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PEMPROFILAN MOLEKUL DAN PENGAWALATURAN TERHADAP 

FAKTOR TRANSKRIPSI TIKUS CTCFL DALAM SEL BUKAN GERMA 

DAN SEL STEM GERMA JANTAN 

ABSTRAK 

Faktor pengikat CCCTC khusus testis (CTCFL) adalah faktor transkripsi 

yang diekspresi dalam sel germa jantan dan penting untuk penghasilan sperma. 

CTCFL ialah paralog kepada faktor pengikat CCCTC (CTCF), faktor transkripsi dan 

protein pengatur-bina kromatin. Mereka berkongsi domain pengikat DNA jejari-zink 

yang serupa tetapi mempunyai dua domain hujung yang berbeza. CTCFL tidak 

ekspres dalam tisu somatik; walau bagaimanapun, ekspresi yang abnormal dalam sel 

bukan germa dikaitkan dengan kanser. Fungsi pengawalseliaan CTCFL dalam 

penghasilan sperma dan pertumbuhan tumor masih tidak jelas. Kajian ini bertujuan 

untuk menjelaskan profil pengawalseliaan CTCFL murin dalam sel bukan germa dan 

sel germa jantan. Ekspresi ektopik CTCFL bertanda FLAG (3×FLAG-CTCFL) 

daktifkan dalam sel bukan germa, iaitu sel induk embrio tikus (ESCs) dan sel stroma 

testis JK1 (JK1) selama 24 Jam. Untuk mengetahui peranan CTCFL dalam sel 

germa, ekspresi Ctcfl endogen dalam sel stem germanium jantan (GSCs) telah 

dikurangkan melalui gangguan RNA selama 48 jam. Perubahan global dalam 

transkrip telah dianalisis menggunakan microarray dan penjujukan RNA. Analisis 

anotasi fungsi mendapati gen dan proses perkembangan telah diganggu apabila 

CTCFL diekspresi dalam ESC, sebagai ESC-CTCFL(DOX) dan sel JK1, sebagai 

JK1-CTCFL(DOX). Pengurangan ekspresi Ctcfl dalam GSCs menindas ekspresi gen 

yang terlibat dalam peraturan kematian sel dan proses selular dalam spermatogonia. 

Mod pengawalseliaan CTCFL telah disimpulkan berdasarkan profil ikatan protein-

DNA dalam genom ESC-CTCFL(DOX). Analisis awal in silico menganggarkan 
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perkaitan utama antara gen-gen yang mempunyai pertambahan ekspresi dalam ESC-

CTCFL(DOX) dengan pengayaan CTCFL, CTCF, dan komponen-komponen 

Polycomb Repressor Complex 2 (PRC2), termasuk Suppressor of zeste 12 protein 

(SUZ12). Pengayaan CTCFL, CTCF, dan SUZ12 terhadap genom dalam ESC-

CTCFL(DOX) telah dianalisis menggunakan analisis imunoprekipitasi kromatin dan 

penjujukan (ChIP-seq). Hasilnya mengesahkan pertindihan pengikatan CTCFL 

dengan tapak pengayaan CTCF dan SUZ12 yang mendominasi tapak promotor 

pengatur perkembangan sel. Pengikatan bersama CTCF dan CTCFL di tapak 

CTCF&CTCFL boleh memacu pengaktifan gen germa dalam sel bukan germa. 

Pengayaan SUZ12 telah dikurangkan di tapak CTCF&CTCFL berhampiran 

promotor gen perkembangan yang ditambah ekpresinya, menyimpulkan perubahan 

fungsi penindasan PRC2 oleh CTCFL. Ringkasnya, CTCFL mungkin memainkan 

peranan dalam peraturan perkembangan dengan mengubah suai proses dalam sel 

bukan germa atau dengan mengawal diferensiasi spermatogonia. Disregulasi aktiviti 

CTCF dan PRC2 boleh menjadi mod pengawalseliaan CTCFL dalam pertumbuhan 

barah dan memerlukan penyiasatan lanjut. 
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 MOLECULAR AND REGULATORY PROFILING OF MURINE 

TRANSCRIPTION FACTOR CTCFL IN NON-GERM CELLS AND MALE 

GERMLINE STEM CELLS 

ABSTRACT 

Testis-specific CCCTC-binding factor-like (CTCFL) is a transcription factor 

expressed in male germ cells and essential for spermatogenesis. CTCFL is the 

paralog of CCCTC-binding factor (CTCF), a transcription factor and chromatin 

architectural protein. They share a similar zinc-finger DNA binding domain but 

different end termini. CTCFL is repressed in somatic tissues; however, the aberrant 

expression in the non-germ cells is associated with cancer. The regulatory functions 

of CTCFL in spermatogenesis and tumourigenesis are still unclear. This study aimed 

to elucidate the regulatory profile of murine CTCFL in non-germ cells and male 

germ cells. To investigate the transcriptional effects of CTCFL aberrant expression 

