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MULTI-AGENT REINFORCEMENT LEARNING FOR SWARM ROBOTS 

FORMATION 

 

ABSTRACT 

 

The project discussed the Multi-Agent Reinforcement Learning (MARL) with an 

idea to the proposed mobile robot which able to follow the line and avoid the obstacle in 

a given environment. The reinforcement learning algorithm offers one of the most 

general frameworks in learning subjects to address some of the control issues in a multi-

agent system. The mobile robot is an independent agent that can use sensors, actuators, 

and control techniques to navigate intelligently based on the specific task required. 

Specifically, reinforcement learning is employed for developing the training process for 

the mobile robot to reach the given task as it needs to learn by itself to follow the black 

line and avoid the obstacle in a given environment based on this project proposed. The 

reinforcement learning approach presents the algorithm for MARL in a cooperative 

problem to improve control performance. Experimental and simulation will be carried 

out to validate the results of the multi-agent control performance. Hence, it should be 

easy to observe if the control performance shows improvement after learning and can 

achieve the project proposed. The experiment will therefore indicate the results of the 

simulation and apply it to the real-time environment as proposed by the project.  
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PEMBELAJARAN PENGUKUHAN PELBAGAI EJEN UNTUK 

PEMBENTUKAN ROBOT SWARM 

 

ABSTRAK 

Projek ini membincangkan Pembelajaran Pengukuhan Pelbagai Ejen (MARL) 

dengan idea kepada robot mudah alih yang dicadangkan yang dapat mengikuti garisan 

dan mengelakkan halangan dalam persekitaran tertentu. Algoritma pembelajaran 

tetulang menawarkan salah satu rangka kerja yang paling umum dalam subjek 

pembelajaran untuk menangani beberapa isu kawalan dalam sistem pelbagai ejen. Robot 

mudah alih adalah ejen bebas yang boleh menggunakan sensor, pengaktif, dan teknik 

kawalan untuk menavigasi dengan bijak berdasarkan tugas tertentu yang diperlukan. 

Khususnya, pembelajaran tetulang digunakan untuk membangunkan proses latihan untuk 

robot mudah alih untuk mencapai tugas yang diberikan kerana ia perlu belajar dengan 

sendirinya untuk mengikuti garis hitam dan mengelakkan halangan dalam persekitaran 

tertentu berdasarkan projek ini dicadangkan. Pendekatan pembelajaran tetulang 

membentangkan algoritma untuk MARL dalam masalah koperasi untuk meningkatkan 

prestasi kawalan. Eksperimen dan simulasi akan dijalankan untuk mengesahkan 

keputusan prestasi kawalan pelbagai ejen. Justeru, perlu mudah untuk dipatuhi sekiranya 

prestasi kawalan menunjukkan peningkatan selepas pembelajaran dan dapat mencapai 

projek yang dicadangkan. Oleh itu, eksperimen ini akan menunjukkan hasil simulasi dan 

menggunakannya kepada persekitaran masa nyata seperti yang dicadangkan oleh projek. 

 

 



VII 
 

TABLE OF CONTENTS 

 

