOLEKUL DAN PENGAWALATURAN TERHADAP
FAKTOR TRANSKRIPSI TIKUS CTCFL DALAM SEL BUKAN GERMA

DAN SEL STEM GERMA JANTAN

ABSTRAK

Faktor pengikat CCCTC khusus testis (CTCFL) adalah faktor transkripsi
yang diekspresi dalam sel germa jantan dan penting untuk penghasilan sperma.
CTCFL ialah paralog kepada faktor pengikat CCCTC (CTCF), faktor transkripsi dan
protein pengatur-bina kromatin. Mereka berkongsi domain pengikat DNA jejari-zink
yang serupa tetapi mempunyai dua domain hujung yang berbeza. CTCFL tidak
ekspres dalam tisu somatik; walau bagaimanapun, ekspresi yang abnormal dalam sel
bukan germa dikaitkan dengan kanser. Fungsi pengawalseliaan CTCFL dalam
penghasilan sperma dan pertumbuhan tumor masih tidak jelas. Kajian ini bertujuan
untuk menjelaskan profil pengawalseliaan CTCFL murin dalam sel bukan germa dan
sel germa jantan. Ekspresi ektopik CTCFL bertanda FLAG (3xFLAG-CTCFL)
daktifkan dalam sel bukan germa, iaitu sel induk embrio tikus (ESCs) dan sel stroma
testis JK1 (JK1) selama 24 Jam. Untuk mengetahui peranan CTCFL dalam sel
germa, ekspresi Ctcfl endogen dalam sel stem germanium jantan (GSCs) telah
dikurangkan melalui gangguan RNA selama 48 jam. Perubahan global dalam
transkrip telah dianalisis menggunakan microarray dan penjujukan RNA. Analisis
anotasi fungsi mendapati gen dan proses perkembangan telah diganggu apabila
CTCFL diekspresi dalam ESC, sebagai ESC-CTCFL(DOX) dan sel JK1, sebagai
JK1-CTCFL(DOX). Pengurangan ekspresi Ctcfl dalam GSCs menindas ekspresi gen
yang terlibat dalam peraturan kematian sel dan proses selular dalam spermatogonia.
Mod pengawalseliaan CTCFL telah disimpulkan berdasarkan profil ikatan protein-

DNA dalam genom ESC-CTCFL(DOX). Analisis awal in silico menganggarkan
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perkaitan utama antara gen-gen yang mempunyai pertambahan ekspresi dalam ESC-
CTCFL(DOX) dengan pengayaan CTCFL, CTCF, dan komponen-komponen
Polycomb Repressor Complex 2 (PRC2), termasuk Suppressor of zeste 12 protein
(SUZ12). Pengayaan CTCFL, CTCF, dan SUZ12 terhadap genom dalam ESC-
CTCFL(DOX) telah dianalisis menggunakan analisis imunoprekipitasi kromatin dan
penjujukan (ChlIP-seq). Hasilnya mengesahkan pertindihan pengikatan CTCFL
dengan tapak pengayaan CTCF dan SUZ12 yang mendominasi tapak promotor
pengatur perkembangan sel. Pengikatan bersama CTCF dan CTCFL di tapak
CTCF&CTCFL boleh memacu pengaktifan gen germa dalam sel bukan germa.
Pengayaan SUZ12 telah dikurangkan di tapak CTCF&CTCFL berhampiran
promotor gen perkembangan yang ditambah ekpresinya, menyimpulkan perubahan
fungsi penindasan PRC2 oleh CTCFL. Ringkasnya, CTCFL mungkin memainkan
peranan dalam peraturan perkembangan dengan mengubah suai proses dalam sel
bukan germa atau dengan mengawal diferensiasi spermatogonia. Disregulasi aktiviti
CTCF dan PRC2 boleh menjadi mod pengawalseliaan CTCFL dalam pertumbuhan

barah dan memerlukan penyiasatan lanjut.
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MOLECULAR AND REGULATORY PROFILING OF MURINE
TRANSCRIPTION FACTOR CTCFL IN NON-GERM CELLS AND MALE