in non-germ cells, ectopic FLAG-tagged CTCFL (3×FLAG-CTCFL) was expressed 

in the pluripotent mouse embryonic stem cells (ESCs) and JK1 testicular stromal cell 

line (JK1) for 24 hours. To discover the roles of CTCFL in the germ cells, the 

expression of endogenous Ctcfl in male germline stem cells (GSCs) was reduced by 

RNA interference for 48 hours. Global changes in the transcriptome were measured 

by microarray and RNA sequencing, respectively. The functional annotation analysis 

observed altered developmental genes and processes in CTCFL expressing ESCs, 

ESC-CTCFL(DOX), and JK1 cells, JK1-CTCFL(DOX). Ctcfl knockdown in GSCs 

repressed the genes involved in cell death regulation and cellular processes in 

spermatogonia. The regulatory mode of CTCFL was inferred based on the genome-

wide protein-DNA binding profile in ESC-CTCFL(DOX). Preliminary in silico 

analysis highlighted the association of the upregulated genes in ESC-CTCFL(DOX) 
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with the enrichment of CTCFL, CTCF, and Polycomb Repressor Complex 2 (PRC2) 

components, including Suppressor of zeste 12 protein (SUZ12). The enrichment of 

CTCFL, CTCF, and SUZ12 to the genome in ESC-CTCFL(DOX) were analysed by 

chromatin immunoprecipitation and sequencing (ChIP-seq). The results validated the 

intersection of CTCFL binding with CTCF and SUZ12 enrichment sites that 

dominated the promoter of developmental regulators. CTCF and CTCFL co-binding 

at CTCF&CTCFL sites could drive the activation of germline genes in the non-germ 

cells. SUZ12 enrichment was reduced at the CTCF&CTCFL sites near the promoter 

of upregulated developmental genes, inferring alteration of PRC2 repression by 

CTCFL. In summary, CTCFL may play a role in developmental regulation by 

modifying the processes in non-germ cells and regulating spermatogonia's 

differentiation. CTCF and PRC2 activity dysregulation could be the CTCFL 

regulatory mode in tumourigenesis and warrant further investigations.



1 

CHAPTER 1  
 

INTRODUCTION 

1.1 Background of Study 

Transcription factors are one of the main components in the transcriptional 

machinery regulating gene transcription into mRNA. In turn, the gene expression 

programs convey cell-fate decisions for cellular activity and development. 

Transcription factors act by binding to specific DNA motifs within gene regulatory 

elements (Stadhouders et al., 2019). The sequence-specific transcription factors may 

become the activator or repressor that regulate the general transcription factor 

complex that controls the gene transcription (Suter, 2020). Regulation of gene 

expression by transcription factors interplays with chromatin regulators to trigger the 

local alteration of chromatin structure. Transcription factors and chromatin regulators 

confer epigenomic and transcriptomic levels to govern the circuitry of the gene 

regulatory network (Wilson and Filipp, 2018).  

CCCTC-binding factor (CTCF) is a transcription factor and an architectural 

protein for chromatin organisation (Phillips and Corces, 2009; Xiang and Corces, 

2020). CTCF binds to its cognate DNA sites highly distributed across the genome in 

all cell types (Chen et al., 2012a; Maurano et al., 2015). CTCF plays diverse roles in 

transcription regulation and mediating higher-order chromatin organisation 

(Braccioli and de Wit, 2019; Herold et al., 2012; Phillips and Corces, 2009; Wu et 

al., 2020). Polycomb repressor complex (PRC2) is a chromatin regulator that 

controls the gene repression by catalysing the methylation of lysine 27 on Histone 

H3 (H3K27) (Glancy et al., 2021). Both PRC2 and CTCF are essential regulators for 

cellular development (Arzate-Mejia et al., 2018; Deevy and Bracken, 2019). They 

also cooperate in regulating the expression of imprinted genes (Li et al., 2008). Both 
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are essential for the appropriate expression of developmental genes in pluripotent 

stem cells (Dowen et al., 2014; Xu et al., 2014). CTCF and PRC2 are often mutated, 

causing dysregulation of gene expression and driving to cancer (Debaugny and Skok, 

2020; Piunti and Shilatifard, 2021). 

CTCFL (CCCTC-binding factor-like) is a zinc-finger transcription factor 

expressed selectively in male germ cells (Loukinov et al., 2002). CTCFL is the 

paralog of CTCF with restrictive expression in male germ cells (Klenova et al., 2002; 

Loukinov et al., 2002; Sleutels et al., 2012). Hence, Ctcfl is a germline gene as its 

expression is essential for spermatogenesis. CTCFL regulates the expression of 

essential germline genes, which are Gal3st1 and Prss50 (Kosaka-Suzuki et al., 2011; 

Suzuki et al., 2010). Depletion of CTCFL results in defective spermatogenesis and 

sub-sterility in mice (Sleutels et al., 2012).  