ENDORSEMENT I 

ENDORSEMENT II 

DECLARATION III 

ACKNOWLEDGEMENT IV 

ABSTRACT V 

CHAPTER 1 : INTRODUCTION 1 

1.1 Context 1 

1.2 Reinforcement Learning 1 

1.3 Multi-Agent Reinforcement Learning 2 

1.3 Problem Statement 4 

1.4 Objectives 5 

1.5 Thesis Outline 6 

CHAPTER 2: LITERATURE REVIEW 7 

2.1 Reinforcement Learning 7 

2.2  Reinforcement Learning Algorithm Concept Structure 8 

2.2.1 Mathematical Foundation 8 

2.2.2 Estimating The Optimal Policy 12 

2.3 Swarm Robotic Behaviors 13 

2.3.1 Spatially Organizing Behaviours 14 

2.3.2 Navigational Behaviour 15 

2.3.3 Collective Decision Making 15 

2.4 Challenge in Multi-Agent Reinforcement Learning (MARL) 16 

2.4.1 The Curse of Spatiality 16 

2.4.1 The Exploration-Exploitation Trade-Off 16 



VIII 
 

2.4.3 Reward Shaping 17 

CHAPTER 3: METHODOLOGY 18 

3.1 Flow Chart 18 

3.1.1 Line Follower Flow Chart 18 

3.1.2 Obstacle Avoidance Flow Chart 20 

3.2 Reinforcement Learning Based Approach 21 

3.2.1 Formulate Learning Task 22 

3.2.2 Adding Perception 23 

3.2.3  Environment Design and Modelling 24 

3.3 Kinematic Motion and Characteristics of The Mobile Robot Model 29 

3.4 Line Follower Mobile Robot Working Concept 31 

3.5 Hardware Component Selection 35 

3.5.1 Arduino 35 

3.5.2 Motor Driver 36 

3.5.3 Sensors 37 

3.5.4 Car Chasis 40 

3.5.5 Jumper Wire 41 

3.5.6 Batteries 42 

3.5 Sofware Implementation (Programming The Robot) 44 

CHAPTER 4: RESULTS AND DISCUSSION 46 

4.1 Simulation Environment of RL Multi-Agent Swarm Robot 46 

4.1.1 Simulation of Map Environment 47 

4.1.2 Simulation of the leader-follower formation 47 

4.1.3 Simulation of multi-agent leader-followers formation control 50 

4.2 Real-Time Environment of RL Multi-Agent Swarm Robot 51 

4.2.1 Hardware Setup 51 

4.2.2 Experiment Conducted 52 



IX 
 

4.3 The Problem and Issues 59 

CHAPTER 5: CONCLUSION AND SUGGESTIONS 62 

5.1 Conclusion 62 

5.2 Future Work 63 

REFERENCES 66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



X 
 

LIST OF FIGURE 

 

Figure 1.1: Reinforcement learning decision-making diagram for robot control 4 

Figure 2.1: Agent-environment interface 9 

Figure 3.1: Line follower flow chart 19 

Figure 3.2: Obstacles avoidance flow chart 20 

Figure 3.3: The ideal behavior of the cumulative reward 25 

Figure 3.4: The ideal behavior of the length of the episodes 26 

Figure 3.5: Environment setting 27 

Figure 3.6: The whole process for the experimental conduct 28 

Figure 3.7: Kinematics model of the mobile robot 29 

Figure 3.8: Line follower mobile robot working concept 34 

Figure 3.9: Arduino uno 36 

Figure 3.10: Motor driver module l298n 37 

Figure 3.11: Infrared proximity sensor 38 

Figure 3.12: Ultrasonic sensor 39 

Figure 3.13: Bluetooth module hc-05 40 

Figure 3.14: Car chassis 41 

Figure 3.15: Jumper wires 41 

Figure 3.16: Batteries 42 

Figure 3.17: The assembly schematic of the line follower and obstacle avoidance 

mobile robot 43 

Figure 4.1: Simulation of the given environment 47 

Figure 4.2: Leader-follower simulation behavior without the present of obstacles 48 

Figure 4.3: Leader-follower simulation behavior shape with the present of obstacles 49 



XI 
 

Figure 4.4: The simulation of multi-agent mobile robot in the environment setup 50 

Figure 4.5: The mobile robot final design 52 

Figure 4.6: Experiment setup 53 

Figure 4.7: A-line following task given to the one agent of mobile robot 53 

Figure 4.8: The codes adjusting to calibrate the movement of the mobile robot 55 

Figure 4.9: An obstacle avoidance task given to one agent of a mobile robot. 55 

Figure 4.10: The test for a leader-follower configuration to transmitting and receiving 

the data. 57 

Figure 4.11: The mobile robot is controlled by using a mobile phone via a bluetooth 

module sensor. 58 

Figure 4.12: The experiment of the multi-agent mobile robot is conducted to perform 

the given task. 59 

 

 

 

 

 

 

 

 

 

 

 

 

 



XII 
 

LIST OF TABLES 

 

Table 3.1: Car chasis components for each mobile robot 40 

Table 3.2: The quantity of component used to  conduct experiment 43 

Table 4.1: The movement of the robot motor direction 54 

Table 4.2: The distance from the sensors and the obstacles selection 56 

 

 

 

 

 

 

 

 



1 
 

CHAPTER 1 

INTRODUCTION 

 

 This chapter briefly discussed an introduction to multi-agent reinforcement 

learning for swarm robots. Particularly, the basic principle and benefit behind the idea of 

the swarm robot will be introduced. Then, the concept and characteristics, the objectives, 

and the arguments exposed in this thesis will be briefly presented. Finally, the outline of 

the thesis will be given. 

 

1.1 Context 

 The context of this thesis is the field of swarm robot systems with an approach of 

reinforcement learning. This field gives an exciting basic platform for researchers to get 

involved and improved with the new ideas to scrutinize their minds in analytical and 

heuristic approaches. The idea of creating groups of mobile robots that able to collaborate 

and perform the predefined task given is starting in the early 1980s. The basic principles 

behind this new approach to robotics cooperation, coordination, and other interactions 

among themselves were directly inspired by the observation of natural systems. 

 

1.2 Reinforcement Learning 

 Reinforcement learning (RL) is a machine learning technique where an agent can 

learn after making mistakes by interacting with the environment and gain experiences 

through trial and error. Moreover, the RL objective is not to cluster or mark the data, but 

to find the best sequence of activities that will deliver the optimal long-term result. By 

allowing agents to explore, communicate with and learn from the world, RL will solve 
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the problem easily. Thus, the more agent interacts with, the easier the problem can be 

solved. Besides, as an example to describe the process of RL, assumes that the world can 

be described by a set of state S, and that agent can take one from a finite number of 

actions A. The time is divided into discrete steps, and for each step, the agent observes 

the state of the world, St, and chooses an action. Finally, after taking the action, the reward 

function (RF) gives a reward to the agent. 

