DEVELOPMENT OF TITANIUM DIOXIDE NANOPARTICLES/NANOSOLUTION FOR PHOTOCATALYTIC ACTIVITY

by

SITI AIDA BINTI IBRAHIM

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

JUNE 2015

ACKNOWLEDGEMENTS

Firstly, I would like to express my deepest gratitude to my supervisor Assoc. Prof. Dr. Ir. Srimala Sreekantan for her expert guidance, constant attention, valuable suggestions, enthusiastic support and personal concern during the research and through the course of my study. Her fruitful ideas throughout the research project has helped me accomplished this work successfully.

Special thanks to the Dean of School of Material and Mineral Resources Engineering, Professor Hanafi Ismail for his permission to let me use all the brilliant facilities and equipment in completing my project. Under his leadership, he has created a healthy learning environment in the school. I would also like to extend my sincere appreciation to thank the technical staffs of School of Materials and Mineral Resources Engineering, especially to Mdm. Fong Lee Lee, Mrs Haslina, Mr. Azrul, and Mr. Zulkurnain for their various contributions in one way or another.

To my dear friends and labmates, Norwanis, , Suhaina, Khairul Arifah, Nur Hidayati, Syahriza and all close members of postgraduate room of School of Materials and Mineral Resources Engineering, thank you for making my life in USM so colourful and enjoyable. Last, but not least to my family especially to my everloving mother whom are always on my side, Hajjah Rinah Binti Mohd. Jirin, Thank you for the support and the encouragement you gave me to pursue my dreams. Not to forget, my family members who always be there for me through my thick and thin.

Siti Aida Ibrahim

June 2015

TABLE OF CONTENTS

ACKN	ACKNOWLEDGEMENTS			
TABL	TABLE OF CONTENTS			
LIST	OF FIGURES	ix		
LIST	OF TABLES	XV		
LIST	OF ABREVIATIONS	xviii		
LIST	OF SYMBOLS	XX		
LIST	OF PUBLICATIONS & AWARDS	xxi		
ABST	RAK	xxii		
ABST	RACT	xxiv		
CHAP	TER 1 – INTRODUCTION	1		
1.1	Introduction	1		
1.2	Problem Statement	4		
1.3	Objectives	8		
1.4	Scope of work	9		
1.5	Thesis overview	9		
CHAP	TER 2 - LITERATURE REVIEW	11		
2.1	Introduction	11		
2.2	TiO ₂ nanoparticles	13		
2.3	Historical overview	15		
2.4	Principle of the photocatalyst	19		
2.5	Factors that affecting PCA	21		

	2.5.1	Particle size	21
	2.5.2	Phase structure	23
	2.5.3	TiO ₂ dosage	23
2.6	TiO ₂ s	synthesis	24
	2.6.1	Sonochemical method	25
	2.6.2	Vapor deposition (VD)	25
	2.6.3	Sol-gel method	27
2.7	Factor	that affecting sol-gel process	32
	2.7.1	pH of hydrolysis medium	32
	2.7.2	Post- heat treatment	33
		2.7.2.1 Annealing	33
		2.7.2.2 Hydrothermal treatment	34
		2.7.2.3 Peptization	36
2.8	Modif	ication of TiO ₂ to Harvest Visible Light	38
	2.8.1	Anion incorporation	39
	2.8.2	Cation incorporation	40
		2.8.2.1 Noble metal	41
		2.8.2.2 Transition metal	45
		2.8.2.3 Rare earth metal	50
2.9	Photo	catalyst functionality	59
	2.9.1	Water treatment with TiO ₂	59
	2.9.2	Air Quality improvement with TiO ₂	60
	2.9.3	Antibacterial effect of TiO ₂	63
	2.10	Reviews and drawbacks of existing technology	66

CHAF	TER 3	- METHO	DOLOGY	69
3.1	Introd	uction		69
3.2	Raw n	naterials ar	d apparatus	69
3.3	TiO ₂ r	anoparticl	es	70
3.4	Synthe	esis of TiO	2	72
	3.4.1	Heat treat	tment process	72
	3.4.2	Annealin	g	72
	3.4.3	Hydrothe	rmal treatment	73
	3.4.4	Peptizatio	on	74
3.5	Synthe	esis of Fe-T	ΓiO ₂	74
3.6	Synthe	esis of Ag-	TiO ₂	74
3.7	Synthe	esis of Zr-T	ΓiO ₂	75
3.8	Synthe	esis of Ag-	Zr-TiO ₂	75
3.9	Experi	imental des	sign	75
	3.9.1	Effect of	water to Ti ratio	76
	3.9.2	Effect of	рН	77
	3.9.3	Effect of	annealing in different atmosphere condition	78
	3.9.4	Effect of	cation incorporation	78
3.10	Functi	onality stu	dies	80
	3.10.1	Methyl or	ange degradation	81
	3.10.2	Antibacter	rial activity	82
		3.10.2.1	Disc/Cotton Diffusion assay	82
		3.10.2.2	Swab test	82
	3.10.3	Field worl	s Study	83
		3.10.3.1	Antibacterial monitoring	84

		3.10.3.2 VOC Detoxifying	84
3.11	Chara	cterization	86
	3.11.1	XRD	86
	3.11.2	2 FESEM & EDX	87
	3.11.3	3 TEM	88
	3.11.4	4 BET	89
	3.11.5	5 Ultraviolet-Visible Spectrophotometer	90
	3.11.0	5 Zetasizer Nano Series Machine	91
	3.11.7	7 Fourier Transmission Infra–red	91
	3.11.8	3 Photoluminescene Spectroscopy	92
CHAF	PTER 4	- RESULTS AND DISCUSSION	93
4.1	Introd	uction	93
4.2	Synthe	esis of pure TiO ₂ nanoparticles	93
	4.2.1	Effect of water to Ti ratio	94
	4.2.2	Effect of heat treatment	98
		4.2.2.1 Annealing	98
		4.2.2.2 Effect of pH	104
		4.2.2.3 Effect of annealing in different atmosphere condition	116
	4.2.3	TiO ₂ via hydrothermal method	123
	4.2.4	TiO ₂ via peptization process	130
	4.2.5	PCA with different catalyst loading	136

		4.3.1.1	Fe-TiO ₂ via hydrothermal treatment	139
		4.3.1.2	Fe-TiO ₂ via peptization process	145
		4.3.1.3	PCA of Fe-TiO ₂ under UV	149
		4.3.1.4	PCA of Fe-TiO ₂ under visible light	150
	4.3.2	Synthesi	s of Ag-TiO ₂	152
		4.3.2.1 P	CA of Ag-TiO ₂ under visible light	157
		4.3.2.2 A	Antibacterial activity of Ag-TiO ₂	161
	4.3.3	Synthesi	s of Zr-TiO ₂	165
		4.3.3.1	Effect of Zr addition method	165
		4.3.3.2	Effect of Zr concentration	166
		4.3.3.3	PCA of Zr-TiO ₂ under visible light	170
		4.3.3.4	Antibacterial activity of Zr-TiO ₂	172
	4.3.4	Synthesi	s of Ag-Zr-TiO ₂	173
		4.3.4.1	PCA of Ag-Zr-TiO ₂	179
		4.3.4.2	Antibacterial activity of Ag-Zr-TiO ₂	182
	4.3.5	Compari	son with commercial product	184
		4.3.5.1	Morphology analysis	184
		4.3.5.2	Crystal structure analysis	185
		4.3.5.3	Light absorption characteristic	185
		4.3.5.4	PCA	186
		4.3.5.5	Antibacterial Study via Diffusion Method	187
		4.3.5.6	Antibacterial study via Swab test	188
4.4	Field	work study	y	190
	4.4.1	Antibact	erial monitoring	190
	4.4.2	VOC det	toxification	191

CHAPTER 5 - CONCLUSION AND FURTHER WORK		194
5.1	Conclusion	194
5.2	Further recommendation	195
REFERENCES		196
APPENDICES		220