GERMLINE STEM CELLS

ABSTRACT

Testis-specific CCCTC-binding factor-like (CTCFL) is a transcription factor
expressed in male germ cells and essential for spermatogenesis. CTCFL is the
paralog of CCCTC-binding factor (CTCF), a transcription factor and chromatin
architectural protein. They share a similar zinc-finger DNA binding domain but
different end termini. CTCFL is repressed in somatic tissues; however, the aberrant
expression in the non-germ cells is associated with cancer. The regulatory functions
of CTCFL in spermatogenesis and tumourigenesis are still unclear. This study aimed
to elucidate the regulatory profile of murine CTCFL in non-germ cells and male
germ cells. To investigate the transcriptional effects of CTCFL aberrant expression
in non-germ cells, ectopic FLAG-tagged CTCFL (3xFLAG-CTCFL) was expressed
in the pluripotent mouse embryonic stem cells (ESCs) and JK1 testicular stromal cell
line (JK1) for 24 hours. To discover the roles of CTCFL in the germ cells, the
expression of endogenous Ctcfl in male germline stem cells (GSCs) was reduced by
RNA interference for 48 hours. Global changes in the transcriptome were measured
by microarray and RNA sequencing, respectively. The functional annotation analysis
observed altered developmental genes and processes in CTCFL expressing ESCs,
ESC-CTCFL(DOX), and JK1 cells, JK1-CTCFL(DOX). Ctcfl knockdown in GSCs
repressed the genes involved in cell death regulation and cellular processes in
spermatogonia. The regulatory mode of CTCFL was inferred based on the genome-
wide protein-DNA binding profile in ESC-CTCFL(DOX). Preliminary in silico

analysis highlighted the association of the upregulated genes in ESC-CTCFL(DOX)
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with the enrichment of CTCFL, CTCF, and Polycomb Repressor Complex 2 (PRC2)
components, including Suppressor of zeste 12 protein (SUZ12). The enrichment of
CTCFL, CTCF, and SUZ12 to the genome in ESC-CTCFL(DOX) were analysed by
chromatin immunoprecipitation and sequencing (ChlP-seq). The results validated the
intersection of CTCFL binding with CTCF and SUZ12 enrichment sites that
dominated the promoter of developmental regulators. CTCF and CTCFL co-binding
at CTCF&CTCFL sites could drive the activation of germline genes in the non-germ
cells. SUZ12 enrichment was reduced at the CTCF&CTCEFL sites near the promoter
of upregulated developmental genes, inferring alteration of PRC2 repression by
CTCFL. In summary, CTCFL may play a role in developmental regulation by
modifying the processes in non-germ cells and regulating spermatogonia’s
differentiation. CTCF and PRC2 activity dysregulation could be the CTCFL

regulatory mode in tumourigenesis and warrant further investigations.
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CHAPTER 1

INTRODUCTION

1.1  Background of Study

Transcription factors are one of the main components in the transcriptional
machinery regulating gene transcription into mRNA. In turn, the gene expression
programs convey cell-fate decisions for cellular activity and development.
Transcription factors act by binding to specific DNA motifs within gene regulatory
elements (Stadhouders et al., 2019). The sequence-specific transcription factors may
become the activator or repressor that regulate the general transcription factor
complex that controls the gene transcription (Suter, 2020). Regulation of gene
expression by transcription factors interplays with chromatin regulators to trigger the
local alteration of chromatin structure. Transcription factors and chromatin regulators
confer epigenomic and transcriptomic levels to govern the circuitry of the gene

regulatory network (Wilson and Filipp, 2018).

CCCTC-binding factor (CTCF) is a transcription factor and an architectural
protein for chromatin organisation (Phillips and Corces, 2009; Xiang and Corces,
2020). CTCF binds to its cognate DNA sites highly distributed across the genome in
all cell types (Chen et al., 2012a; Maurano et al., 2015). CTCF plays diverse roles in
transcription regulation and mediating higher-order chromatin organisation
(Braccioli and de Wit, 2019; Herold et al., 2012; Phillips and Corces, 2009; Wu et
al., 2020). Polycomb repressor complex (PRC2) is a chromatin regulator that
controls the gene repression by catalysing the methylation of lysine 27 on Histone
H3 (H3K27) (Glancy et al., 2021). Both PRC2 and CTCF are essential regulators for
cellular development (Arzate-Mejia et al., 2018; Deevy and Bracken, 2019). They

also cooperate in regulating the expression of imprinted genes (Li et al., 2008). Both



are essential for the appropriate expression of developmental genes in pluripotent
stem cells (Dowen et al., 2014; Xu et al., 2014). CTCF and PRC2 are often mutated,
causing dysregulation of gene expression and driving to cancer (Debaugny and Skok,
2020; Piunti and Shilatifard, 2021).

CTCFL (CCCTC-binding factor-like) is a zinc-finger transcription factor
expressed selectively in male germ cells (Loukinov et al., 2002). CTCFL is the
paralog of CTCF with restrictive expression in male germ cells (Klenova et al., 2002;
Loukinov et al., 2002; Sleutels et al., 2012). Hence, Ctcfl is a germline gene as its
expression is essential for spermatogenesis. CTCFL regulates the expression of
essential germline genes, which are Gal3stl and Prss50 (Kosaka-Suzuki et al., 2011;
Suzuki et al., 2010). Depletion of CTCFL results in defective spermatogenesis and
sub-sterility in mice (Sleutels et al., 2012).