Particularly, RL techniques have recently become common for solving multi-

agent communication issues (Cui, Liu and Nallanathan, 2020). In RL, tasks are defined 

indirectly via a cost function, which is generally simpler than directly defining a task 

model or finding an algorithm for the controller (Hüttenrauch, Šošić and Neumann, 

2018). As the cost function is defined, the objective of the RL algorithm is to find a 

strategy that minimizes the expected cost (Cao et al., no date). However, the 

implementation of reinforcement learning within the swarm setting is difficult due to the 

large number of agents that need to be considered (Lillicrap et al., 2016). Compared to 

single-agent learning, where an agent is faced only with observations of its state (Panait 

and Luke, no date), each agent in a swarm will make observations of many other agents 

populating the environment and thus need to process a whole collection of information 

that might theoretically differ in size. 

 

1.3 Multi-Agent Reinforcement Learning 

 The MARL field is expanding rapidly, and over the last few years, a wide range 

of methods have been proposed to harness its benefits and overcome its challenges. These 

methods combine advances in single-agent RL, game theory, and more broadly, direct 

policy search techniques. At each phase, the agent is rewarded or punished by interacting 
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with the environment (Prateek Bajaj, no date). The policy is increasingly refined by 

experimentation and preparation. Due to the rapid growth of deep learning in recent 

years, RL has acquired the ability to solve higher-dimensional and higher-difficulty 

problems (Sajad Mousavi, Schukat and Howley, 2018). 

However, applying reinforcement learning in the swarm environment is challenging 

due to the large number of agents that need to be considered to have already been 

mentioned (Hüttenrauch, Šošić and Neumann, 2018). Consequently, two key problems 

can be established in the swarm setting: (1) high status and observation dimensionality, 

induced by large device sizes and (2) changing the size of the available information 

collection, either due to addition or removal of agents, or because the number of 

neighbors observed changes over time (Sajad Mousavi, Schukat and Howley, 2018). 

Most of the existing multi-agent reinforcement learning methods either concatenate the 

information obtained from different agents or encode it in a multi-channel image where 

the image channels contain different features depending on the agent's local view 

(Hüttenrauch, Šošić and Neumann, 2018). Both forms of techniques, however, have had 

significant disadvantages. 

Instead of finding the solution to the problem, RL measures the performance of 

the robot. RL assumes that the robot motion describes by a set of states, S and the RL 

multi-agent can take one of the fixed actions, A. According to the Bellman principles of 

optimality, being in a state taking an action with the maximum optimal value will lead to 

the optimal policy that maximizing the return reward, R (Sniedovich, 1978). The RL 

agent can reach the state optimal value through the sequence of numerical updates based 

on the interaction. Accordingly, the agent updates the adopted control policy by taking 

the action that transfers the robot to state the maximum optimal value. The decision-

making of RL control is shown in Figure 1.1 (Liu et al., 2021). 
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Figure 1.1: Reinforcement Learning Decision-Making Diagram For Robot Control 

 

1.3 Problem Statement 

 The issues are to conduct the real-time control for the mobile robot by using 

software such as MATLAB and Arduino IDE. This real-time control application for a 

mobile robot is to ensure that the multi-agent robot follows the line and avoids obstacles. 

The track for the line to experiment can be straight or curved while the obstacle will be 

randomly placed. Since there will be more than one robot involved in this project, the 

robot can be placed randomly in the experiment track at a setting environment or can be 

set at one constant place. 

The most important task for the project is to train the mobile robot a lot so that the 

robot can improve themselves by correcting their own mistake. The training task needs 

to conduct several times to make sure that the mobile robots can keep on moving along 

the line also can avoid any obstacle in front of them. The possible solution to train the 

robot is by leveraging reinforcement learning. Reinforcement learning is particularly 
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well-situated for using on the mobile robot. It is a machine learning technique where an 

agent is trying to find an optimal control policy for a certain task by continuously 

interacting with the environment and improving the policy with the gained experience. 

 

1.4 Objectives 

 This project contributed to the investigation for multi-agent swarm robot 

formation control in a predetermined environment. This project consists of two main 

objectives such as: 

1. To study the algorithm of the multi-agent system that moving to the target point 

with and without the existing of the obstacles by applying the reinforcement 

learning. 