LIST OF FIGURES

Pages

Figure 1.1	The 10 Leading Causes of Death, 2011(WHO, 2013).	2
Figure 1.2	Effect of solid fuels smoke to human in various countries (WHO, 2014).	2
Figure 1.3	Child deaths due to selected causes in 2011(WHO, 2013).	2
Figure 2.1	Crystal structure and photograph of main polymorphs of TiO_2 (Augugliaro <i>et al.</i> , 2010).	14
Figure 2.2	A schematic diagram for the formation of charge carriers under UV light irradiation (Nakata and Fujishima, 2012).	20
Figure 2.3	A tentative mechanism of MB on C-N-doped TiO_2 . (MB, IB, FB and P represent methylene blue, intra-band-gap state, flat-band state and carbonaceous species, respectively) (Chen et al., 2007a).	40
Figure 2.4	UV-Vis DRS spectra of on untreated Degussa P-25 TiO ₂ films and Au/TiO ₂ composite with Au surface loaded of (a) 0.4 μ gcm ⁻² , (b) 0.8 μ gcm ⁻² , (c) 1.6 μ gcm ⁻² and (d) 2 μ gcm ⁻² . (i) The left- hand side represent the wide range spectra while (ii) the right-hand side zooms in the irradiation region (350 nm) (Arabatzis <i>et al.</i> , 2003).	42
Figure 2.5	A schematic mechanism of the photocatalytic reduction of water to H_2 (Yoong <i>et al.</i> , 2009).	47
Figure 2.6	TEM images of TiO ₂ and Zr-TiO ₂ (Swetha et al., 2010).	49
Figure 2.7	Sources of indoor air polution (Alpine Air Technologies, 2013).	60
Figure 2.8	Antibacterial effect on <i>E. coli</i> using disc diffusion method with: (a) commercial antibiotics. (b) Ag metal, Ag/TiO ₂ particles, and AgNO ₃ . (Keleher <i>et al.</i> , 2002).	65
Figure 3.1	A schematic diagram of TiO ₂ synthesis used in this study.	71
Figure 3.2	A schematic diagram of cation-TiO ₂ synthesis.	71
Figure 3.3	Annealing profile of TiO ₂ .	73
Figure 3.4	Hydrothermal profile of TiO ₂ synthesis.	73
Figure 3.5	The VOC monitoring apparatus at (a) A1- work station and (b) A9 – function room.	85

Figure 4.1	Particle size and distribution of titania powder (prepared at pH 3) obtained from r ratio of (a) 25, (b) 50, (c) 75 and (d) 110.	95
Figure 4.2	TEM image of CR110-3.	98
Figure 4.3	XRD pattern of TiO ₂ particles for pH 3 at water to Ti ratio of (a) 25, (b) 50, (c) 75 and (d) 110 annealed at 400 $^{\circ}$ C. (A: Anatase; B: Brookite).	100
Figure 4.4	FESEM image of titania nanoparticles for pH 3 at water to Ti ratio of (a) 25, (b) 50, (c) 75 and (d) 110 after annealing at 400 $^{\circ}$ C	101
Figure 4.5	MO degradation of TiO_2 nanoparticles prepared in various water to Ti ratio.	104
Figure 4.6	XRD patterns of TiO ₂ annealed at 400 °C.	105
Figure 4.7	An illustration of rutile and anatase formation mechanism: (a) isolated octahedral in solution, (b) two octahedral join at vertex, (c) octahedral join along an edge. Cation-cation repulsion causes distortion, (d) third octahedron join the cluster at a corner, (e) rutile formation - linear array and (f) anatase formation- right angle array (Gopal <i>et al.</i> , 1997).	107
Figure 4.8	FESEM images of pH variation on the titania nanoparticles: (a) pH 1(b) pH 3 and (c) pH 5 (d) pH 7 and (e) pH 9.	108
Figure 4.9	TEM images of TiO ₂ annealed at 400 °C for 4 h using (a) CR110-3, (b) CR110-5, (c) CR110-7 and (d) CR110-9.	109
Figure 4.10	Particle size distribution of (a) CR110-1, (b) CR110-3, (c) CR110-5, (d) CR110-7 and (e) CR110-9.	110
Figure 4.11	FTIR spectra of TiO_2 annealed at 400 °C using (a) pH 1, (b) pH 3, (c) pH 5, (d) pH 7 and (e) pH 9.	112
Figure 4.12	MO degradation of TiO ₂ annealed at 400 °C.	114
Figure 4.13	Kinetic rate constant of as-prepared samples photoactivity under UV light irradiation.	116
Figure 4.14	X-ray diffraction of TiO_2 prepared with water to Ti ratio of 110 at pH 3 with various annealing atmosphere condition: (a) air, (b) carbon and (c) nitrogen.	118
Figure 4.15	PL emission of TiO_2 prepared at pH 3 with different annealing atmosphere condition at 400 °C	120

- Figure 4.16 FTIR spectra of (a) CR110-3-C, (b) CR110-3-N and (c) 121 CR110-3-Air.
- Figure 4.17 MO degradation of the as-prepared samples under UV 121 irradiation.
- Figure 4.18 PCA of the as-prepared samples under UV light 122 irradiation.
- Figure 4.19 XRD patterns of TiO_2 prepared by hydrothermal treatment 125 at 150 °C.
- Figure 4.20 Particle size distribution of TiO_2 via hydrothermal 126 treatment at 150 °C for 6 h as (a) H150-1, (b) H150-3, (c) H150-5, (d) H150-7 and (e) H150-9.
- Figure 4.21 TEM image of TiO_2 synthesized via sol gel method 127 assisted hydrothermal treatment at 150 °C for 6 h with hydrolysis condition at pH (a) 1, (b) 3, (c) 5, (d) 7 and (e) 9.
- Figure 4.22 FTIR spectra of TiO₂ synthesized via sol gel method 128 followed by hydrothermal at 150 °C um at (a) pH 1, (b) pH 3, (c) pH 5, (d) pH 7 and (e) pH 9.
- Figure 4.23 Comparison of the MO degradation under UV irradiation 129 for 5 h duration.
- Figure 4.24 EFTEM micrograph of TiO_2 nanosolution (a) P14-A; (b) 131 P28-B.
- Figure 4.25 Effect of peptization duration on the average particle size 132 of TiO₂.
- Figure 4.26 TEM image of TiO_2 nanosolution peptized at 85 °C for 8 132 h.
- Figure 4.27 XRD pattern of TiO_2 peptized at 85° for (a) 3 h and (b) 8 134 h.
- Figure 4.28 A UV-Vis spectra of TiO_2 -P and the inset shows the band 135 gap energy (E_g).
- Figure 4.29 Photoluminescence spectra of TiO_2 . 136
- Figure 4.30 PCA efficacy in term of TiO_2 catalyst loading. 137
- Figure 4.31 MO degradation under UV light exposure using (a) TiO₂-P 137 and (b) blank.
- Figure 4.32 The degradation of MO under xenon irradiation for 10 h: 138

(a) TiO_2 -P and (b) blank.

Figure 4.33	XRD diffractogram of (a) pure TiO_2 , (b) $3Fe-TiO_2$, (c) $5Fe-TiO_2$ and (d) $8Fe-TiO_2$.	141
Figure 4.34	TEM images of (a) 3Fe-TiO ₂ , (b) 5FeTiO ₂ and (c) 8Fe-TiO ₂ .	142
Figure 4.35	EDX spectrum of Fe-TiO ₂ using (a) 3 mmol Fe, (b) 5 mmol Fe and (c) 8 mmol Fe.	143
Figure 4.36	MO degradation under UV light irradiation using Fe-TiO ₂ synthesized via hydrothermal treatment at 150 °C for 6 h.	144
Figure 4.37	XRD diffractogram of TiO ₂ and Fe-TiO ₂ peptized at 85 $^\circ C$ for 8 h.	146
Figure 4.38	TEM image of Fe-TiO ₂ peptized at 85 °C for 8 h. The inset shows the high magnification of the nanoparticles.	147
Figure 4.39	EDX spectrum of Fe-TiO ₂ -P nanoparticles peptized at 85 $^{\circ}$ C for 8 h.	147
Figure 4.40	UV-Vis DRS spectrum of TiO ₂ -P and Fe-TiO ₂ -P. The inset shows the E_g of both samples.	148
Figure 4.41	MO degradation of (a) Fe-TiO ₂ -P and (b) TiO_2 -P nanosolution under UV light illumination	149
Figure 4.42	MO degradation of TiO_2 nanosolution under fluorescent light illumination for 10 h as (a) FeTiO ₂ -P and (b) TiO ₂ -P and (c) blank.	150
Figure 4.43	XRD patterns of pure TiO_2 and Ag- TiO_2 as (a) pure TiO_2 , (b) 1 mmol Ag, (c) 2 mmol Ag, (d) 3 mmol Ag, (e) 4 mmol Ag and (f) 5 mmol Ag.	153
Figure 4.44	TEM images of (a) $1Ag-TiO_2$ and (b) $5Ag-TiO_2$ and (c) pure TiO_2 .	154
Figure 4.45	EDX spectrum of Ag-TiO ₂ as (a) 1Ag-TiO ₂ , (b) 2Ag-TiO ₂ , (c) 3Ag-TiO ₂ , (d) 4Ag-TiO ₂ and (e) 5Ag-TiO ₂ .	154
Figure 4.46	FT-IR spectra of (a) pure TiO_2 , (b) $1Ag-TiO_2$, (c) $2Ag-TiO_2$, (d) $3Ag-TiO_2$, (e) $4Ag-TiO_2$ and (f) $5Ag-TiO_2$.	156
Figure 4.47	Comparison of light absorption spectra of Ag-TiO ₂ and pure TiO_2 .	157
Figure 4.48	The optical band gap energy of $Ag-TiO_2$ and pure TiO_2 prepared via peptization method.	157