Nevertheless, CTCFL is also a cancer-testis antigen (CTA). CTA genes have 

a restrictive expression in normal testis, but its derepression in the non-testicular 

tissues is associated with malignancies (Gibbs and Whitehurst, 2018; Kalejs and 

Erenpreisa, 2005). CTCFL aberrant expression beyond the male germ cells is linked 

with the invasive phenotype of cancer (Debaugny and Skok, 2020; Debruyne et al., 

2019; Janssen et al., 2020; Klenova et al., 2002; Soltanian and Dehghani, 2018). The 

reactivation of CTAs beyond the male germ cells leads to the hijacking of cell 

development processes by supporting the survivability of cancer cells (Gordeeva, 

2018). As a transcription factor, the derepression of CTCFL in cancer may contribute 

to the alteration of transcription profile which drives the malignant genome 

reprogramming and cell transformation (Debaugny and Skok, 2020; Wang et al., 

2011). CTCFL is also a potential candidate for immunotherapeutic against cancer 

and metastasis (Loukinov, 2018).  
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1.2 Problem Statement 

CTCFL aberrant expression in the non-testicular tissues can be detrimental as 

the protein is a transcription factor and a CTA, which may drive the soma-to-

germline expression program for malignant reprogramming (Wang et al., 2011). In 

addition, CTCFL can activate the expression of other CTAs and germline genes in 

cancer, although the derepression is speculated by several studies (Debaugny and 

Skok, 2020; Hillman et al., 2019; Woloszynska-Read et al., 2011).  

A study by Pugacheva et al. (2015) discovered the regulatory mode of 

CTCFL that is common between germline and cancer cells. CTCFL can bind to the 

CTCF binding sites near the promoter of germline genes, forming a heterodimer with 

CTCF and activating the aberrant gene expression in the somatic cells. This 

abnormal regulatory action may predispose them to cancer. In parallel, induction of 

aberrant CTCFL expression by Sati et al. (2015) during mouse embryogenesis 

resulted in poor growth development. They observed that the dead pups had growth 

retardation and malformations in multiple somatic organs, particularly the eyes, 

brain, and vascular system. It is peculiar that a testis-specific transcription factor 

could cause grievous alterations in developing non-testicular tissues. This finding 

provides a clue about the dysregulations by CTCFL in somatic development by 

altering the Transforming Growth Beta (TGF-β) signalling pathway. Still, 

establishing a link between CTCFL activation of the germline programme and cancer 

is difficult due to the lack of study on its role in germ cells. 

Most transcription factors do not independently participate in gene 

transcriptional regulation (Will and Helms, 2014). Besides binding to their target 

DNA binding sites, they also interact with other regulatory proteins such as 

mediators and chromatin modifiers (Nakagawa et al., 2018). Albeit being discovered 
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for 20 years, less is known about the functional binding sites of CTCFL and its 

cooperation with other regulators. CTCFL binding overlaps a subset of CTCF target 

sites as paralogous proteins due to the similar ZF DNA binding domain (Pugacheva 

et al., 2015). The different end termini and configuration of ZF domains modulate 

the selection of DNA binding and interaction with protein partners (Bergmaier et al., 

2018; Nishana et al., 2020). Less is known about the downstream regulations, 

primarily when CTCF and CTCFL co-express in the tumour and male germ cells. 

They may interact with similar DNA sequences and other regulatory proteins but 

with unique downstream regulations.  

1.3 Rationale of Study 

Germline genes, including CTAs, involve a wide range of processes such as 

genomic maintenance, transcriptional regulation and meiosis in spermatogenesis, 

which could connect to their aberrant activation derepression outcomes with 

neoplastic behaviours (Gibbs and Whitehurst, 2018; Whitehurst, 2014). CTCFL 

participates in transcriptional regulation in tumourigenesis and spermatogenesis. The 

implications of CTCFL “out of context” expression may associate with the 

derepression of germline genes, as well as dysregulation of somatic development 

(Pugacheva et al., 2015; Sati et al., 2015). Still, there is a gap of understanding of 

how CTCFL functions. CTCFL regulation and its role in male germ cells require 

further elucidation.  

The current study was conducted to investigate CTCFL regulation in both 

expression settings for a comprehensive understanding, based on a hypothesis that 

the implications of CTCFL aberrant expression in non-germ cells could be linked 

with its functional roles in male germ cells. In addition, this study also explored the 
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mechanism of transcriptional regulation of CTCFL as a transcription factor that may 

link CTCFL function in spermatogenesis and cancer. 

1.4 Research Objectives 

The main objective of this study was to elucidate the regulatory profile of 

murine CTCFL in non-germ cells and male germ cells. The following specific 

objectives were targeted in this study. 

(1) To investigate the transcriptional effects of CTCFL aberrant expression in 

non-germ cells by introducing the ectopic CTCFL (Chapter 4). 

(2) To discover the roles of CTCFL in male germ cells by knocking down the 

endogenous Ctcfl transcript expression (Chapter 5). 

(3) To infer the regulatory mode of CTCFL as a transcription factor based on the 

genome-wide protein-DNA binding profile (Chapter 6). 