Nevertheless, CTCFL is also a cancer-testis antigen (CTA). CTA genes have
a restrictive expression in normal testis, but its derepression in the non-testicular
tissues is associated with malignancies (Gibbs and Whitehurst, 2018; Kalejs and
Erenpreisa, 2005). CTCFL aberrant expression beyond the male germ cells is linked
with the invasive phenotype of cancer (Debaugny and Skok, 2020; Debruyne et al.,
2019; Janssen et al., 2020; Klenova et al., 2002; Soltanian and Dehghani, 2018). The
reactivation of CTAs beyond the male germ cells leads to the hijacking of cell
development processes by supporting the survivability of cancer cells (Gordeeva,
2018). As a transcription factor, the derepression of CTCFL in cancer may contribute
to the alteration of transcription profile which drives the malignant genome
reprogramming and cell transformation (Debaugny and Skok, 2020; Wang et al.,
2011). CTCFL is also a potential candidate for immunotherapeutic against cancer

and metastasis (Loukinov, 2018).



1.2 Problem Statement

CTCFL aberrant expression in the non-testicular tissues can be detrimental as
the protein is a transcription factor and a CTA, which may drive the soma-to-
germline expression program for malignant reprogramming (Wang et al., 2011). In
addition, CTCFL can activate the expression of other CTAs and germline genes in
cancer, although the derepression is speculated by several studies (Debaugny and
Skok, 2020; Hillman et al., 2019; Woloszynska-Read et al., 2011).

A study by Pugacheva et al. (2015) discovered the regulatory mode of
CTCFL that is common between germline and cancer cells. CTCFL can bind to the
CTCEF binding sites near the promoter of germline genes, forming a heterodimer with
CTCF and activating the aberrant gene expression in the somatic cells. This
abnormal regulatory action may predispose them to cancer. In parallel, induction of
aberrant CTCFL expression by Sati et al. (2015) during mouse embryogenesis
resulted in poor growth development. They observed that the dead pups had growth
retardation and malformations in multiple somatic organs, particularly the eyes,
brain, and vascular system. It is peculiar that a testis-specific transcription factor
could cause grievous alterations in developing non-testicular tissues. This finding
provides a clue about the dysregulations by CTCFL in somatic development by
altering the Transforming Growth Beta (TGF-B) signalling pathway. Still,
establishing a link between CTCFL activation of the germline programme and cancer
is difficult due to the lack of study on its role in germ cells.

Most transcription factors do not independently participate in gene
transcriptional regulation (Will and Helms, 2014). Besides binding to their target
DNA binding sites, they also interact with other regulatory proteins such as

mediators and chromatin modifiers (Nakagawa et al., 2018). Albeit being discovered



for 20 years, less is known about the functional binding sites of CTCFL and its
cooperation with other regulators. CTCFL binding overlaps a subset of CTCF target
sites as paralogous proteins due to the similar ZF DNA binding domain (Pugacheva
et al., 2015). The different end termini and configuration of ZF domains modulate
the selection of DNA binding and interaction with protein partners (Bergmaier et al.,
2018; Nishana et al., 2020). Less is known about the downstream regulations,
primarily when CTCF and CTCFL co-express in the tumour and male germ cells.
They may interact with similar DNA sequences and other regulatory proteins but

with unique downstream regulations.

1.3 Rationale of Study

Germline genes, including CTAs, involve a wide range of processes such as
genomic maintenance, transcriptional regulation and meiosis in spermatogenesis,
which could connect to their aberrant activation derepression outcomes with
neoplastic behaviours (Gibbs and Whitehurst, 2018; Whitehurst, 2014). CTCFL
participates in transcriptional regulation in tumourigenesis and spermatogenesis. The
implications of CTCFL “out of context” expression may associate with the
derepression of germline genes, as well as dysregulation of somatic development
(Pugacheva et al., 2015; Sati et al., 2015). Still, there is a gap of understanding of
how CTCFL functions. CTCFL regulation and its role in male germ cells require
further elucidation.

The current study was conducted to investigate CTCFL regulation in both
expression settings for a comprehensive understanding, based on a hypothesis that
the implications of CTCFL aberrant expression in non-germ cells could be linked

with its functional roles in male germ cells. In addition, this study also explored the



mechanism of transcriptional regulation of CTCFL as a transcription factor that may

link CTCFL function in spermatogenesis and cancer.

1.4  Research Objectives
The main objective of this study was to elucidate the regulatory profile of
murine CTCFL in non-germ cells and male germ cells. The following specific
objectives were targeted in this study.
(1) To investigate the transcriptional effects of CTCFL aberrant expression in
non-germ cells by introducing the ectopic CTCFL (Chapter 4).
(2) To discover the roles of CTCFL in male germ cells by knocking down the
endogenous Ctcfl transcript expression (Chapter 5).
(3) To infer the regulatory mode of CTCFL as a transcription factor based on the

genome-wide protein-DNA binding profile (Chapter 6).