Figure 4.49	PCA of MO degradation under fluorescent light exposure using (a) blank, (b) pure TiO_2 and (c) $1Ag-TiO_2$.	158
Figure 4.50	Proposed mechanism of MO degradation by 1Ag-TiO ₂ .	161
Figure 4.51	Cotton diffusion test for antibacterial strength using (a) Ag-TiO ₂ , (b) TiO ₂ and (c) control.	162
Figure 4.52	TEM image of <i>E. coli</i> bacteria: (a) untreated and (b) treated with Ag-TiO ₂ .	163
Figure 4.53	Proposed mechanism of Ag-TiO ₂ attack on <i>E.coli</i> .	164
Figure 4.54	Comparison of XRD diffractogram of (a) pure TiO_2 , (b) Zr-TiO ₂ using method 1 and (c) Zr-TiO ₂ using method 2.	166
Figure 4.55	XRD diffractogram of (a) pure TiO_2 , (b) $1Zr-TiO_2$, (c) $2Zr-TiO_2$, (d) $3Zr-TiO_2$ and (e) $4Zr-TiO_2$.	168
Figure 4.56	EDX spectrum of (a) $1Zr-TiO_2$, (b) $2Zr-TiO_2$, (c) $3Zr-TiO_2$, and (d) $4Zr-TiO_2$.	169
Figure 4.57	UV-Vis DRS of Zr-TiO ₂ nanosolution. The inset shows the E_g of each Zr-TiO ₂ .	170
Figure 4.58	MO degradation under fluorescent light irradiation using (a) $4Zr-TiO_2$, (b) $3Zr-TiO_2$, (c) $2Zr-TiO_2$, (d) $1Zr-TiO_2$, (e) TiO_2 and (f) blank.	171
Figure 4.59	Comparison of PL spectra of (a) $4Zr-TiO_2$ and (b) TiO_2 .	172
Figure 4.60	TEM image of 4Zr-TiO ₂ peptized at 85 °C for 8 h.	172
Figure 4.61	Disc diffusion test for antibacterial strength using (a) $1Zr-TiO_2$, (b) $2Zr-TiO_2$, (c) $3Zr-TiO_2$ and (d) $4Zr-TiO_2$.	173
Figure 4.62	XRD diffractogram of (a) TiO_2 , (b) $1Ag-TiO_2$, (c) $4Zr-TiO_2$, (d) $Ag-1Zr-TiO_2$, (e) $Ag-2Zr-TiO_2$, (f) $Ag-3Zr-TiO_2$ and (f) $Ag-4Zr-TiO_2$.	174
Figure 4.63	EDX image of (a) Ag-1Zr-TiO ₂ , (b) Ag-2Zr-TiO ₂ , (c) Ag-3Zr-TiO ₂ , and (d) Ag-4Zr-TiO ₂ .	175
Figure 4.64	The images of Ag-4Zr-TiO ₂ via (a) TEM and (b) HRTEM.	176
Figure 4.65	(a) TEM image of Ag-Zr-TiO ₂ nanoparticles prepared via peptization process at 85 °C and its mapping image of (b) Ti element, (c) O element, (d) Ag element and (e) Zr element.	177

Figure 4.66 UV-Vis DRS of as-prepared sample of Ag-Zr-TiO $_2$ and 178

pure TiO₂. The inset shows the E_g of Ag-Zr-TiO₂.

- Figure 4.67 PL spectra of (a) pure TiO_2 , (b) 4Zr- TiO_2 and (c) Ag- 4Zr-TiO₂. 179
- Figure 4.68 MO degradation under fluorescent irradiation using (a) 180 Ag-4Zr-TiO₂, (b) Ag-3Zr-TiO₂, (c) Ag-2Zr-TiO₂, (d) Ag-1Zr-TiO₂, (e) TiO₂ and (f) blank.
- Figure 4.69 Disc diffusion test for antibacterial strength using (a) Ag-1Zr-TiO₂, (b) Ag-2Zr-TiO₂, (c) Ag-3Zr-TiO₂ and (d) Ag-4Zr-TiO₂.
- Figure 4.70 Inhibitation zone against *E. coli* of: (a) Ag-1Zr-TiO₂ (b) 183 Ag-2Zr-TiO₂ (c) Ag-3Zr-TiO₂ (d) Ag-4Zr-TiO₂.
- Figure 4.71 TEM micrograph of (a) 4Ag-Zr-TiO₂ and (b) commercial 184 nanoYo as-received.
- Figure 4.72 XRD diffractogram of (a) Ag-4Zr-TiO₂ and (b) 185 commercial TiO₂ solution.
- Figure 4.73 Light absorption of Ag-4Zr-TiO₂ and commercial TiO₂ 186 solution.
- Figure 4.74 Comparison of the photocatalytic activities of the samples 187 under fluorescent irradiation for (a) blank, (b) nanoYo and (c) Ag-4Zr-TiO₂.
- Figure 4.75 Antibacterial strength using (a) Ag-Zr-TiO₂, (b) nanoYo 188 TiO_2 .
- Figure 4.76 Comparison of VOC results of various location at REHDA 193 building for 3 month duration.

LIST OF TABLES

Pages

Table 2.1	Fundamental properties of TiO_2 (Fujishima <i>et al.</i> , 2008, Chen and Mao, 2007, Reyes-Coronado <i>et al.</i> , 2008).	15
Table 2.2	An overview of TiO_2 research work conducted from 1970's to 2014.	18
Table 2.3	Several work conducted by researchers in effort to produce the TiO_2 nanoparticles via sol gel process.	31
Table 2.4	An overview of work reported on cation doped TiO_2 from 1980's to 2014.	51
Table 2.5	An overview of Fe-TiO ₂ , Ag-TiO ₂ and Zr-TiO ₂ research work conducted from 2000's to 2014.	53
Table 2.6	Summary of air pollution sources and their effects to health and environment.	61
Table 2.7	List of IAQ recommendation by Industry Code of Practice on Indoor Air Quality 2010 (DOSH, 2010).	62
Table 2.8	An overview of TiO ₂ photocatalysis application.	66
Table 2.9	Comparison of water purification devices.	67
Table 2.10	Comparison of air purification devices.	68
Table 3.1	List of chemical and reagent specification.	70
Table 3.2	Parameters and variation of r value for TiO ₂ synthesis.	76
Table 3.3	The pH variation and codename for TiO ₂ nanoparticles.	77
Table 3.4	TiO_2 nanoparticles synthesized at pH 3 and annealed in various atmosphere condition.	78
Table 3.5	Parameters of Fe-TiO ₂ synthesis using sol gel method aided hydrothermal treatment and peptization process.	79
Table 3.6	The amount of silver used in Ag-TiO ₂ speptized at 85 $^{\circ}$ C for 8 h.	79
Table 3.7	The amount of Zr(IV) propoxide used.	80
Table 3.8	Composition used for Ag-Zr-TiO ₂ nanoparticles.	80
Table 3.9	The selected location for antibacterial performance measurement.	84

Table 3.10	The selected location of VOC measurement conducted at REHDA.	85
Table 4.1	Characteristic of TiO_2 synthesized by sol gel method assisted annealing at varying atmosphere condition for 4 h.	100
Table 4.2	Crystallite size and specific surface area of sample prepared via sol gel method annealed at 400 °C.	107
Table 4.3	Kinetic analysis and PCA efficiency of $\rm TiO_2$ annealed at 400 $^{\circ}\rm C$	115
Table 4.4	XRD results of TiO_2 annealed at 400 °C in varying atmosphere condition.	118
Table 4.5	Kinetic parameters and PCA efficacy of TiO_2 powder prepared in various annealed condition.	123
Table 4.6	Characterization results of TiO_2 nanocrystal prepared by hydrothermal treatment.	125
Table 4.7	Kinetic and PCA efficiency of TiO ₂ prepared by hydrothermal treatment.	129
Table 4.8	Visual observation of the peptized TiO ₂ stability.	130
Table 4.9	Summary of physicochemical properties of Fe-TiO ₂ and pure-TiO ₂ synthesized by hydrothermal treatment at 150 $^{\circ}$ C for 6 h.	141
Table 4.10	Kinetic parameters and photocatalyst performance of TiO_2 prepared by hydrothermal treatment at 150 °C.	144
Table 4.11	Characteristic of Fe-TiO ₂ and pure-TiO ₂ peptized at 85 $^{\circ}$ C for 8 h.	146
Table 4.12	Summary of Ag-TiO ₂ characteristic synthesized via sol- gel method followed by peptization at 85 °C for 8 h.	153
Table 4.13	Characteristic of Zr-TiO ₂ peptized at 85°C for 8 h.	168
Table 4.14	Summary of physicochemical properties of Ag-Zr-TiO ₂ synthesized by sol gel method followed by peptization process at 85 °C in for 8 h.	175
Table 4.15	Zone of inhibition of Ag-Zr-TiO _{2.}	183
Table 4.16	Swab test bacterial count.	189
Table 4.17	Comparison of Ag-Zr-TiO ₂ and nanoYo.	190