 

The first and second objectives focussed on the transcriptional regulation of 

CTCFL in the non-germ cells and male germ cells, respectively. For the first 

objective, this work utilised the recombinant construct, 3×FLAG-CTCFL, for the 

ectopic CTCFL expression in the non-germ cells. Ectopic expression is the 

expression of a gene in a cell type, developmental stage, or condition where it should 

not be expressed (Prelich, 2012). The ectopic CTCFL expression was conducted in 

pluripotent embryonic stem cells (ESCs) and JK1 testicular stromal cell lines, in 

which the protein is repressed. Tumour or cancer cell lines were opted out of this 

study as the altered genetic and epigenetic events in are confounding factors may 

conceal the direct effects of CTCFL aberrant expression. The ectopic CTCFL was 

tagged FLAG-tag epitope to allow protein probing by anti-FLAG monoclonal 

antibody for protein expression analysis and chromatin immunoprecipitation. The 
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implications of CTCFL aberrant expression in the ESCs and JK1 cells was analysed 

by microarray to measure the global gene expression changes. 

ESCs are ideal for investigating mammalian transcriptional regulation (Rao, 

2012). An exhaustive range of datasets for ESCs allows simultaneous understanding 

and construction of hypotheses behind the multiple layers of gene expression 

regulation in the cell system. Furthermore, as ESCs can differentiate into all cell 

lineages (the germ layers and germline cells), the cells are heavily utilised for 

investigating developmental process and lineage specification. Several studies have 

used ESCs or pluripotent stem cells for investigating the roles of CTCFL (Bergmaier 

et al., 2018; Nishana et al., 2020; Sati et al., 2015; Sleutels et al., 2012). Meanwhile, 

JK1 cells are immortalised cells originating from CD34+ enriched testicular stromal 

cells, particularly the peritubular myoid cells (Kim et al., 2008; Seandel et al., 2007). 

This stromal cell line can be utilised as feeder cells that support the expansion of 

adult spermatogonial stem cells (Kim et al., 2008). Thus, JK1 cells may resemble the 

testicular somatic cell type, closely connected with the growth of male germ cells.  

Ctcfl expression knockdown was conducted in male germline stem cells 

(GSCs) for the second objective. GSCs are the in vitro cell model representing 

undifferentiated spermatogonial stem cells (SSCs). GSCs were established from the 

SSCs of neonatal mice and continuously proliferated as undifferentiated 

spermatogonia (Kanatsu-Shinohara et al., 2003a; Kanatsu-Shinohara et al., 2003b). 

CTCFL has the most outstanding expression level in mitotic spermatogonia 

compared to other germ cell stages (Rivero-Hinojosa et al., 2021). Hence, GSCs 

express the endogenous CTCFL and can analyse the physiological role of this 

transcription factor in male germ cells. The knockdown approach or gene silencing 

was chosen to reduce the gene expression aberrantly and elucidate the direct roles of 
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CTCFL in the cells. The biggest concern of using an RNAi-based system for 

knockdown studies is the off-target effect. This study used an improved RNAi 

system, the Dicer-substrate short interfering RNAs (DsiRNA), to target the Ctcfl at 

specific sites. DsiRNA has improved performance than the canonical small 

interfering RNA (siRNA) in the RNAi pathway by minimising the off-target effect 

(Snead et al., 2013). RNA sequencing (RNA-seq) analysed the transcriptome profile 

of Ctcfl knockdown GSCs, and data analysis computed the differential expressed 

genes. 

Lastly, the genome-wide CTCFL enrichment was investigated to infer the 

regulatory mode or the mechanism of CTCFL regulation. ChIP-seq profiled the 

CTCFL binding sites, and further analysis retrieved the possible direct targets and 

associated downstream biological processes. Genomic enrichment of its paralog, 

CTCF and a core subunit of PRC2, SUZ12, were also assessed. An integrative 

analysis was conducted to assess the association between the transcriptional 

regulation and the annotated protein-DNA binding profile. The analysis revealed the 

possible mechanism of CTCFL-dependent gene regulation in non-germ cells and 

germ cells. Figure 1.1 illustrates the research design in this study based on the three 

specific objectives. 
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Figure 1.1 The overall research design conducted in this study was based on 

three specific objectives. 
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1.5 Thesis Organisation 

 

The thesis is organised into chapters that cover the three specific objectives. 

Chapter 2 describes the biological background of transcription factors and chromatin 

regulators by introducing CTCF and PRC2 as the respective example. The literature 

review highlights the CTCFL as the protein of interest in this study. An overview of 

genome-wide analysis methods, including microarray, RNA-seq and ChIP-seq, was 

described later in this chapter. 

Chapter 3 provides the essential research methods used to achieve the 

objectives of this study. The thesis highlighted the detailed protocol for the 

mammalian cell culture, quantitative polymerase chain reaction (qPCR), protein 

expression analysis, microarray and library preparation for RNA-seq and ChIP-seq.  