The first and second objectives focussed on the transcriptional regulation of
CTCFL in the non-germ cells and male germ cells, respectively. For the first
objective, this work utilised the recombinant construct, 3xFLAG-CTCFL, for the
ectopic CTCFL expression in the non-germ cells. Ectopic expression is the
expression of a gene in a cell type, developmental stage, or condition where it should
not be expressed (Prelich, 2012). The ectopic CTCFL expression was conducted in
pluripotent embryonic stem cells (ESCs) and JK1 testicular stromal cell lines, in
which the protein is repressed. Tumour or cancer cell lines were opted out of this
study as the altered genetic and epigenetic events in are confounding factors may
conceal the direct effects of CTCFL aberrant expression. The ectopic CTCFL was
tagged FLAG-tag epitope to allow protein probing by anti-FLAG monoclonal

antibody for protein expression analysis and chromatin immunoprecipitation. The



implications of CTCFL aberrant expression in the ESCs and JK1 cells was analysed
by microarray to measure the global gene expression changes.

ESCs are ideal for investigating mammalian transcriptional regulation (Rao,
2012). An exhaustive range of datasets for ESCs allows simultaneous understanding
and construction of hypotheses behind the multiple layers of gene expression
regulation in the cell system. Furthermore, as ESCs can differentiate into all cell
lineages (the germ layers and germline cells), the cells are heavily utilised for
investigating developmental process and lineage specification. Several studies have
used ESCs or pluripotent stem cells for investigating the roles of CTCFL (Bergmaier
et al., 2018; Nishana et al., 2020; Sati et al., 2015; Sleutels et al., 2012). Meanwhile,
JK1 cells are immortalised cells originating from CD34+ enriched testicular stromal
cells, particularly the peritubular myoid cells (Kim et al., 2008; Seandel et al., 2007).
This stromal cell line can be utilised as feeder cells that support the expansion of
adult spermatogonial stem cells (Kim et al., 2008). Thus, JK1 cells may resemble the
testicular somatic cell type, closely connected with the growth of male germ cells.

Ctcfl expression knockdown was conducted in male germline stem cells
(GSCs) for the second objective. GSCs are the in vitro cell model representing
undifferentiated spermatogonial stem cells (SSCs). GSCs were established from the
SSCs of neonatal mice and continuously proliferated as undifferentiated
spermatogonia (Kanatsu-Shinohara et al., 2003a; Kanatsu-Shinohara et al., 2003b).
CTCFL has the most outstanding expression level in mitotic spermatogonia
compared to other germ cell stages (Rivero-Hinojosa et al., 2021). Hence, GSCs
express the endogenous CTCFL and can analyse the physiological role of this
transcription factor in male germ cells. The knockdown approach or gene silencing

was chosen to reduce the gene expression aberrantly and elucidate the direct roles of



CTCFL in the cells. The biggest concern of using an RNAi-based system for
knockdown studies is the off-target effect. This study used an improved RNAI
system, the Dicer-substrate short interfering RNAs (DsiRNA), to target the Ctcfl at
specific sites. DsSIRNA has improved performance than the canonical small
interfering RNA (siRNA) in the RNAI pathway by minimising the off-target effect
(Snead et al., 2013). RNA sequencing (RNA-seq) analysed the transcriptome profile
of Ctcfl knockdown GSCs, and data analysis computed the differential expressed
genes.

Lastly, the genome-wide CTCFL enrichment was investigated to infer the
regulatory mode or the mechanism of CTCFL regulation. ChlP-seq profiled the
CTCFL binding sites, and further analysis retrieved the possible direct targets and
associated downstream biological processes. Genomic enrichment of its paralog,
CTCF and a core subunit of PRC2, SUZ12, were also assessed. An integrative
analysis was conducted to assess the association between the transcriptional
regulation and the annotated protein-DNA binding profile. The analysis revealed the
possible mechanism of CTCFL-dependent gene regulation in non-germ cells and
germ cells. Figure 1.1 illustrates the research design in this study based on the three

specific objectives.
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Figure 1.1 The overall research design conducted in this study was based on
three specific objectives.



1.5  Thesis Organisation

The thesis is organised into chapters that cover the three specific objectives.
Chapter 2 describes the biological background of transcription factors and chromatin
regulators by introducing CTCF and PRC2 as the respective example. The literature
review highlights the CTCFL as the protein of interest in this study. An overview of
genome-wide analysis methods, including microarray, RNA-seq and ChlP-seq, was
described later in this chapter.

Chapter 3 provides the essential research methods used to achieve the
objectives of this study. The thesis highlighted the detailed protocol for the
mammalian cell culture, quantitative polymerase chain reaction (QPCR), protein
expression analysis, microarray and library preparation for RNA-seq and ChlP-seq.