- Table 4.18Antibacterial monitoring in selected location using swab191test.
- Table 4.19Summary of TVOC count at REHDA building before and
after applying TiO2 solution for 3 month observation.192

LIST OF ABREVIATIONS

REHDA	Real Estate House Development Association	
NP	nanoparticles	
NS	nanosolution	
NT	nanotube	
IAQ	Indoor air quality	
IAP	Indoor air pollution	
СВ	Conduction band	
VB	Valence band	
PCA	Photocatalytic activity	
ROS	Reactive oxygen species	
МО	Methyl Orange	
MB	Methylene Blue	
Rh.B	Rhodamine B	
TTIP	Titanium(IV) isopropoxide	
IP	2-propanol/ Isopropanol	
DI	Deionized water	
ESR	Electron spin resonance	
CO ₂ -TPD	CO ₂ - temperature programmed desorption	
VOC	Volatile Organic Compound	
TVOC	Total Volatile Organic Compound	
BET	Brunauer-Emmet-Taylor	
FESEM	Field Emission Scanning Electron Microscopy	
XRD	X-ray Diffraction Spectroscopy	
TEM	Transmission Electron Microscopy	

HRTEM	High Resolution Transmission Electron Microscopy
PL	Photoluminescence
UV-Vis	Ultra Violet-Visible
XRG	Organic dye with yellow colour. The molecular structure of XRG is as below
	CI N=N-N=N-N=N-N=N-N=N-N=N-N=N-N=N-N=N-N=N

LIST OF SYMBOLS

%	Percentage
<	Less than
>	More than
0	Degree
°C	Degree Celsius
°C/min	Degree Celsius per minute
Т	Temperature
L	Litre
m	Meter
cm	Centimetre
mL	Millilitre
mm	Millimetre
nm	Nanometer
wt %	Weight percent
at.%	Atomic percent
mmol	millimoles
g	Gram
λ	Wave length
h	Hour
min	Minute
S	Second

LIST OF PUBLICATIONS & AWARDS

Publications

- IBRAHIM, S. A. & SREEKANTAN, S (2011). Effect of pH on TiO₂ Nanoparticles via Sol-Gel Method. *Advanced Materials Research*, 173, 184-189.
- 2. IBRAHIM, S. A., RIDHUAN, N. S. & SREEKANTAN, S. of methyl orange using TiO₂ as photocatalyst. AIP Conference Proceedings, 2011. 123-127.
- IBRAHIM, S. A. & SREEKANTAN, S.(2010). Effect of annealing atmosphere towards TiO₂ nanoparticles on their photocatalytic performance in aquoues phase. *Proceeding of International Conference on Enabling Science and Nanotechnology (ESciNano 2010)*, 1- 3rd December 2010, Kuala Lumpur, Malaysia
- 4. IBRAHIM, S. A. & SREEKANTAN, S. (2014). Fe-TiO₂ Nanoparticles by Hydrothermal Treatment with PCA Enhancement. *Advanced Materials Research*. 1024, 39-43.
- 5. IBRAHIM, S. A. & SREEKANTAN, S. (2015). Effect of Fe Incorporation on the Photocatalytic Activity of TiO₂ by Sol-Gel Method. *Advanced Materials Research*. 1087, 218-222.

Award

- 1. The Silver Medal, Korea International Women's Invention Exposition (KIWI) 2012, Seoul, Korea, 3-6 May 2012 for project entitles: SMARTCOAT: Remedy for VOC, Bacteria and Fungi growing world.
- 2. The Gold Medal, The British Invention Show (BIS) 2012, London, UK, 24-27 Oct 2012, for project entitle: SMARTCOAT-for natural earth category
- 3. The Gold Medal, The British Invention Show (BIS) 2012, London, UK, 24-27 Oct 2012, for project entitle: SMARTCOAT-for consumer category
- The Gold Medal, National Research & Innovation Competition 2012, 17 -19thJuly 2012, for project entitle: NANOCOAT: An Inspired Molecular Solutions for ultimate protection against indoor air pollutants
- 5. The Gold Medal, Malaysia Technology Expo 2013, 21-23rd Feb 2013, for project entitle: SMARTCOAT: Remedy for VOC, Bacteria and Fungi growing world.

PEMBANGUNAN TITANIUM DIOKSIDA NANOZARAH/LARUTAN-NANO UNTUK AKTIVITI FOTOPEMANGKIN

ABSTRAK

Bahan pencemar biologi dan kimia oleh aktiviti buatan manusia telah menjadi isu global yang serius. Pendedahan kepada bahan pencemar ini yang melebihi had boleh menyebabkan masalah alam sekitar dan kesihatan yang serius. Oleh itu, pembangunan penyelesaian berkesan yang boleh digunakan oleh manusia sejagat adalah penting. Salah satu cara berkesan untuk mengatasi masalah ini ialah dengan menggunakan titanium dioksida (TiO₂). TiO₂ adalah fotopemangkin yang diketahui umum dan digunakan dengan meluas bagi tujuan pembersihan alam sekitar disebabkan oleh keupayaannya untuk menguraikan bahan cemar organik dan membunuh bakteria. Walaupun TiO₂ terbukti mempunyai kelebihan untuk menyelesaikan masalah ini, akan tetapi kebergunaannya terhad hanya kepada penyinaran cahaya UV. Oleh itu, tujuan kajian ini adalah untuk menyiasat potensi TiO₂ yang boleh diaktifkan dalam cahaya nampak dengan gabungan ion logam (Fe, Ag, Zr dan Ag-Zr). Dalam kajian ini, kaedah sol-gel digunakan untuk mensintesis TiO₂ yang digabungkan dengan ion logam. Analisis XRD menunjukkan semua sampel mempunyai anatas-brukit TiO₂ dwifasa dengan saiz 3 nm hingga 5 nm. Penggabungan ion-ion logam didapati tidak mengubah morfologi TiO₂ tetapi mempunyai kesan terhadap ciri-ciri kehabluran dan optik. Kehabluran anatas bagi TiO₂ dwifasa didapati berkurangan dan pembentukan brukit diutamakan. Analisis PL menunjukkan penggabungan dengan ion-ion logam menghalang penggabungan semula pasangan elektron-lubang manakala tenaga sela jalur bagi TiO_2 (3.2 eV) berkurangan apabila digabungkan dengan Fe (2.46 eV) dan Ag (2.86 eV). Antara penggabungan ini, Ag-Zr yang digabungkan dengan TiO₂ menunjukkan prestasi tertinggi bagi degradasi metil jingga (93%) di bawah penyinaran cahaya pendarfluor selama 10 jam. Ini diikuti oleh Zr-TiO₂ (82%), Fe-TiO₂ (75%) dan Ag-TiO₂ (43%). Sementara itu, prestasi antibakteria tertinggi ditunjukkan oleh Ag-TiO₂. Imej TEM menunjukkan bakteria *E.coli* dibunuh dalam jangka masa 12 jam selepas dirawat menggunakan Ag-TiO₂. Keputusan yang diperoleh daripada kajian kerja lapangan membuktikan bahawa penggabungan dengan Ag-Zr mempunyai prestasi yang cemerlang bagi penyingkiran sebatian organik mudah meruap (VOC) dan ujian antibakteria. Kandungan VOC setelah dirawat oleh Ag-Zr-TiO₂ memenuhi Tataamalan Industri Kualiti Udara Dalaman 2010, iaitu lebih rendah daripada 3 ppm. Di samping itu, peratusan mikrob juga didapati berkurangan sekitar 45% dalam tempoh pemerhatian selama 5 hari.