Chapters 4, 5 and 6 present the experiments and findings for the three specific 

objectives, respectively. In Chapter 4, the aim was to investigate the implications of 

CTCFL aberrant expression in ESCs and JK1 cells. Transcriptomic changes were 

analysed using microarray to discover the differentially expressed (DE) genes. This 

chapter highlights the effects of CTCFL expression toward the potential 

dysregulation of cell development in the stem cells and somatic cells. 

In Chapter 5, the aim was to elucidate the roles of CTCFL in GSCs. The 

expression of Ctcfl in GSCs was aberrantly reduced via gene knockdown followed 

by RNA-seq. Transcriptomic analysis exhibited alteration of gene expression, which 

involved cellular processes such as cell death and signalling pathways. This chapter 

suggests the potential role of CTCFL in the male germ cells during the early stage of 

spermatogenesis. 
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In Chapter 6, the aim was to investigate the regulatory mode of CTCFL based 

on its genome-wide binding profile. The enrichment of CTCFL and CTCF and a core 

subunit of PRC2; SUZ12 were characterised by ChIP-seq. CTCFL binding was 

predominant at the gene promoters that CTCF and SUZ12 occupied. Furthermore, 

the analysis discovered the probable alteration of the roles of CTCF and PRC2 in 

response to CTCFL enrichment to the overlapping binding sites.  

Finally, Chapter 7 concludes the thesis by summarising the findings of this 

study and mapping out possible areas for future research. 
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CHAPTER 2  
 

LITERATURE REVIEW                                                                                                           

2.1 An Overview of Transcription Factors and Histone Modifications 

2.1.1 Chromatin organisation 

DNA stores the hereditary genetic information of an organism. DNA is a two-

stranded helix in which each strand consists of four different nucleotides called 

adenine (A), guanine (G), cytosine (C) and thymine (T). DNA exists within the 

nucleus and would stretch up to two meters for human DNA. DNA is folded in a 

highly compacted structure known as chromatin in eukaryotic cells, including nucleic 

acids and histone proteins. The protein-DNA complex is called the nucleosomes in 

which 147 base pairs (bp) of DNA is wrapped approximately 1.65 to 1.7 times 

around a core protein octamer composed of two units of each of the histone proteins, 

H2A, H2B, H3, and H4 (Luger and Hansen, 2005; Luger et al., 1997; Richmond and 

Davey, 2003).  

Chromatin structure divides into three hierarchical states based on 

compaction: primary, secondary, and tertiary (Figure 2.1). The primary state consists 

of core chromatin that appears as beads-on-a-string, forming an eleven nm chromatin 

fibre. Next, a range of 20 to 50 bp of linker DNA associated with histone H1 

separates the nucleosomes (Oudet et al., 1975). The secondary state involves 

condensing the eleven nm fibre further to form a 30 nm chromatin fibre through 

nucleosomal interactions, but the formation remains controversial (Felsenfeld and 

McGhee, 1986; Maeshima et al., 2010). Finally, in the tertiary level of compaction, 

the chromatin is folded, resulting in interchromosomal and intrachromosomal 

interactions of the 30 and 11 nm fibres that form the higher-order structures (Bian 

and Belmont, 2012; Rattner and Hamkalo, 1978).  
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Figure 2.1 Levels of chromatin organisation. DNA and its associated proteins are 

called chromatin. The DNA is tightly wrapped around a histone octamer to form the 

nucleosome. These nucleosomes are separated by linker histones and compacted in a 

30 nm chromatin fibre. Chromatin is further compacted into higher-order structures. 

The figure was adapted from Botchkarev et al. (2012) 
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Chromatin is functionally divided into two general states, euchromatin and 

heterochromatin, distributed throughout the genome. Euchromatin is less condensed, 

gene-rich, and often associated with active gene expression (Dillon and Festenstein, 

2002). Heterochromatin is highly condensed, generally gene-poor and lacks much 

active gene expression. The transcriptionally inactive chromatin can be in two 

varieties: permanently silenced or constitutive heterochromatin and facultative 

heterochromatin. Constitutive chromatin localises extensively near centromeres, 

telomeres, and gene desert regions. Facultative chromatin is the condensed 

euchromatic region where the compaction is developmentally regulated (Gilbert et 

al., 2003). The convoluted chromatin changes through histone modifications and 

accessibility to regulatory proteins are linked with the coordinated regulation of gene 

expression for cellular functions such as transcription, DNA replication and DNA 

repair (Blakey and Litt, 2015; Parmar and Padinhateeri, 2020). 