Chapters 4, 5 and 6 present the experiments and findings for the three specific
objectives, respectively. In Chapter 4, the aim was to investigate the implications of
CTCFL aberrant expression in ESCs and JK1 cells. Transcriptomic changes were
analysed using microarray to discover the differentially expressed (DE) genes. This
chapter highlights the effects of CTCFL expression toward the potential
dysregulation of cell development in the stem cells and somatic cells.

In Chapter 5, the aim was to elucidate the roles of CTCFL in GSCs. The
expression of Ctcfl in GSCs was aberrantly reduced via gene knockdown followed
by RNA-seq. Transcriptomic analysis exhibited alteration of gene expression, which
involved cellular processes such as cell death and signalling pathways. This chapter
suggests the potential role of CTCFL in the male germ cells during the early stage of

spermatogenesis.



In Chapter 6, the aim was to investigate the regulatory mode of CTCFL based
on its genome-wide binding profile. The enrichment of CTCFL and CTCF and a core
subunit of PRC2; SUZ12 were characterised by ChIP-seq. CTCFL binding was
predominant at the gene promoters that CTCF and SUZ12 occupied. Furthermore,
the analysis discovered the probable alteration of the roles of CTCF and PRC2 in
response to CTCFL enrichment to the overlapping binding sites.

Finally, Chapter 7 concludes the thesis by summarising the findings of this

study and mapping out possible areas for future research.
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CHAPTER 2

LITERATURE REVIEW

2.1  An Overview of Transcription Factors and Histone Modifications

2.1.1 Chromatin organisation

DNA stores the hereditary genetic information of an organism. DNA is a two-
stranded helix in which each strand consists of four different nucleotides called
adenine (A), guanine (G), cytosine (C) and thymine (T). DNA exists within the
nucleus and would stretch up to two meters for human DNA. DNA is folded in a
highly compacted structure known as chromatin in eukaryotic cells, including nucleic
acids and histone proteins. The protein-DNA complex is called the nucleosomes in
which 147 base pairs (bp) of DNA is wrapped approximately 1.65 to 1.7 times
around a core protein octamer composed of two units of each of the histone proteins,
H2A, H2B, H3, and H4 (Luger and Hansen, 2005; Luger et al., 1997; Richmond and
Davey, 2003).

Chromatin structure divides into three hierarchical states based on
compaction: primary, secondary, and tertiary (Figure 2.1). The primary state consists
of core chromatin that appears as beads-on-a-string, forming an eleven nm chromatin
fibre. Next, a range of 20 to 50 bp of linker DNA associated with histone H1
separates the nucleosomes (Oudet et al., 1975). The secondary state involves
condensing the eleven nm fibre further to form a 30 nm chromatin fibre through
nucleosomal interactions, but the formation remains controversial (Felsenfeld and
McGhee, 1986; Maeshima et al., 2010). Finally, in the tertiary level of compaction,
the chromatin is folded, resulting in interchromosomal and intrachromosomal
interactions of the 30 and 11 nm fibres that form the higher-order structures (Bian

and Belmont, 2012; Rattner and Hamkalo, 1978).
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Figure 2.1 Levels of chromatin organisation. DNA and its associated proteins are
called chromatin. The DNA is tightly wrapped around a histone octamer to form the
nucleosome. These nucleosomes are separated by linker histones and compacted in a
30 nm chromatin fibre. Chromatin is further compacted into higher-order structures.
The figure was adapted from Botchkarev et al. (2012)
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Chromatin is functionally divided into two general states, euchromatin and
heterochromatin, distributed throughout the genome. Euchromatin is less condensed,
gene-rich, and often associated with active gene expression (Dillon and Festenstein,
2002). Heterochromatin is highly condensed, generally gene-poor and lacks much
active gene expression. The transcriptionally inactive chromatin can be in two
varieties: permanently silenced or constitutive heterochromatin and facultative
heterochromatin. Constitutive chromatin localises extensively near centromeres,
telomeres, and gene desert regions. Facultative chromatin is the condensed
euchromatic region where the compaction is developmentally regulated (Gilbert et
al., 2003). The convoluted chromatin changes through histone modifications and
accessibility to regulatory proteins are linked with the coordinated regulation of gene
expression for cellular functions such as transcription, DNA replication and DNA

repair (Blakey and Litt, 2015; Parmar and Padinhateeri, 2020).

2.1.2 Transcription factors

Gene transcriptional regulation is central to tissue-specific gene expression
and stimulus-mediated gene activity in development and cellular differentiation
(Holmberg and Perlmann, 2012; Hu and Gallo, 2010; Molina et al., 2013; Sonawane
et al., 2017). Transcription factors are regulatory proteins bound to short specific
DNA sequences or motifs and form a protein complex system to control the gene
transcription (Lambert et al., 2018; Latchman, 2010). Hence, transcription factors
cooperate with DNA and coregulators, determining the transcription factor function
and transcriptional activity (Cheatle Jarvela and Hinman, 2015). The protein-DNA
and protein-protein interactions are the key parameters determining the three

functional features of transcription factors: local chromatin access, self-sustained
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remodelling, and sporadic occupancy/selective gene activation (Francois et al.,
2020).