DEVELOPMENT OF TITANIUM DIOXIDE NANOPARTICLES/NANOSOLUTION FOR PHOTOCATALYTIC ACTIVITY

ABSTRACT

Biological and chemical contaminants by man-made activities have been serious global issue. Exposure of these contaminants beyond the limits may result in serious environmental and health problem. Therefore, it is important to develop an effective solution that can be easily utilized by mankind. One of the effective ways to overcome this problem is by using titanium dioxide (TiO_2). TiO_2 is a well-known photocatalyst that widely used for environmental clean-up due to its ability to decompose organic pollutant and kill bacteria. Although it is proven TiO₂ has an advantage to solve this concern, its usefulness unfortunately is limited only under UV light irradiation. Therefore, the aim of this work was to investigate the potential of TiO_2 that can be activated under visible light by the incorporation of metal ions (Fe, Ag, Zr and Ag-Zr). In this study, sol-gel method was employed for the synthesis of metal ions incorporated TiO₂. XRD analysis revealed that all samples content biphasic anatase-brookite TiO₂ of size 3 nm to 5 nm. It was found that the incorporation of these metal ions did not change the morphology of TiO₂ but the crystallinity and optical properties were affected. The crystallinity of anatase in the biphasic TiO₂ was found to be decreased and favored brookite formation. PL analysis showed metal ions incorporation suppressed the recombination of electron-hole pairs while the band gap energy of TiO_2 (3.2 eV) was decreased by the incorporation of Fe (2.46 eV) and Ag (2.86 eV). Among this incorporation, Ag-Zr incorporated TiO₂ showed highest performance for methyl orange degradation (93%) under fluorescent light irradiation for 10 h. This follows by Zr-TiO₂ (82%), Fe-TiO₂ (75%) and Ag-TiO₂ (43%). Meanwhile, the highest antibacterial performance was exhibited by Ag-TiO₂. TEM images showed that *E.coli* bacterium was killed within 12 h after treated with Ag-TiO₂. The results obtained from the fieldwork study established that Ag-Zr incorporation have excellent performances for VOC removal and antibacterial test. The VOC content after treated with Ag-Zr-TiO₂ fulfilled the Industry Code of Practice on Indoor Air Quality 2010 which is lower than 3 ppm. In addition, the percentage of microbes also found to be decrease around 45 % within 5 days of monitoring.

CHAPTER1 INTRODUCTION

1.1 Introduction

According to World Health Organization (WHO), environment-related problem is one of the top ten causes of death worldwide, contributing towards 23% of global diseases. Among the ten leading causes of death, half of the causes are related to indoor air pollutants. It is estimated to kill 4.3 million people yearly (Figure 1.1). Serious health issues such as allergies, headaches, and respiratory problems, intestinal and cardiovascular diseases are resulted from poor indoor air quality (IAQ) (Carneiro *et al.*, 2007, Liu *et al.*, 2011, Brugha and Grigg, 2014). It is reported that indoor air pollution (IAP) is more harmful five times higher than outdoor air. Most people spend 80-90% time doing indoor activities, thus good indoor environment is essential towards human fitness to work efficiency. In general, temperature, air movement, humidity, ventilation, air exchange rate and various pollutants such as biological, gaseous and particulate affects IAQ (Lin *et al.*, 2014, Liu *et al.*, 2010).

Figure 1.2 best illustrates the IAP deaths at various regions worldwide. Obviously, Africa is the highest IAP affected continent followed by Asia countries including South East Asia. Premature death for children below 5 years was approximately 3.2 million in Africa, 2 million deaths in South East Asia and 1.7 million in the rest of world (Figure 1.3). Majority of them are affected by pneumonia and chronic obstructive pulmonary disease (COPD).

Figure 1.1. The 10 Leading Causes of Death, 2011(WHO, 2013).

Figure 1.2. Effect of solid fuels smoke to human in various countries (WHO, 2014).

Figure 1.3. Child deaths due to selected causes in 2011(WHO, 2013).

Other than air, water pollution also is another issue that needs attention. Poor water quality affects the living organisms and ecosystem. Water can be contaminated either through biological or chemical compound originated from industrial effluents, residential sewage and human activities. Poor water quality can bring major outbreak diseases including diarrheal diseases, malaria and Legionnaires' disease (Törnqvist *et al.*, 2011). For example, in Africa malaria disease contributes the highest death for children with 645,000 counts and diarrhea about 484,000 counts (Figure 1.3).

In order to solve this issue, an extensive works on various technology are carried out and among those technologies, advanced oxidation process (AOP) is one of the most promising alternative technologies to perform environmental clean-up process (Anpo and Kamat, 2010). AOP development includes the use of Fenton process, ozonation and/or photocatalyst for of pollutants and pathogens removal (Catalkaya and Kargi, 2007, Arslan-Alaton, 2007, Hochmannova and Vytrasova, 2010). In this research work, photocatalyst reaction utilizing nano-TiO₂ is selected due to its chemical stability, good mechanical properties, non-toxic and has high efficacy in degrading organic pollutant(Obee and Brown, 1995, Hänel *et al.*, 2011). This state of technology utilizes UV light to generate electron and holes. The holes oxidize the water and the electrons reduce the oxygen in the atmosphere to form strong oxidation reactant: hydroxyl radical (OH[•]) and superoxide anion (O_2^{--}) . These reactants decompose toxic pollution through oxidation to form harmless substances such as carbon dioxide (CO₂) and water.

1.2 Problem Statement

TiO₂ photocatalyst is much appreciated in recent years for energy harvesting and environmental remediation due to high catalytic activity, good chemical and mechanical stability, cost effective and inert to human beings and environment (Fujishima *et al.*, 2000, Chen and Mao, 2007). However, this material requires UV irradiation to be activated. This is due to the intrinsic band gap of TiO₂ (anatase = 3.2 eV; rutile = 3.0 eV), which requires energy source with wavelength \leq 390 nm. UV rays consists three types of ray such as UVA (390-315 nm); UVB (315-280 nm) and UVC (280-100 nm). Among these three, UVA and UVB rays can cause genetic damage and skin cancer, thus cause adverse health effect to mankind (Braun, 2008). Meanwhile, a ray of UVC could not reach earth as it is completely absorbed by ozone layer. This restriction hinders the photocatalytic process to be economically sound. If UV light is the source of radiation, the photocatalytic process must be conduct in a closed environment, which limits the usage for indoor application.

In response with aforementioned deficiencies, several approaches have been conducted to extend the absorption to the visible light wavelength. These includes the investigation on the effect of various synthesis parameters such as preparation techniques (Byun *et al.*, 2000, Yoshida *et al.*, 2005, Ismail *et al.*, 2013), temperatures (Tang *et al.*, 2003, Górska *et al.*, 2008), pH values (Sun and Gao, 2002, Fumin *et al.*, 2007), precursor type, heat treatment and chemical composition (Doeuff *et al.*, 1987, Karvinen, 2003, Ananpattarachai *et al.*, 2009). Among those, heat treatment process has an essential role in determining the crystal structure of TiO₂ nanoparticles. Crystallization of amorphous TiO₂ to anatase phase occurs at the range of 250-400 °C while transformation from anatase to rutile occurs at 500 °C to 1000 °C (Yu *et* al., 2003, Prasad et al., 2010, Faycal Atitar et al., 2015). The ability to control crystal structure of TiO₂ could offer advantages for the enhancement of photocatalytic activity (Mahshid et al., 2009). However, heat treatment such as calcination accelerates particle growth and induce agglomerates, thus led to photocatalytic activity (PCA) reduction (He et al., 2014). Therefore, in this work an alternative method such as hydrothermal and peptization is used to produce smaller particle size with high crystallinity. Hydrothermal is selected because this treatment involves a reaction occurring at temperature 140 °C to 300 °C in aqueous in a closed system with high pressure (Wahi, 2005, Hidalgo et al., 2007a, Phan et al., 2009). This treatment provides longer condensation process in the presence of heat and pressure which induces the formation of smaller particle size. On the other hand, peptization conducted at temperature below 100 °C to induce the formation of is stable dispersion of colloidal particles. Bischoff and Anderson (1995) and Mahshid et al. (2007) that the presence of peptizing agent such as acid process promotes the breakup of bigger aggregates into smaller one due to electrostatic repulsion of the charged particle.

Obviously, retention of small particle size with good crystallinity is the focus of this work to perform high PCA efficiency. The reduction of size would cause electronic modification, resulting either in the enhancement or a suppression of the electrons and holes activities due to absorbed photon energies (Anpo *et al.*, 1987). Zhang *et al.* (1998) reported that particle size plays a crucial factor for dynamic electron- holes pairs recombination. Smaller particle size introduced high number of active surface sites and the surface charge carriers transfer rate in photocatalysis (Jang *et al.*, 2001a, Moiseev *et al.*, 2013). Furthermore, several literatures reported that nanosized semiconductor with particle size less than 10 nm show significant enhancement on photocatalytic reactivity due to the quantum size (Q-sized effect). Kormann *et al.* (1988) reported that a number of semiconductor showed blue-shift absorption band edge as the size is reduced in consequence of exciton confinement. Anpo and co-workers suggested that the Q-sized effect modified the energy level in the localized photoexcited state of TiO₂ photocatalyst. In other words, the particle reduction increased the ratio of the surface to the bulk, resulting to the photogenerated electron-hole pairs can easily and quickly diffused to the surface of the catalyst. This activity forms the active sites at which the PCA (redox) reactions are induced (Anpo *et al.*, 1988, Anpo and Takeuchi, 2003). Choi *et al.* (1994) partially supported this idea as their study confirmed that undoped Q-sized TiO₂ showed blue-shift while doping it with metal ions increased the absorption edge to visible region (red-shifted). Therefore in this work, sol-gel assisted with peptization or hydrothermal is used to obtain an optimal particle size and stable TiO₂ nanosolution for high PCA performance.