2. To investigate the behaviour of multi-agent mobile robot to detect the line and 

avoiding the obstacles in the given environment.  
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1.5 Thesis Outline 

This thesis is based on the main steps taken for the real-time control system in a multi-

agent mobile robot. The outline of the thesis is structure as follows: 

 Chapter 2 will contain two literature reviews. The review is an analysis of 

primary collective behaviors in swarm robotic followed by the review of successful 

mobile robots. Chapter 3 will describe the approaches employed and the methodology 

of the whole process of this project. The design and implementation of the simulation 

and real-life environment along with the reinforcement learning algorithm will be 

discussed in detail in this chapter. Next, chapter 4 will contain the experimental results 

from the implementation of the RL algorithm on a mobile robot using software for real-

life environment trials. The corresponding experimental results will be presented with a 

general discussion at the end. Finally, chapter 5 is the conclusion for the whole project 

along with the suggestions, and any possible future works are drawn. 
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CHAPTER 2 

LITERATURE REVIEW 

 

In this chapter, the first review will discuss the RL algorithm concept. It is the 

most important part of the RL framework. The mathematical model of the general RL 

problem is explained, and the main elements in the RL framework, which are Markov 

Decision and Q-learning, are discussed afterward.  The swarm robotic behaviors will also 

be discussed in detail. It is the primary collective behavior used by swarm robots. Next, 

the kinematics model of the mobile robot project will be also briefly introduced in this 

section. The literature review is not exhaustive for all available projects, but it shows the 

most commonly used swarm robot platforms. 

 

2.1 Reinforcement Learning  

The use of Q-learning is normally for navigation and obstacle avoidance. The 

sparse reward strategy such that the agent receives the signal while reaching the target. 

For example, when the reaching target is 1, the hitting target would be -1 and otherwise 

0. The robot is trained several times and the learned policy has evaluated by exposing 

the robot to the same environment with a static goal which is to follow the line and avoid 

the obstacle. The robot was able to complete the task by using the RL approach for mobile 

robot navigation. However, the time taken to complete the task was relatively long. 

There are several ways of the reward function to solve the navigation problem in the 

autonomous robot. The following is the ways that can be taken to overcome the problem 

(Hutabarat et al., 2020): 
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Binary reward 

This strategy is commonly used in reinforcement learning problems that do not include 

dynamical behavior. This method makes the convergence rate very slow in highly-

dimensional state spaces where the probability of finding the goal is low. 

Sparse reward 

This approach is to shape the reward function which has been used very intensively. In 

addition, this reward is similar to binary reward. As the negative reward is hitting the 

obstacles then otherwise is zero. 

Potential-based reward 

The purpose of the rewards is to find the transformation to the sparse reward function 

that gains pieces of knowledge about the surrounding in the design of the reward 

function. This potential-based reward is determined based on the distance between the 

goal and the obstacles. 

 

2.2  Reinforcement Learning Algorithm Concept Structure 

2.2.1 Mathematical Foundation 

 RL drawback may be model as a style of mathematically perfect for such 

drawback. Hence, a certain theoretical statement may be created. The mathematical 

object takes place to captures the set of states, the character of the transitions between 

the states, and therefore the rewards related to such transition. 
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Markov Decision Process 

 A Markov Decision Process (MDP) may be a discrete-time stochastic control 

process. It provides a mathematical framework for modeling decision-making wherever 

true depends partly on the taken decision (Khan, 2019).  

In MDP, it consists of an associate degree Agent-Environment interface that is that the 

typical reinforcement learning cycle. Agent-Environment interface is wherever the 

(Hutabarat et al., 2020): 

• Agent: it is a package program that learns and makes intelligent selections. This 

agent can act with the setting by actions and receives the reward supported by the 

action taken. 

• Environment: it is the simulated or real-world setting that interact with the agents. 

 

 

Figure 2.1: Agent-Environment Interface 

 

The interaction between the agent and its setting is outlined a lot specifically. At 

any time step, the agent receives an illustration of its setting state, 𝑆𝑡 ∈ 𝑆. To supported 

that state, the agent selects associate action 𝐴𝑡 ∈ 𝐴(𝑆𝑡), where 𝐴(𝑆𝑡)  is the set of possible 

actions at the state 𝑆𝑡. As a result of the chosen action, the agent can receive the numerical 

reward 𝑅𝑡 ∈ 𝑅(𝑆𝑡) at just the once later. Thus, it realize itself as a replacement state 𝑆𝑡−1. 
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MDPs consists of states, actions, transitions between states, and reward perform (Fard 

and Pineau, 2011): 

𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, … , 𝑆𝑇 , 𝐴𝑇 , 𝑅𝑇+1  (1) 

 

 This trajectory is not fully random activity. A selected action at a selected state 

sometimes influences the reward and new state that arise. 𝑅𝑡 and 𝑆𝑡  area unit random 

variables that likelihood distribution depends on the continuing state and action. For any 

continuing state 𝑠 ∈ 𝑆 and action 𝑎 ∈ 𝐴(𝑠), the likelihood of reaching a state 𝑠′ ∈ 𝑆 and 

getting a reward 𝑟 ∈ 𝑅 ensuing step is given by the likelihood distribution function p (2) 