2.1.2 Transcription factors 

Gene transcriptional regulation is central to tissue‑specific gene expression 

and stimulus-mediated gene activity in development and cellular differentiation 

(Holmberg and Perlmann, 2012; Hu and Gallo, 2010; Molina et al., 2013; Sonawane 

et al., 2017). Transcription factors are regulatory proteins bound to short specific 

DNA sequences or motifs and form a protein complex system to control the gene 

transcription (Lambert et al., 2018; Latchman, 2010). Hence, transcription factors 

cooperate with DNA and coregulators, determining the transcription factor function 

and transcriptional activity (Cheatle Jarvela and Hinman, 2015). The protein-DNA 

and protein-protein interactions are the key parameters determining the three 

functional features of transcription factors: local chromatin access, self-sustained 
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remodelling, and sporadic occupancy/selective gene activation (Francois et al., 

2020). 

Specific transcription factor binding motif localises to cis-regulatory elements 

that include the promoters, enhancers (or silencers) and insulators for precise control 

of gene expression (Inukai et al., 2017). The promoter is a stretch of upstream DNA 

sequence where transcription is initiated, and this region includes the TSS to which 

the basal transcriptional machinery is enriched. The promoters can be tissue-specific 

or broadly scattered in many tissues. The tissue-specific promoters are primarily 

governed by transcriptional control, while the broad class is more dependent on the 

chromatin accessibility and epigenetic marks (Lenhard et al., 2012; Mora et al., 

2016). 

The distal cis-regulatory elements such as enhancers, silencers and insulators 

are localised far from the TSS. Enhancers and silencers are short motifs containing 

binding sites for transcription factors, but they have the opposite regulation (Kolovos 

et al., 2012). The enhancers function in amplifying transcriptional regulation while 

the silencers suppress the gene expression. These elements possess a bifunctional 

role (enhancers or silencers) depending on the specific enrichment of transcription 

factors and epigenetic marks (Bandara et al., 2021; Gisselbrecht et al., 2020). 

Meanwhile, insulators are boundary elements that demarcate the active domains and 

restrict the promoters' promiscuous interaction between enhancers or silencers 

(Gaszner and Felsenfeld, 2006). The interactions between the promoters and the 

distal regulatory elements determine the transcriptional activity in housekeeping and 

cell or tissue-specific regulations for development and disease (Ko et al., 2017; 

Zabidi and Stark, 2016). 
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The transcription factor binding specificity and functional features are 

modulated by multiple simultaneous protein-protein interactions (PPIs) with other 

transcription factors and transcriptional coregulators (Ahsendorf et al., 2017; Inukai 

et al., 2017). Most transcription factors operate as homo- or heterodimers and exhibit 

cooperative binding to execute multiple regulatory roles (Funnell and Crossley, 

2012; Morgunova and Taipale, 2017). Transcriptional coregulators are also required 

to activate or suppress chromatin-dependent transcriptional signalling after 

transcription factors bind to cis-regulatory DNA sequences. Transcriptional 

coregulators (coactivators and corepressors) are diverse functional classes of 

chromatin-associated proteins including, but not limited to, chromatin modifiers 

(writers and erasers), chromatin remodellers, chromatin readers, and other 

scaffolding proteins (Bishop et al., 2019). Transcription factors and coregulators 

assemble diverse regulatory complexes at the cis-regulatory elements. Dysregulation 

of these assemblies has severe implications for cell homeostasis and often leads to 

disease development. 

2.1.3 Histone modifications 

Chromatin regulators conduct the dynamic modification of chromatin 

architecture known as chromatin remodelling for the accessibility of transcription 

machinery to the regulatory elements (Morgan and Shilatifard, 2020). Remodelling 

occurs via covalent histone modifications by enzymes such as histone 

acetyltransferases (HATs), histone deacetyltransferases (HDACs) and histone 

methyltransferases (HMTs) (Wang et al., 2007). Histone modifications include 

acetylation, methylation, and ubiquitination. Other modifications such as 

crotonylation, 5-hydroxylation, sumoylation, ADP-ribosylation, and glycosylation 

also may occur at the histone polypeptides and their residues (Rothbart and Strahl, 
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2014). Each modification plays a crucial role in mediating the functional chromatin 

states for the proper organisation and efficient execution of nuclear processes 

(Adkins et al., 2013).  

The best-studied modifications are methylated and acetylated lysine residues 

on histone H3. They are deposited on particular areas of the genome and associated 

with distinct states of gene transcription. Histone acetylation is generally correlated 

with active transcription, histone methylation associates with a variety of 

transcriptional states, depending on the particular lysine position that is methylated. 

(Gates et al., 2017). For example, histone-3-lysine-4-mono-, di- and trimethylation 

(H3K4me1/2/3), histone-3-lysine-36 mono- and tri-methylation (H3K36me1/3), 

histone-3-lysine-27-acetylation (H3K27ac) and histone-3-lysine-9-acetylation 

(H3K9ac) are located in actively transcribed regions and accumulated near the 

euchromatin. On the other hand, the heterochromatic regions are often marked by 

histone-3-lysine 9 (H3K9), histone-3-lysine-27 (H3K27) and histone-4-lysine-20 

methylation (H4K20me) and lack of histone acetylation. Table 2.1 lists the genomic 

localisation of notable histone H3 modifications associated with transcription states 

of chromatin (Gates et al., 2017; Zhao and Garcia, 2015). Another transcription state 

is the poised state of chromatin by the bivalency of histone marks. Bivalent 

chromatin is the genomic feature co-occupied by active H3K4me3 and repressive 

H3K27me3, mainly at the promoters (Bernstein et al., 2006; Blanco et al., 2020). 