Other than that, different approach such as sacrificial reagents addition (hole scavengers), photosensitization by an appropriate dye (Castro *et al.*, 2012), ion doping with foreign element (noble or transition metals) and anionic species such as N,C and F are reported in literatures for PCA enhancement (Dvoranová *et al.*, 2002, Kobayakawa *et al.*, 2005, Wohlgemuth *et al.*, 2012). The alteration of electronic structure of TiO₂ by incorporating TiO₂ lattice with foreign element was found to enhance the PCA performance. Recent study by Pugazhenthiran *et al.* (2014) also confirmed that Q-sized TiO₂ doped with metal extended the absorption wavelength

to 560 nm and enhanced PCA under visible region. Therefore, tuning the band gap energy to visible range is essential.

In this work, cation incorporation (Fe, Ag, Zr and Ag-Zr) were used in order to improve the photocatalytic activity under visible light irradiation. It was postulated that the incorporation of Fe and Zr could narrow the band gap energy and widen the light absorption range into visible region. Meanwhile Ag incorporation could enhance the quantum efficiency by suppressing the recombination of photogenerated electrons and holes as the ions acts as electron traps. To note, the term cation incorporation was used in order to describe the presence of impurities in TiO_2 system instead of cation doping. The term cation incorporation signifies the presence of impurities either by substitutional and/or interstitial in TiO_2 lattice or deposited on the TiO_2 surface itself. On the other hand, cation doping signifies the presence of cation in the lattice by substituting Ti^{4+} due to the similarity of their ionic radius.

Another aspect which of a great interest that is the antibacterial nature of TiO_2 . Study on the antibacterial properties was conducted by Ubonchonlakate *et al.* (2012) using Ag doped TiO_2 on *P.aeruginosa* as bacteria agent. The results showed that Ag doped TiO_2 have antibacterial effect as 100% of *P.aeruginosa is* disinfected in 10 minutes under UV light irradiation. In another study, Wang *et al.* (2013) synthesized TiO_2 that successfully degraded methylene blue (MB) and eliminated bacteria such as *E.coli* and *P.aeruginosa*. However, not much work has been investigated on the performance of this material under visible light exposure. It is also reported in literatures that doping TiO_2 with other elements (such as Cu, Pt, N and F) could enhance the absorption of photon energy under visible response (Chen

et al., 2013, Dashora *et al.*, 2014, Fan *et al.*, 2008, Zhou *et al.*, 2008). Therefore, the used of cation incorporation TiO_2 sample for PCA that includes the antibacterial effect needs to be elucidated. The best formulation to have PCA is proposed and the efficacy is measured under lab scale and site test in several location (such as: Real Estate House Development Association or known as REHDA, Petaling Jaya; CIMB Commerce Square Level 6, Bukit Damansara; Chrisdale and Little Mandarin House kindergartens, Bangsar). These places were selected due to high human activities that may increase the VOC pollutants in air and bacterial growth.

1.3 Objectives

The objectives of this research are describes as follows:

- To synthesize nanosize pure-TiO₂ and cation incorporated TiO₂ (Ag, Fe, Ag-Zr) using sol gel method.
- To investigate the properties of TiO₂ and cation incorporated TiO₂ under different post-heat treatments (annealing/hydrothermal/peptization).
- 3) To determine the photocatalytic activity of pure-TiO₂ and cation-TiO₂ using methyl orange degradation and bacteria elimination (*E.coli*) under visible light irradiation.
- 4) To measure the effectiveness of cation-TiO₂ for VOC removal and antimicrobial property at field work (REHDA, Petaling Jaya; CIMB Commerce Square, Bukit Damansara; kindergartens: Chrisdale and Little Mandarin House 1 & 2, Bangsar).

1.4 Scope of work

This project is conducted to produce fine-TiO₂ nanoparticles with good crystallinity that capable for organic removal with antibacterial property. In order to achieve the desired characteristic, sol gel method subsequently aided by heat treatment (annealing, hydrothermal or peptization) was selected. The purposes for using three different methods are to compare the characteristic and properties of those materials with pure TiO₂. At the end of the process, the best method is selected to produce stable TiO₂ in nanosolution form that has the desired properties for organic removal and antibacterial effect. The parameters investigated for this study include water to Ti ratio and pH of hydrolysis medium. This is followed by incorporation of cation (Fe, Ag, Zr and Ag-Zr) into TiO₂ to enhance the visible response. TiO₂ that can perform PCA and antibacterial under visible light was expected as an output of this work. The best result obtained from optimised formulation TiO₂ is then selected for case studies in selected location. The volatile organic compound (VOC) removal and antibacterial property are monitored and reported in here.

1.5 Thesis overview

This thesis consists five chapters. Chapter 1 describes a brief introduction, problem statement, objective, expected outcome and scope of research work. In Chapter 2, a comprehensive review on the principle of photocatalyst, TiO_2 fabrication, modification of TiO_2 by incorporating noble metal, metal ion and anion doping in TiO_2 system for PCA enhancement and the functionality including water and air treatment and antibacterial are elaborated. The details of experimental work conducted in this study are discussed Chapter 3. This includes the experimental

design, the preparation of pure TiO_2 and cation- TiO_2 nanoparticles/nanosolution synthesis, functionality studies and case study procedures for VOC and antibacterial monitoring. In addition, the characterization techniques are also described in details including characterization equipment, their operation principle and sample preparation.

Chapter 4 presents the experimental results and comprehensive discussion on the formation of TiO₂ nanoparticles/nanosolution via sol gel method subsequently followed by heat treatment process (annealing/hydrothermal/peptization) and their application as photocatalyst and antibacterial material. The content was organized into three parts including (1) the details investigation on pure TiO₂ synthesis as a function of the effect of water to Ti molar ratio and pH via annealing and hydrothermal treatment. The optimum condition was established and replicated for next modification in term of size reduction using peptization process, (2) the incorporation of cation into TiO₂ system for PCA enhancement under visible light response by introducing Fe, Ag and Zr in the synthesis process, including the functionality study consist of MO degradation and antibacterial effect and (3) the PCA performance of the optimized TiO₂ at selected location (REHDA building, CIMB Commerce Square and kindergartens).

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

Concern on environmental problems related to toxic air pollutants and hazardous wastes and contaminated groundwater and soils are global issue (Wolterbeek, 2002, Percy and Ferretti, 2004, Petrić et al., 2011). The environment was contaminated due to the human mistakes, being ignorance since the past and present behavior. These are due to our conducts as we are totally dependent with things that contributed to global pollution by using hydrocarbon fuels for energy, industrial processes which produced hazardous wastes like heavy metal, dye and others. To improve the air quality, extensive research work by various researchers comes out with plenty technologies as antidote. For examples; the usage of tree as bio-indicator for heavy metal (Sawidis et al., 2011), the usage of bacterial cell for degradation of textile wastewater (Pearce et al., 2003), filtration (Hedberg et al., 2011) and oxidation process (Deiber et al., 1997, Magureanu et al., 2005, Arslan-Alaton, 2007). However, not all methods mentioned above can be used in various environments or easily adopted in existing technology. Some method is very expensive, applicable only in selective environment or condition, high maintenance and difficult to handle. Therefore, scientist continuously looking and developing new ways to address this issue. Based on literatures review, the developments of new catalytic and photocatalytic processes provide great help to address this problem. These material based-catalyst has great potential in controlling water contaminant or air pollutants(Lloyd, 2006, Vandenbroucke et al., 2011). It is believed that the material based-catalyst have several advantages over conventional oxidation process, such as:(1) complete mineralization of the pollutants; (2) use near UV or solar light; (3) can be operated in room temperature, (4) safe, clean and efficient and (5) easily co-exist harmoniously with the environment (Herrmann, 1999, Anpo and Takeuchi, 2003, Catalkaya and Kargi, 2007, Zhai *et al.*, 2010).