(Fard and Pineau, 2011): 

𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, … , 𝑆𝑇 , 𝐴𝑇, 𝑅𝑇+1  

𝑝 ∶ 𝑆′ × 𝑅 × 𝑆 × 𝐴 → |𝑅 (2) 

(𝑠′, 𝑟, 𝑠, 𝑎)  → Pr(𝑆𝑡 = 𝑠′, 𝑅𝑡 = 𝑟|𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎)  

 

 It is price noting that this perform p fully defines the dynamics of the MDP. The 

RL coaching task, therefore, consists of estimating p by interacting with the setting and 

observant the transitions that ensue.  

From p, the helpful functions for the RL task are computed. As an example, associate 

estimation on smart associate action 𝑎 is at a selected state 𝑠 by computing the expected 

immediate reward 𝑟 (𝑠, 𝑎) ≔ 𝑆 𝑥 𝐴 → 𝑅 (3), 

𝑟 (𝑠, 𝑎) ≔ 𝐸 [𝑅𝑡|𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎] =  ∑ 𝑟

𝑟 ∈ 𝑅

∑ 𝑝(𝑠’, 𝑟|𝑠, 𝑎)

𝑠′ ∈ 𝑆 

 

(3) 
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Policies and Reward 

A policy π could be a performance that evaluates this state of the setting. 

Formally, a settled policy perform is outlined as 𝜋 ∶ 𝑆 → 𝐴. Otherwise, it additionally 

potential to outline a random policy as 𝜋 ∶   𝑆 𝑥 𝐴 → [0, 1]. Each state 𝑠 𝜖 𝑆, it holds 

𝜋(𝑠, 𝑎) ≥ 0 and ∑ 𝜋(𝑠, 𝑎) = 1𝑎 𝜖 𝐴 . 

The RL agent must learn the optimum policy that maximizes some life of the 

expected total reward. There are many choices to outline this measure. Maximizing the 

immediate reward 𝑅𝑡+1 would end in a short-sighted greedy policy that prioritizes short 

rewards because of the value of long-run losses. For a better choices, maximize the add 

of rewards 𝐺𝑡  (4),  

𝐺𝑡 ≔  𝑅𝑡+1 +  𝑅𝑡+2 +  𝑅𝑡+3 + ⋯ (4) 

 

 However, 𝐺𝑡 still has some inconvenience. Firstly, within the case of infinite 

episodes, 𝐺𝑡 might fail to converge. It does not appear logical to contemplate that every 

one rewards area unit is equally vital. Thus, discounting the addition of rewards can solve 

each problem and provides a place to a replacement discounted accumulative add of 

reward 𝐺𝑡 (4.1) (Fard and Pineau, 2011), 

𝐺𝑡 ≔  𝑅𝑡+1 +  𝛾𝑅𝑡+2 +  𝛾2𝑅𝑡+3 + ⋯ =  ∑ 𝛾𝑘𝑅𝑡+𝑘+1 
∞
𝑘=0 , (4.1) 

 

where 

𝛾 is the discount factor and it is usually in the range of 0.9 < 𝛾 < 0.999. 
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2.2.2 Estimating The Optimal Policy 

Now that the optimal policy has been mathematically defined, an approximation 

algorithm is needed to estimate such policy by interacting with the environment to collect 

experience (Fard and Pineau, 2011). Deep neural networks are a good option for such 

tasks due to their effectiveness at approximating functions. Hence, 𝜋𝜃: 𝑆 → 𝐴 is defined 

as a neural network with parameter, 𝜃.  

 

Q-Learning Algorithm 

 Q-learning is considered the first successful deep reinforcement learning (DRL) 

implementation. The basic rule of the Q-learning algorithm (5) can be expressed as 

(Saadatmand et al., 2020) 

𝑄(𝑠𝑡 , 𝑎𝑡) ←  𝑄(𝑠𝑡 , 𝑎𝑡) +  𝛼 (𝑟𝑡 +  𝛾 max(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡) , (5) 

 

where 𝑠𝑡, 𝑎𝑡 and 𝑟𝑡 are the state, action, and the rewards at time t, respectively. In 

addition, 𝛾, 𝛼 and 𝑄(𝑠𝑡 , 𝑎𝑡) are the discount factor  𝛾 ∈ [0, 1] to guarantee the divergence 

of the value function at time 𝑡 with state 𝑠𝑡 and the chosen action 𝑎𝑡, respectively.  