Bivalency regulates gene expression for cell fate and tissue lineage commitment in 

development (Harikumar and Meshorer, 2015; Jeon and Tucker-Kellogg, 2020). 
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Table 2.1 Transcriptional role and localisation of histone modifications (Gates 

et al., 2017; Zhao and Garcia, 2015). 

Histone modification Transcriptional role Location of enrichment 

H3K4me1 Activation Enhancers 

H3K4me3 Activation Promoters 

H3K27ac Activation Enhancers, promoters 

H3K9Ac Activation Enhancers, promoters 

H3K36me3 Activation Gene bodies 

H3K79me3 Activation Gene bodies 

H3K27me3 Repression Promoters, gene-rich regions 

H3K9me3 Repression  Satellite repeats, telomeres, 

pericentromeres 
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Histone-modifying enzymes are chromatin regulators that mediate histone 

modifications that frequently operate as large multiprotein complexes (DesJarlais and 

Tummino, 2016). The histone-modifying enzymes are grouped into writers, erasers, 

and readers (Biswas and Rao, 2018; Hojfeldt et al., 2013). The ‘writers’ are enzymes 

that set the post-translational modification to the residues on histones. The covalently 

modified histone tails are recognised via specific domains of a group of proteins 

referred to as ‘readers’. The enzymes that remove the post‑translational 

modifications are called ‘erasers’. These enzymes and protein domains modify and 

read the specific amino acids on the histones and form the basis of the dynamic 

epigenetic regulation of gene expression (Figure 2.2). 

Among the writers are the Polycomb group (PcG) and Trithorax group 

(TrxG) proteins which play a fundamental role in regulating histone modifications 

connected with gene repression and activation, respectively (Blanco et al., 2020; 

Kuroda et al., 2020). The TrxG complexes display cooperativity with PcG 

complexes through their opposing roles in regulating gene expression and 

development (Kadoch et al., 2016; Kuroda et al., 2020). PRC2 is a PcG complex that 

maintains the repression of gene expression by depositing H3K27me3 at the gene 

regulatory elements (Gaydos et al., 2014). Meanwhile, the TrxG complex deposits 

active H3K4me3 to oppose the PcG silencing (Tie et al., 2014). Both complexes are 

also responsible for establishing the bivalent domains for poised chromatin and may 

act as the master switch that coordinates the transcriptional programming (Kuroda et 

al., 2020). 
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Figure 2.2 The regulators of histone modifications. Histone post-translational 

modifications are added or removed by specific enzymes (‘writers’ and ‘erasers’, 

respectively) and recognised by their binding proteins (‘readers’). The image was 

adapted from Cao and Yan (2020). 
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2.2 Transcription Factor: CCCTC-binding Factor (CTCF) 

2.2.1 Background 

CTCF is a highly conserved zinc-finger DNA-binding protein initially 

discovered as a transcriptional repressor of c-myc (Filippova et al., 1996; Klenova et 

al., 1993). CTCF plays multiple roles in transcriptional activation and repression, 

regulation of imprinted loci and X chromosome inactivation (XCI) and organisation 

of higher-order chromatin by chromosomal looping and nuclear tethering (Braccioli 

and de Wit, 2019; Herold et al., 2012; Phillips and Corces, 2009; Wu et al., 2020). 

CTCF expresses in all stages of development across most metazoan tissues (Phillips 

and Corces, 2009). Notably, CTCF regulates the lineage specification during 

cell/tissue-type specific gene expression by controlling the transcriptional regulation 

and chromatin organisation (Arzate-Mejia et al., 2018; Braccioli and de Wit, 2019).  

CTCF comprises an N-terminal domain, a central DNA binding domain with 

11 C2H2 ZFs and a C-terminal domain (Klenova et al., 1993). The plethora of CTCF 

roles is contributed by the three domains that determine the binding site preference 

and regulation of chromosome organisation (Nishana et al., 2020; Ong and Corces, 

2014; Pugacheva et al., 2020). The dynamic combination of ZFs binds to different 

DNA sequences and interacts with various protein factors (Hashimoto et al., 2017; 

Nakahashi et al., 2013). In addition, CTCF may interact with other proteins, RNA 

and susceptible to post-translational modifications that could affect interactions with 

DNA or other proteins, as reviewed elsewhere (Arzate-Mejia et al., 2018; Braccioli 

and de Wit, 2019; Wu et al., 2020; Zlatanova and Caiafa, 2009).  