One of the promising catalyst-based materials is TiO_2 or also known as titania. TiO₂ is a semiconductor photocatalyst and has been proven suitable for various environmental applications due to its stability, strong oxidizing powers, non-toxicity materials, ready availability and low cost(Linsebigler et al., 1995, Fujishima et al., 2000, Fujishima et al., 2008, Hashimoto et al., 2005). As photocatalyst, TiO₂ required the presence of light to decompose organic materials. The most important forms of TiO₂ are anatase, rutile and brookite. Among these crystals, anatase has been proven as an excellent photocatalyst when compared to rutile and brookite. It is reported that high crystallinity of anatase offers fewer defects acting as recombination sites between photogenerated electrons and holes. In another study Luttrell et al. (2014) described that the lifetime of charge carriers is high in anatase when compared to rutile, indicating high PCA. On the other hand, brookite is seldom studied because of the complicated synthesis procedure (Di Paola et al., 2013). Unfortunately, the major drawback of TiO_2 is that the photoexcitation process activated only under UV irradiation which 5% of the solar light that reached on the earth surface. In order to improve the photocatalytic efficiency under visible light region, considerable effort have been made by many scientist (Stathatos et al., 2001, Livraghi et al., 2005, Górska et al., 2008, Wang et al., 2008). Consequently, tuning TiO₂ with metal and/or non-metal materials may alter the wavelength absorption of the photocatalyst. The photoactivity of doped photocatalyst may also be improved or declined depending on several factors such as the concentration or amount (Choi et *al.*, 1994, Fan *et al.*, 2008) and the dopant ion nature (Safronova and Yaroslavtsev, 2013). The properties of metal doped TiO₂ is also depended on the dopant ion nature. Dopant ion nature includes the valence state, ionic radius, and chemical property. For example, by doping TiO₂ with metal ion that has lower valence state than Ti⁴⁺ would produce oxygen vacancies to compensate the charge balance. The increased number of oxygen vacancies could enhance the PCA. Another group believed that by manipulating the preparation method and the thermal treatment produced superior photocatalyst with high surface area and crystallinity which correlated to photocatalytic performance (Zhang *et al.*, 2000, Kominami *et al.*, 2003, Maeda and Watanabe, 2007). In the subsequent section, the historical overview, basic principle of photocatalyst, reviews on pure TiO₂ and tuned-TiO₂ synthesis done by various researchers and the functionality will be reviewed in details.

2.2 TiO₂ nanoparticles

Titanium dioxide (TiO₂) or titania exists in a number of crystalline forms and the most important phases are anatase, rutile and brookite. Each of them has different crystal structure but is expressed in the same chemical formula of TiO₂. For better understanding, Figure 2.1 illustrates the crystal structure and images of each polymorph. Naturally, TiO₂ is extracted from ilmenite or leuxocene ores and also can readily be mined in rutile beach sand. Normally TiO₂ occurs in white solid powder and usually applied as white pigment for paints, cosmetic, medicine and food industries.

TiO₂ have a bonding of O=Ti=O with a molar mass of 79.87 g/mole. The melting point of TiO₂ is at 1850 °C while the boiling temperature is at 2972 °C. In

addition, the density of TiO₂ is approximately at 4.23 g/cm³. It is also known as ntype semiconductor with band gap energy (E_g) of 3.0 eV for rutile and 3.2 eV for anatase. Due to these large band gaps, the photocatalytic property of TiO₂ is applicable under the UV illumination. The stability of various TiO₂ phases depends on the size. It is reported that rutile is the most stable when the particle size is above 35 nm. Meanwhile, anatase and brookite is stable when the particle size is in the range of < 11 nm and 11-35 nm, respectively (Fujishima *et al.*, 2008). A study by Ovenstone and Yanagisawa (1999) revealed that anatase structure formed at temperature < 450 °C while rutile appeared at much higher temperature at 600 °C and above.

Figure 2.1.Crystal structure and photograph of main polymorphs of TiO_2 (Augugliaro *et al.*, 2010).

The physical and mechanical properties of sintered titanium dioxide are tabulated in Table 2.1. Although anatase has higher band gap energy, the PCA of anatase is obviously superior when compared to rutile and brookite. Anatase is more favorable for PCA due to its high adsorptive affinity towards organics species and lower charge recombination rate than rutile (Linsebigler *et al.*, 1995, Sclafani and Herrmann, 1996). Moreover, the lifetime of photogenerated electrons and holes in anatase is longer than in rutile, hence enhancing the chance of photoexcited electrons and holes in anatase to participate in surface chemical reaction (Xu *et al.*, 2011). Although brookite has smaller band gap energy than anatase, it is difficult to synthesize brookite. Usually brookite is present together with anatase or rutile, forming a mixed phase in TiO₂.

	Anatase	Brookite	Rutile
Band gap	3.2 eV	3.13 eV	3.0 eV
Excitation wavelength (nm)	390 nm	380 nm	405 nm
Refractive index	2.49	2.7	2.903
Density (gcm ⁻³)	3.84	4.133	4.26
Crystal Structure	tetragonal	orthorhombic	tetragonal

Table 2.1. Fundamental properties of TiO₂ (Fujishima *et al.*, 2008, Chen and Mao, 2007, Reyes-Coronado *et al.*, 2008).

2.3 Historical overview

Originally, TiO_2 has been used mostly as white pigment. Rutile has been chosen for this purpose since it can be obtain in natural abundance. However, with the introduction of semiconductor and the emerging of nanotechnology, the application of TiO_2 has been boost up and those applications are linking together with anatase phase. In 1972, Fujishima made a breakthrough discovery for water

photolysis by electrochemical using TiO₂. It was discovered that rutile as electrodes could split water and produced hydrogen. Since then, countless studies towards the potential uses of TiO₂ based-materials as photocatalyst were made by various research groups and this effort is still ongoing. Several attempts were made by researchers to investigate the potential of powdered anatase TiO2 suspension to split water. However, these experiments could not reproduce the same effect as TiO₂ in electrodes. Investigation by Kawai and Sakata in 1980's concluded that the water molecules had been regenerated back by the recombination of the produced H₂ and O2 in the powder system since the production sites of each gas located close to each other. To decode this dilemma, organic compound was added into the aqueous suspension of platinised TiO₂ (Kawai and Sakata, 1980, Sakata and Kawai, 1981). Later, Kiwi and Grätzel (1984) also confirmed also confirmed that H₂ can be produced by using anatase powder in metal dispersion. In his finding, the metal dispersion size must be less than 10 Å to make it work efficiently. However, even though TiO₂ drew many attentions due to its capability on H₂ production, the biggest drawback of this material is that it can be function only under UV light irradiation. Therefore, to use TiO_2 for H_2 production is not a very attractive approach. Various scientist starts to look upon other semiconductor such as CdS and CdSe which has smaller band gap but their stability and efficiency are not as good as TiO_2 (Frank and Bard, 1977a). Therefore, the excitement of TiO₂ in H₂ production research is limited in the middle of 1980's.

Conversely, the research is shifted from H_2 production to decomposition of pollutant since TiO₂ is also well known for its strong oxidizing power. Frank and Bard (1977b) was the pioneer to report the use of TiO₂ on degrading cyanide in

aqueous suspension. Fujihira *et al.* (1981) reported on various aromatic hydrocarbons by combining the photo electrochemical production of H_2O_2 at semiconductor electrodes with Fenton reaction. Thus, the significance potential of TiO₂ to detoxify pollutants in air and water is explored since nineties (Fox and Dulay, 1993, Hoffmann *et al.*, 1995).

In later years, further investigations were made by many research groups to improve TiO₂ performance as photocatalyst by tuning and modifying it such as through preparation method including thermal treatment or dopant introduction during the synthesis system. The manipulation of preparation method for example, allow scientist to vary many physicochemical properties of the materials by controlling the crystalline structure, surface area and particle size distribution. In 1991, Bickley and co-workers compared the photocatalytic performance of four type of TiO₂ specimen (P-25, pure anatase, pure rutile and mixture of anatase and rutile in proportion of 80/20) and showed that mixture of anatase and rutile (80/20) provide greater PCA compared to pure crystalline phase. Lakshmi *et al.* (1995) reported on the effect of pH on the rate of TiO₂ photoactivity of methylene blue (MB) under UV light illumination. The PCA was improved with increasing pH.

The importance of particles size towards TiO_2 photoreactivity was studied by Zhang *et al.* (1998). In their study, the photoreactivity of pure TiO_2 was increased as the particles size of TiO_2 was decreased from 21 nm to 11 nm. It is also observed that by incorporating TiO_2 with Fe^{3+} , Pt and Nb⁵⁺ enhanced the photocatalytic decomposition of chloroform compared to commercial Degussa P-25. Study by Burda *et al.* (2003) reported the enhancement of PCA with absorbance of visible light region up to 600 nm by doping TiO₂ with nitrogen using direct amination at room temperature. However, at wavelength > 500 nm, the differences in optical response is smaller, resulting PCA under 540 nm is less pronounced. Hidalgo *et al.* (2007b) investigated the PCA activity of platinised TiO₂ by photodeposition method. In this study, PCA of platinised TiO₂ is depended on optimum size of Pt due to calcination process. Higher calcination temperature (> 500 °C) contributed toward detrimental of PCA, attributing to bigger size formation. This finding is contradicted with Lee *et al.* (2005) where they indicated that particle size of Pt did not affect the photo efficiency of TiO₂.