The main idea of Q-learning is to learn a function that estimates the value of pairs 

(Jang et al., 2019). Then, the optimal estimated policy consists simply of selecting the 

action a to predict the maximum value at state s. Formally, the value function of 𝑄𝜋
∗  (6) 

as (Saadatmand et al., 2020), 

𝑄𝜋
∗ : 𝑆 ×  𝐴 → 𝑅 (6) 

(𝑠, 𝑎) →  𝐸𝜋 [ 𝐺𝑡  | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]  

 



13 
 

Note that 𝑄𝜋
∗  depends on the associated policy 𝜋, as this policy defines the behavior of 

the agent during the episode. Therefore, the continuous future states and rewards arise 

under such policy (Jang et al., 2019).  

Furthermore, the pure exploitation approach is used in pure Q-learning. To select 

the action, only the optimal policy is allowed. However, this method can be inefficient 

when it gets shocked in local minima (Jang et al., 2019).  There is sufficient exploration 

in learning to allow the agent to select a nonoptimal action. To overcome the exploration 

concern in 𝜀-greedy methods, the action can be decreases exploration with increasing the 

learning process. Then, the policy becomes the effectiveness of the controller (Jang et 

al., 2019). In other words, the exploration needs to decrease by increasing the learning 

process. 

 

2.3 Swarm Robotic Behaviors 

In this section, the approach used to evaluate collective behavior is to incorporate 

the idea of behavioral series. To understand the role of subgroups in a robotic swarm, 

behavioral sequence analysis shows the transformation of robotic action from the point 

of view of specialization. By applying this approach, the collective actions of multi-agent 

robots can be observed. These group actions are classified into three main categories: (1) 

spatial behavioral organization, (2) navigational behavior, and (3) collective decision-

making. It is based on the grouping by (Brambilla et al., 2013). Following is a brief 

description of collective behavior and a description of the problems involved in the 

robotic swarm. 
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2.3.1 Spatially Organizing Behaviours 

These behaviors make it possible for robots to travel in a swarm in the world to 

spatially arrange themselves or objects. These behaviors can be classified into several 

possible ways included: aggregation, pattern forming, chain formation, and self-

assembly. Moreover, robots can also physically move objects to create clusters and 

structures. The more description for this behaviors classification will be an introduction 

as follow (Christensen et al., 2020): 

• Aggregation (Soysal and Şahin, 2005): In a particular region of the environment, 

aggregation pushes the individual robots to congregate spatially. This enables the 

swarm's individuals to get close to each other spatially for more interaction. 

• Pattern forming (Spears et al., 2004): The swarm of robots in a particular shape 

is organized by pattern forming. Chain forming is a special case where robots 

form a line, usually to create multi-hop communication between two points. 

• Chain formation (Khaldi and Cherif, 2015): In the behavior of chain formation, 

robots need to position themselves to link two points. The chain that they shape 

can then be used as a navigation or surveillance guide. 

• Self-assembly (Trianni and Nolfi, 2011): To create structures, self-assembly links 

the robots. Via communication connections, they can either be linked physically 

or electronically. Morphogenesis, where the swarm forms into a predefined form, 

is a special case. 

• Clustering of objects (Durrant-Whyte et al., 2012): Object clustering and 

assembly help the robotic swarm to control objects that are spatially distributed. 

For construction processes, clustering and assembly of objects are important. 
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2.3.2 Navigational Behaviour 

These behaviors allow the organized movement of robot swarms in the 

environment. Following is such an example of navigation behaviors (Christensen et al., 

2020): 

• Collective Discovery (Ducatelle et al., 2014): To discover it, collaborative 

exploration navigates the swarm of robots cooperatively through the 

environment. It can be used to get an overview of the situation, scan for objects, 

track the environment, or create a network of communication. 

• Collective Motion (Turgut et al., 2008): The swarm of robots in a formation is 

moved by synchronized motion. The formation may have a shape that is well 

defined. For example, a line, as in flocking, or be arbitrary. 

• Collective Transport (Baldassarre, Parisi and Nolfi, 2006): Collective movement 

by swarming robots allow items that are too heavy or too large for individual 

robots to be transported collectively. 

 

2.3.3 Collective Decision Making 

These behaviors allow the robots to take a common decision on a given problem 

in a swarm. Following is such an example of collection decision making (Christensen et 

al., 2020): 

• Consensus Achievement (Garnier and Navas, 2012): Consensus helps the 

individual robots in the swarm to agree on or converge from several alternatives 

to a single common preference. 

• Task Allocation (Pini et al., 2011): Task allocation allocates evolving tasks to the 

swarm's robots dynamically. It aims to optimize the whole swarm system's 
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efficiency. If the robots have heterogeneous capabilities, to further improve the 

system's efficiency, the tasks can be spread accordingly. 