Specific transcription factor binding motif localises to cis-regulatory elements
that include the promoters, enhancers (or silencers) and insulators for precise control
of gene expression (Inukai et al., 2017). The promoter is a stretch of upstream DNA
sequence where transcription is initiated, and this region includes the TSS to which
the basal transcriptional machinery is enriched. The promoters can be tissue-specific
or broadly scattered in many tissues. The tissue-specific promoters are primarily
governed by transcriptional control, while the broad class is more dependent on the
chromatin accessibility and epigenetic marks (Lenhard et al., 2012; Mora et al.,
2016).

The distal cis-regulatory elements such as enhancers, silencers and insulators
are localised far from the TSS. Enhancers and silencers are short motifs containing
binding sites for transcription factors, but they have the opposite regulation (Kolovos
et al., 2012). The enhancers function in amplifying transcriptional regulation while
the silencers suppress the gene expression. These elements possess a bifunctional
role (enhancers or silencers) depending on the specific enrichment of transcription
factors and epigenetic marks (Bandara et al., 2021; Gisselbrecht et al., 2020).
Meanwhile, insulators are boundary elements that demarcate the active domains and
restrict the promoters’ promiscuous interaction between enhancers or silencers
(Gaszner and Felsenfeld, 2006). The interactions between the promoters and the
distal regulatory elements determine the transcriptional activity in housekeeping and
cell or tissue-specific regulations for development and disease (Ko et al., 2017;

Zabidi and Stark, 2016).
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The transcription factor binding specificity and functional features are
modulated by multiple simultaneous protein-protein interactions (PPIs) with other
transcription factors and transcriptional coregulators (Ahsendorf et al., 2017; Inukai
et al., 2017). Most transcription factors operate as homo- or heterodimers and exhibit
cooperative binding to execute multiple regulatory roles (Funnell and Crossley,
2012; Morgunova and Taipale, 2017). Transcriptional coregulators are also required
to activate or suppress chromatin-dependent transcriptional signalling after
transcription factors bind to cis-regulatory DNA sequences. Transcriptional
coregulators (coactivators and corepressors) are diverse functional classes of
chromatin-associated proteins including, but not limited to, chromatin modifiers
(writers and erasers), chromatin remodellers, chromatin readers, and other
scaffolding proteins (Bishop et al., 2019). Transcription factors and coregulators
assemble diverse regulatory complexes at the cis-regulatory elements. Dysregulation
of these assemblies has severe implications for cell homeostasis and often leads to

disease development.

2.1.3 Histone modifications

Chromatin regulators conduct the dynamic modification of chromatin
architecture known as chromatin remodelling for the accessibility of transcription
machinery to the regulatory elements (Morgan and Shilatifard, 2020). Remodelling
occurs via covalent histone modifications by enzymes such as histone
acetyltransferases (HATS), histone deacetyltransferases (HDACs) and histone
methyltransferases (HMTs) (Wang et al., 2007). Histone modifications include
acetylation, methylation, and ubiquitination. Other modifications such as
crotonylation, 5-hydroxylation, sumoylation, ADP-ribosylation, and glycosylation

also may occur at the histone polypeptides and their residues (Rothbart and Strahl,
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2014). Each modification plays a crucial role in mediating the functional chromatin
states for the proper organisation and efficient execution of nuclear processes
(Adkins et al., 2013).

The best-studied modifications are methylated and acetylated lysine residues
on histone H3. They are deposited on particular areas of the genome and associated
with distinct states of gene transcription. Histone acetylation is generally correlated
with active transcription, histone methylation associates with a variety of
transcriptional states, depending on the particular lysine position that is methylated.
(Gates et al., 2017). For example, histone-3-lysine-4-mono-, di- and trimethylation
(H3K4mel/2/3), histone-3-lysine-36 mono- and tri-methylation (H3K36mel/3),
histone-3-lysine-27-acetylation (H3K27ac) and histone-3-lysine-9-acetylation
(H3K9ac) are located in actively transcribed regions and accumulated near the
euchromatin. On the other hand, the heterochromatic regions are often marked by
histone-3-lysine 9 (H3K9), histone-3-lysine-27 (H3K27) and histone-4-lysine-20
methylation (H4K20me) and lack of histone acetylation. Table 2.1 lists the genomic
localisation of notable histone H3 modifications associated with transcription states
of chromatin (Gates et al., 2017; Zhao and Garcia, 2015). Another transcription state
is the poised state of chromatin by the bivalency of histone marks. Bivalent
chromatin is the genomic feature co-occupied by active H3K4me3 and repressive
H3K27me3, mainly at the promoters (Bernstein et al., 2006; Blanco et al., 2020).
Bivalency regulates gene expression for cell fate and tissue lineage commitment in

development (Harikumar and Meshorer, 2015; Jeon and Tucker-Kellogg, 2020).
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Table 2.1 Transcriptional role and localisation of histone modifications (Gates
et al., 2017; Zhao and Garcia, 2015).