2.2.2 CTCF target sites (CTSes) 

CTCF is a sequence-specific transcription factor that regulates 3D genome 

organisation and critical aspects of gene expression such as transcription activation 
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and repression, RNA splicing, and enhancer/promoter insulation. (Ong and Corces, 

2014). CTCF target sites (CTSes) are highly conserved and widely spread across the 

mammalian genome. A vast number of more than 80,000 CTSes may be found in the 

mammalian genome (Chen et al., 2012a; Maurano et al., 2015). CTCF binding is 

predominant to the distal regions and gene bodies than the TSS (Handoko et al., 

2011; Holwerda and de Laat, 2013). Still, CTCF enrichment near TSS is crucial for 

forming transcription or enhancer hubs through long-distance chromatin interactions 

that bridge distal enhancers with target promoters (Guo et al., 2012; Kubo et al., 

2021). 

CTCF forms a complex with cohesin, a key component of chromatin and 

binds to the DNA to establish the DNA loop domains (Hansen et al., 2017; Lee and 

Iyer, 2012) (Figure 2.3A). The loops facilitate the interactions between promoter and 

enhancer elements. A loop domain, known as topologically associated domains 

(TAD), is formed by multiple loops of intervening DNA between two convergent 

CTCF sites. TADs form the basis of chromatin regulatory segmentation that 

demarcate the gene regulatory elements (Merkenschlager and Nora, 2016; Xiang and 

Corces, 2020).  

CTCF exhibits dynamic binding to the cognate genomic sites, recognised by 

diverse combinations of its 11 ZFs as a “multivalent protein” (Xu et al., 2018a). The 

systematic mapping of CTCF ZFs to specific chromatin sites enables CTCF to 

execute diverse functions in different contexts and cell types. CTCF core motif 

consists of about 20 bp, in which the CTCF ZF domain employs ZFs three to seven 

to bind to the 15 bp consensus sequence. Meanwhile, the ZFs nine to eleven 

modulate CTCF-binding stability by interacting with the second CTCF motif located 

at 21 to 22 bp upstream to the core motif (Guo et al., 2015; Hashimoto et al., 2017; 
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Nakahashi et al., 2013; Persikov and Singh, 2014; Xie et al., 2007; Xu et al., 2018a). 

The core sequences can be partial palindromic, and the directionality is determined 

by the second motif (Guo et al., 2015; Wu et al., 2020; Xie et al., 2007). The CTCF 

binding motifs are displayed in Figure 2.3B, adapted from an extensive review by 

Wu et al. (2020).  

CTSes elements can exist as single non-clustered and clustered CTCF sites. 

CTCF clustered sites represent a group of at least two CTSes separated by less than 

ten kb on the genome. The vast majority of clustered CTSes colocalise with cohesin 

and enrich near transcription start sites to stabilise the chromatin contacts 

(Kentepozidou et al., 2020). Meanwhile, the single CTSes function as the insulators 

that restrict the interactions between promoters and distal enhancers (Jia et al., 2020). 
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A.

 
B. 

 

Figure 2.3 The formation of chromatin loops and CTCF binding motifs. A. 

CTCF and cohesin generate chromatin loops through loop extrusion and form TAD. 

The image was adapted from Pongubala and Murre (2021). B. The combination of 

CTCF ZFs binds to the core and secondary binding motifs. The image was adapted 

from Wu et al. (2020). 
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2.2.3 CTCF in the development and cancer 

The CTCF-mediated interactions are also closely related to developmental 

gene regulation (Allahyar et al., 2018; Merkenschlager and Nora, 2016). CTCF is 

required for embryonic development since CTCF-null embryos cannot implant 

(Moore et al., 2012). CTCF mediates chromatin looping in the pluripotent genome 

and is essential to determine the stem cells' fate (Rao et al., 2014). As an 

architectural protein, CTCF controls the expression of pluripotency genes and 

lineage-specifying genes by organising the chromatin state (Balakrishnan et al., 

2012; Dowen et al., 2014; Handoko et al., 2011; Nora et al., 2017; Pekowska et al., 

2018). The pluripotency genes such as Nanog and Oct4 are localised within the 

CTCF-anchored super-enhancer domain. The domains insulate the super-enhancers 

from interacting with lineage-specific master transcription factors and maintain the 

stem cell state (Dowen et al., 2014; Justice et al., 2020; Whyte et al., 2013). 

CTCF contributes to the lineage specification and development in multiple 

tissues, including brain, cardiovascular, limb, muscle, retina, immune cells, and 

gametes (Arzate-Mejia et al., 2018). The chromatin has a flexible structure with 

weak organisation and high accessibility in the pluripotent stem cells (Schlesinger 

and Meshorer, 2019). Gain and enhancement of chromatin loops, especially at CTCF 

binding sites, mark the exit from pluripotency to differentiation (Pekowska et al., 

2018). The chromatin becomes more compartmentalised as the developmental 

program activates and progresses to more lineage-specific regulation (Zheng and 

Xie, 2019).  

CTCF binding at the promoters mediates the promoter-promoter and 

promoter-enhancer interactions for active gene expression during cellular 

differentiation (Kubo et al., 2021). An architectural protein, YY1 interacts with 
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