 

2.4 Challenge in Multi-Agent Reinforcement Learning (MARL) 

2.4.1 The Curse of Spatiality 

 The curse of spatiality refers to numerous phenomena that arise once analyzing 

and organizing information in high-dimensional areas that don't occur in low-

dimensional settings like the three-dimensional physical area of everyday expertise. It 

means the error will increase with the rise within the range of options. It refers to the fact 

that algorithms are tougher to style in high dimensions and sometimes have a period 

exponential within the dimensions. Within the basic RL formula, the calculable values 

for every attainable distinct state or state-action could result in a directly exponential 

increase in procedure complexness (Buşoniu, Babuška and De Schutter, 2010). The 

complexness of dirt is a result of the number of agents that have its variables. Thus, every 

agent facing the moving-target learning drawback. 

 

2.4.1 The Exploration-Exploitation Trade-Off 

The key challenge that arises in coming up with reinforcement learning systems 

is in leveling the trade-off between exploration and exploitation. The exploration-

exploitation trade-off needs the RL formula to balance between the exploitation of the 

agent's current data and exploration of the gathering action taken to enhance knowledge 

(Buşoniu, Babuška and De Schutter, 2010). In RL, if the agent is driven by maximizing 

setting rewards, the coaching method can renounce to explore higher actions that are 

incorrectly calculable to be less profitable. On the opposite hand, powerfully motivating 
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it to explore may result in failing coaching convergence, because the actions dead may 

well be too random to extract helpful data concerning the setting. For advanced 

environments, the state area is simply too broad. It's not computationally possible to 

explore the complete state and action area, the agent should prohibit itself to a 

comparatively little set of areas. Leveling what proportion the agent ought to explore is 

essential to satisfactory coaching. 

 

2.4.3 Reward Shaping 

Reward shaping is a good technique for incorporating domain data into 

reinforcement learning (RL) (Servin and Kudenko, 2008). Existing approaches like 

potential-based reward shaping usually modify the use of a given shaping reward 

performance. However, since the transformation of human data into numeric reward 

values is commonly imperfect because of reasons like human psychological feature bias, 

fully utilizing the shaping reward performance could fail to enhance the performance of 

RL algorithms (Hu et al., no date). For instance, achieving the human goal from words 

to the same reward is difficult. Thus, if the reward isn't aligned with the first human goal, 

the agent may or otherwise to maximize the reward while not fulfilling its original task 

(Buşoniu, Babuška and De Schutter, 2010). 
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CHAPTER 3 

METHODOLOGY 

 

In this section, the distributed multi-robot system will be introduced in detail. The 

design procedure of the mobile robot model for the real-time control system will also be 

introduced in this section. The design procedure starts from the chosen software and 

application to hardware. Moreover, the system has been divided into two main sections 

for testing and verification, the line follower mobile robots and the obstacle avoidance 

under a given environment. The goal is to design a mobile robot that follows the black 

line during the experimental test. It should also navigate the multi-agent mobile robot in 

a given environment without colliding with obstacles or with other mobile robots. To 

achieve the objective of this project, RL based approach will be introduced in this section.  

 

3.1 Flow Chart 

 The flowchart for this project is divided into 3 different flow charts which are the 

line follower flow chart, the obstacles avoidance flow chart, and the combination of the 

line follower and obstacles avoidance flowchart. This flow chart is divided into three to 

analyze the whole process of the robots to complete one task at each time. Plus, it is easy 

to identify the problem if the robot not on the path asset. The flow chart explains as 

follow: 

 

3.1.1 Line Follower Flow Chart 

 Figure 3.1 shows that the flow chart of line follower mobile robots. The system 

for the line follower is designed using a flow chart defining. Hence, it will be following 
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the designated line that on its path. The flow chart contains the decision of the robot 

taking to follow the line path. The line follower robot depends on the sensor system the 

process takes time. The robot is made to be able to reach its destination so that it becomes 

speedier and more effective for its work.  

 

 

Figure 3.1: Line Follower Flow Chart 
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3.1.2 Obstacle Avoidance Flow Chart 

 Figure 3.2 shows that the flow chart of obstacles avoidance mobile robots. Based 

on the flow chart, if the distance ahead is less than 10cm, the controller will prompt the 

motor to turn at a 90-degree angle and move in the forward direction. The IR sensor will 

send out its signal once the ultrasonic part is clear. However, if it also detects the 

obstacles, the motor is prompted to rotate in an anti-clockwise direction for a reverse of 

the mobile robot to take place. Then, it will turn to the right and continue in the forward 

direction. 