Histone modification Transcriptional role Location of enrichment

H3K4mel Activation Enhancers

H3K4me3 Activation Promoters

H3K27ac Activation Enhancers, promoters

H3K9AC Activation Enhancers, promoters

H3K36me3 Activation Gene bodies

H3K79me3 Activation Gene bodies

H3K27me3 Repression Promoters, gene-rich regions

H3K9me3 Repression Satellite repeats, telomeres,
pericentromeres
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Histone-modifying enzymes are chromatin regulators that mediate histone
modifications that frequently operate as large multiprotein complexes (DesJarlais and
Tummino, 2016). The histone-modifying enzymes are grouped into writers, erasers,
and readers (Biswas and Rao, 2018; Hojfeldt et al., 2013). The ‘writers’ are enzymes
that set the post-translational modification to the residues on histones. The covalently
modified histone tails are recognised via specific domains of a group of proteins
referred to as ‘readers’. The enzymes that remove the post-translational
modifications are called ‘erasers’. These enzymes and protein domains modify and
read the specific amino acids on the histones and form the basis of the dynamic
epigenetic regulation of gene expression (Figure 2.2).

Among the writers are the Polycomb group (PcG) and Trithorax group
(TrxG) proteins which play a fundamental role in regulating histone modifications
connected with gene repression and activation, respectively (Blanco et al., 2020;
Kuroda et al., 2020). The TrxG complexes display cooperativity with PcG
complexes through their opposing roles in regulating gene expression and
development (Kadoch et al., 2016; Kuroda et al., 2020). PRC2 is a PcG complex that
maintains the repression of gene expression by depositing H3K27me3 at the gene
regulatory elements (Gaydos et al., 2014). Meanwhile, the TrxG complex deposits
active H3K4me3 to oppose the PcG silencing (Tie et al., 2014). Both complexes are
also responsible for establishing the bivalent domains for poised chromatin and may
act as the master switch that coordinates the transcriptional programming (Kuroda et

al., 2020).
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Reader Writer ~ Eraser

Histones

Figure 2.2 The regulators of histone modifications. Histone post-translational
modifications are added or removed by specific enzymes (‘writers’ and ‘erasers’,
respectively) and recognised by their binding proteins (‘readers’). The image was
adapted from Cao and Yan (2020).
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2.2  Transcription Factor: CCCTC-binding Factor (CTCF)

2.2.1 Background

CTCF is a highly conserved zinc-finger DNA-binding protein initially
discovered as a transcriptional repressor of c-myc (Filippova et al., 1996; Klenova et
al., 1993). CTCF plays multiple roles in transcriptional activation and repression,
regulation of imprinted loci and X chromosome inactivation (XCI) and organisation
of higher-order chromatin by chromosomal looping and nuclear tethering (Braccioli
and de Wit, 2019; Herold et al., 2012; Phillips and Corces, 2009; Wu et al., 2020).
CTCF expresses in all stages of development across most metazoan tissues (Phillips
and Corces, 2009). Notably, CTCF regulates the lineage specification during
cell/tissue-type specific gene expression by controlling the transcriptional regulation
and chromatin organisation (Arzate-Mejia et al., 2018; Braccioli and de Wit, 2019).

CTCF comprises an N-terminal domain, a central DNA binding domain with
11 C2H2 ZFs and a C-terminal domain (Klenova et al., 1993). The plethora of CTCF
roles is contributed by the three domains that determine the binding site preference
and regulation of chromosome organisation (Nishana et al., 2020; Ong and Corces,
2014; Pugacheva et al., 2020). The dynamic combination of ZFs binds to different
DNA sequences and interacts with various protein factors (Hashimoto et al., 2017;
Nakahashi et al., 2013). In addition, CTCF may interact with other proteins, RNA
and susceptible to post-translational modifications that could affect interactions with
DNA or other proteins, as reviewed elsewhere (Arzate-Mejia et al., 2018; Braccioli

and de Wit, 2019; Wu et al., 2020; Zlatanova and Caiafa, 2009).