 

Figure 3.2: Obstacles Avoidance Flow Chart 
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3.2 Reinforcement Learning Based Approach 

 The line follower and obstacle avoidance problem in multi-agent environment 

problems is develop using the suggested RL-based approach. The RL-based approach 

may be a suggested approach because it won’t to teach the robots to speak with one 

another through the leader-follower method. So that, the multi-agent robots can move 

together in line also avoid collision during a known environment. Each robot will learn 

incrementally an efficient decision policy over state-space by trial-and-error where the 

sole input from the environment is delayed scalar reward (Khan, 2019). The task for 

every agent will maximize the long-term discounted reward per action. In this thesis, the 

suggested approach is predicated on simple cooperation among them since the robots are 

homogeneous. In fact, during this approach, the robots will communicate instantaneous 

information among them and update an equivalent decision policy. The robots have the 

benefit by sharing the policies they learned because the robot is going to be faced with 

an equivalent situation. The robot must update an equivalent policy (Khan, 2019). A 

policy during this work is represented by a table of Q values, where rows correspond to 

situations and columns to possible actions. Therefore, public knowledge is learned by all 

robots. Since all the robots exploit and reinforce the public knowledge, each robot will 

use undirect experimental knowledge that's acquired by other agents, and quick learning 

is achieved (Polina et al., 2017).  

Moreover, to supply the group behavior of the multi-agent robot, all the autonomous 

robot system must be ready to follow the straightforward maneuvering control rules as 

follow (Azouaoui et al., 2006): 

• Follow the line and stay together as a group 

• Avoid obstacles within the group 

• Follow the group based on their speed and heading 
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The multi-agent robot must be ready to move in line by following the road from the 

start until the top of the road. As an example, avoid the obstacles while following the 

road requires the agent the rotate and calculate the space and offset from the obstacles to 

make sure that collision among the agents is not happening (Ghosh et al., 2017). To 

realize this sort of task, the suggested Q-learning technique to regulate basic line follower 

robots. The multi-agent swarm robot is distributed during a predetermined environment 

and must move by following the road and avoid the obstacles supported by the RL 

approach. Afterward, this multi-agent swarm robot must navigate during a known 

environment to realize the target employing a leader-follower technique. 

 

3.2.1 Formulate Learning Task 

 It is important to define a criterion on whether the robot successfully makes turns 

while avoiding the obstacles and back to the road again afterward. Consider the road 

follower robot shown in Figure 3.6, the robot may be a move-in line by the detection 

from IR and ultrasonic sensor. As mention previously, the detection of the sensor 

sometimes takes time and with the training to make sure the robot to stay follow the road 

and avoid the obstacle. Therefore, the task of the RL multi-agent swarm robot is 

formulated as learning by applying a leader-follower technique to make sure the agents 

ready to move following the road and obstacle avoidance. A leader-follower technique 

is where the leader must study the environment first and transmit the info to the follower 

via communication. 
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3.2.2 Adding Perception 

 As described within the objective section, the RL-based multi-agent swarm robot 

formation control should be ready to navigate the agents require to follow the road and 

turn successfully to avoid obstacles during a given environment. Hence, the agents 

should have enough perception to remember the environment and therefore the distance 

from obstacles including space from one another to avoid collision while experimenting. 

 The important information about the environment is that the distance between the 

robot and therefore the obstacle. Ideally, all of the agents should keep a minimum 

distance far away from an obstacle to perform a successful turning. However, to realize 

this whole perception of the environment, the robot would require to put in multiple 

sensors. Besides, every sensor has its functionality. Therefore, during this case, there are 

several sensors are needed to hold different tasks as described within the objective. The 

most sensors that require to be installed are going to be an IR sensor to detect the road 

because the objective is to follow the road while an ultrasonic sensor is installed to 

occupy the space of the obstacles from robots and obstacles within a particular range so 

that the robot will stop and turns because the obstacle is detected. The Bluetooth module 

sensor is required to make communicate among the robots. Thus, the leader-follower 

technique is often conducted. 

 Based on the formulation of the training task, a minimum requirement is to follow 

the road and to avoid collision between each of the robots and therefore the obstacles the 

maximum amount as possible. On the opposite hand, it's acceptable for the robots to not 

turn perfectly in 90 degrees while avoiding the obstacles as long because the robot doesn't 

hit the obstacles and successful turns and ready to find the track line back. 
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3.2.3  Environment Design and Modelling 

 The simulation and the real-time experimental platforms are designed to validate 

the proposed algorithm. It is required to determine whether reinforcement learning-based 

approaches improved the learning performance of multi-agent swarm robot formation 

control in a given environment. In the literature review, reinforcement learning 

algorithms are compared based on the following performance measures: 

 

The cumulative reward 

 One way to show the performance of reinforcement learning is to plot the 

cumulative reward as a function of the number of steps. The cumulative reward is the 

total reward accumulated over time by following the actions generated by policy starting 

from an initial state. Besides, it provides a quantitative measure of the quality of the robot 

trajectory all over the episode. If the movement trajectory follows the line and avoids 

obstacles in minimum steps, the effect of the positive reward received dominated the sum 

of the reward. In contrast, if the major portions of the trajectory surround obstacles, the 

negative rewards received will dominate the sum. The ideal behavior of the cumulative 

reward during the training is explained as in Figure 3.3 (Bosch, Seeliger and Van Gerven, 

no date), 
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