2.2.2 CTCF target sites (CTSes)

CTCF is a sequence-specific transcription factor that regulates 3D genome

organisation and critical aspects of gene expression such as transcription activation
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and repression, RNA splicing, and enhancer/promoter insulation. (Ong and Corces,
2014). CTCF target sites (CTSes) are highly conserved and widely spread across the
mammalian genome. A vast number of more than 80,000 CTSes may be found in the
mammalian genome (Chen et al., 2012a; Maurano et al., 2015). CTCF binding is
predominant to the distal regions and gene bodies than the TSS (Handoko et al.,
2011; Holwerda and de Laat, 2013). Still, CTCF enrichment near TSS is crucial for
forming transcription or enhancer hubs through long-distance chromatin interactions
that bridge distal enhancers with target promoters (Guo et al., 2012; Kubo et al.,
2021).

CTCF forms a complex with cohesin, a key component of chromatin and
binds to the DNA to establish the DNA loop domains (Hansen et al., 2017; Lee and
lyer, 2012) (Figure 2.3A). The loops facilitate the interactions between promoter and
enhancer elements. A loop domain, known as topologically associated domains
(TAD), is formed by multiple loops of intervening DNA between two convergent
CTCF sites. TADs form the basis of chromatin regulatory segmentation that
demarcate the gene regulatory elements (Merkenschlager and Nora, 2016; Xiang and
Corces, 2020).

CTCF exhibits dynamic binding to the cognate genomic sites, recognised by
diverse combinations of its 11 ZFs as a “multivalent protein” (Xu et al., 2018a). The
systematic mapping of CTCF ZFs to specific chromatin sites enables CTCF to
execute diverse functions in different contexts and cell types. CTCF core motif
consists of about 20 bp, in which the CTCF ZF domain employs ZFs three to seven
to bind to the 15 bp consensus sequence. Meanwhile, the ZFs nine to eleven
modulate CTCF-binding stability by interacting with the second CTCF motif located

at 21 to 22 bp upstream to the core motif (Guo et al., 2015; Hashimoto et al., 2017,
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Nakahashi et al., 2013; Persikov and Singh, 2014; Xie et al., 2007; Xu et al., 2018a).
The core sequences can be partial palindromic, and the directionality is determined
by the second motif (Guo et al., 2015; Wu et al., 2020; Xie et al., 2007). The CTCF
binding motifs are displayed in Figure 2.3B, adapted from an extensive review by
Wu et al. (2020).

CTSes elements can exist as single non-clustered and clustered CTCF sites.
CTCEF clustered sites represent a group of at least two CTSes separated by less than
ten kb on the genome. The vast majority of clustered CTSes colocalise with cohesin
and enrich near transcription start sites to stabilise the chromatin contacts
(Kentepozidou et al., 2020). Meanwhile, the single CTSes function as the insulators

that restrict the interactions between promoters and distal enhancers (Jia et al., 2020).
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Figure 2.3 The formation of chromatin loops and CTCF binding motifs. A.
CTCF and cohesin generate chromatin loops through loop extrusion and form TAD.
The image was adapted from Pongubala and Murre (2021). B. The combination of
CTCF ZFs binds to the core and secondary binding motifs. The image was adapted

from Wu et al. (2020).
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2.2.3 CTCF in the development and cancer

The CTCF-mediated interactions are also closely related to developmental
gene regulation (Allahyar et al., 2018; Merkenschlager and Nora, 2016). CTCF is
required for embryonic development since CTCF-null embryos cannot implant
(Moore et al., 2012). CTCF mediates chromatin looping in the pluripotent genome
and is essential to determine the stem cells' fate (Rao et al., 2014). As an
architectural protein, CTCF controls the expression of pluripotency genes and
lineage-specifying genes by organising the chromatin state (Balakrishnan et al.,
2012; Dowen et al., 2014; Handoko et al., 2011; Nora et al., 2017; Pekowska et al.,
2018). The pluripotency genes such as Nanog and Oct4 are localised within the
CTCF-anchored super-enhancer domain. The domains insulate the super-enhancers
from interacting with lineage-specific master transcription factors and maintain the
stem cell state (Dowen et al., 2014; Justice et al., 2020; Whyte et al., 2013).

CTCF contributes to the lineage specification and development in multiple
tissues, including brain, cardiovascular, limb, muscle, retina, immune cells, and
gametes (Arzate-Mejia et al., 2018). The chromatin has a flexible structure with
weak organisation and high accessibility in the pluripotent stem cells (Schlesinger
and Meshorer, 2019). Gain and enhancement of chromatin loops, especially at CTCF
binding sites, mark the exit from pluripotency to differentiation (Pekowska et al.,
2018). The chromatin becomes more compartmentalised as the developmental
program activates and progresses to more lineage-specific regulation (Zheng and
Xie, 2019).

CTCF binding at the promoters mediates the promoter-promoter and
promoter-enhancer interactions for active gene expression during cellular

differentiation (Kubo et al., 2021). An architectural protein, YY1 interacts with

24



	MAISARAH BINTI AB SAMAD- FINAL THESIS_protected P-SKD000617(R)_-OCR