The interest on TiO₂ performance as photocatalyst are still on-going, thus many scientist looking forward upgrading the functionality of TiO₂ to other application; antibacterial materials; self-cleaning surface, removing odors; and others (Fujishima *et al.*, 2008). Investigation by Maneerat and Hayata (2006) exhibited an antifungal activity of TiO₂ using in vitro and in fruit test. It is reported that TiO₂ in the form of powder and coated film can control the fruit sample from rot. Furthermore, it is believed that the increment of the amount of TiO₂ successfully suppressing *P*. *expansum* growth. In later year, Yaghoubi *et al.* (2010) introduced new route for TiO₂ coating on polycarbonate for self-cleaning materials. This method is based on wet coating using an anatase sol of TiO₂ nanoparticles of 30 nm size. Overall, overview on TiO₂ and its applications are summarized Table 2.2.

Author (Year)	Preparation method	Application
Fujishima (1972)	Electrochemical cell using TiO ₂ and Pt as electrodes	H ₂ production
Frank and Bard (1977a)	Comparison of various semiconductor powder $(TiO_2, ZnO, CdS, Fe_2O_3, and WO_3)$ using a xenon light source	photocatalytic oxidations of CN ⁻ and SO ²⁻

Table 2.2. An overview of TiO_2 research work conducted from 1970's to 2014.

Frank and Bard (1977b)	Comparison of TiO_2 in both the anatase and rutile forms :	of cyanide
	 Undoped anatase (commercial and untreated) 	
	 Anatase + 5% rutile (treated under hydrogen gas stream at 700 °C) 	
	3) Anatase + 70% rutile treated under air at 1200 °C)	
	4) Anatase from (3) + 90% rutile treated under H ₂ at 7200 °C)	
Kawai and Sakata (1980)	RuO ₂ /rutile-TiO ₂ /Pt powdered mixture (weigh ratio= 10:100:5) was suspended in soluble carbohydrates solution (sugar or starch)	H ₂ production
Fujihira <i>et al.</i> (1981)	Anatase TiO ₂ in organic suspension (Benzene, Toluene, Acetophenone)	Photocatalytic oxidation
Kiwi and Grätzel (1984)	TiO_2 (P-25) was impregnated in metal suspension (Pt)	H ₂ production
Lakshmi <i>et al.</i> (1995)	P-25 (surface area = $50 \text{mg}^2\text{g}^{-1}$, mean particle size = 30 nm) in adjusting pH solution	MB degradation
Zhang <i>et al.</i> (1998)	 TiO₂ sol gel synthesis followed by hydrothermal (80 °C, 24 h; 180 °C, 96 h) or post calcination (450 °C, 2 h) 	chloroform decomposition
	2) TiO ₂ doped with Fe ^{$3+$} , Pt or Nb ^{$5+$}	
Burda <i>et al.</i> (2003)	N doped TiO ₂ using direct amination at room temperature	MB degradation
Maneerat and Hayata (2006)	TiO_2 powder (7nm) and TiO_2 coated film (PP film coated with 5 ml TiO_2 solution and dried for 72 h)	Antibacterial (P. expansum)
Ashkarran <i>et al.</i> (2011)	Ag/TiO_2 doped NP (Ag content =) using sol gel and novel arc discharge method	Rh.B degradation and antibacterial
Jiao <i>et al.</i> (2012)	Anatase – brookite nanoflower synthesized using hydrothermal method for 24 h at 180 °C	MO and 2,4- dichlorophenol
Sreethawong <i>et al.</i> (2012)	TiO ₂ –NiO (various Ti-to-Ni molar ratios) synthesized by sol–gel process aided with laurylamine hydrochloride as structure- directing surfactant.	MO degradation
Lin <i>et al</i> . (2014b)	Single and co-doping of Mn and Fe in TiO_2 thin film using spin coating.	MB degradation
Gharagozlou and Bayati (2014)	Fe doped TiO ₂ NP (Fe content from $0.01 - 0.08$ g) using sol gel method and calcined at 400 °C for 4 h.	Rh.B degradation

2.4 Principle of the photocatalyst

The heterogeneous photocatalytic reaction is triggered when absorption of radiation is equal or greater than band-gap energies (E_g) of the targeted

semiconductor. E_g is defined as the difference between the valence band (VB) and conduction band (CB). In the case of TiO₂, the band-gap energy for anatase and rutile are 3.2 eV and 3.0 eV, respectively. Figure 2.2 ascribed the schematic process of photogenerated electron-hole upon UV illumination. In photocatalyst system, when photon with energy equal or greater than E_G reach the particles surface, an electron (e⁻) from the valence band excited to the conduction band, leaving a hole (h⁺) behind. The photogenerated electron-hole then can recombine and dissipate the absorbed energy into heat or be available for redox reaction. The redox reaction will exploit both electron and holes, with (e⁻) for reduction process and (h⁺) for oxidation process on the TiO₂ surface. Typically, the excited electron in CB will react with molecular oxygen in the air producing superoxide radical anions (O₂⁻⁻) while photogenerated holes will react with water molecules forming hydroxyl radicals (OH[•]) and oxidize nearby organic molecules on the TiO₂ surface. The general mechanism of photocatalytic events upon light illumination is summarized in Table 2.3.

Figure 2.2. A schematic diagram for the formation of charge carriers under UV light irradiation (Nakata and Fujishima, 2012).

2.5 Factors that affecting PCA

2.5.1 Particle size

The performance of PCA in general is depended on the particle size of materials. The particle size is one of important parameters in catalysis since it affects the specific surface area and the charge carrier dynamic in semiconductor particulate. Smaller particle sizes induce the number of active surface sites and the surface charge carrier transfer rate in photocatalysis. In photocatalysis system, the photoinduced molecular reaction occurs at the surface of photocatalyst. Therefore, particle with higher surface area provides better access for reaction to take place, resulting higher yield of photocatalytic reaction. Study by Jang et al. (2001b) found that larger surface area could be obtained when particle size is reduced to single domain size. In order to determine their hypothesis, they conducted three set of PCA for MB, *E.coli* and ammonia gas decomposition using varied particles size of TiO_2 . The results revealed MB decomposition is enhanced due to particle size reduction from 30 nm to 15 nm. In addition, it is observed that 93.2% and 97.6% of E. coli is diminished using particle size of 30 nm and 25 nm, respectively. Similar observation also found for ammonia gas decomposition as it increased from 8% to 10% as the size of particle is reduced from 30 nm to 15 nm.

In another study, Anpo *et al.* (1987) claimed that particle size reduction changed the electronic properties of TiO_2 resulting to the enhancement of electronholes activity. Zhang *et al.* (1998) reported that the PCA is increased when the particle size is reduced until it reached to an ideal size. They found that the photoreactivity of pure TiO_2 towards CHCl₃ increased when particle size is reduced from 21 to 11 nm, but decreased when the particle size further reduced to 6 nm. Xu and Meng (2009) reported that the absorption capacity of TiO_2 for As(III) and As(V) increased linearly with S_{BET} of the particles. The efficiency of As(III) photooxidation rate is clearly depended on the particle size as it decreased when particle size is increased to 30.1 nm.

To note, several literatures reported that TiO₂particles with size ≤ 10 nm exhibits quantum size effect (Q-sized effect) (Kormann et al., 1988, Choi et al., 1994, Satoh et al., 2008). Q-sized semiconductor such as CdS, ZnS and AgI usually shows spectral of blue-shift in absorption as consequence of exciton confinement with decreasing particle size. Although a decrease in size generally increases the band gap of semiconductors, the reported blue-shift was found to be only 0.1–0.6 eV in TiO₂. In another study, Serpone et al. (1995) found that TiO₂ with particle size (2R) in the range of 2.1 < 2R < 26.7 nm did not show optical blue-shifts of the absorption edges. This finding is supported by Monticone et al. (2000) as they found that anatase with particle size 3 nm exhibits similar characteristic of bulk anatase (3.2 eV). However, when the particle size is decreased to 1 nm, they found that the absorption edge is blue-shifted about 0.1 eV from the E_g of bulk anatase. This information suggested that Q-sized effects on semiconductor materials are varied from one to another depending on the type of metal oxide and their preparation method. Although Q-sized effect could enhance PCA, the disadvantage of this particular size is it requires of UV light irradiation due to wideband gap to perform PCA. However, Choi *et al.* (1994) claimed that Q-sized doped-TiO₂(with metal ion) could extend the absorption band edge up to 600 nm, suggesting an enhancement of PCA under visible region.

2.5.2 Phase structure

Banfield (1998) reported that good crystallinity is required to reduce the formation of electron traps, which can minimize the recombination centers of photogenerated electron-holes. Several study reported that anatase exhibits the ideal PCA performance among the three crystalline phases (Ovenstone and Yanagisawa, 1999, Lee *et al.*, 2005, Adán *et al.*, 2007). Lee *et al.* (2005) found that PCA of *p*-nitrophenol is increased due to increment of anatase crystallinity in the prepared samples. On the other hand, Liu *et al.* (2008) suggested that PCA enhancement is due to the synergistic effect of crystallinity, surface area and better transmittance. Anatase prepared from peptization process at 45 to 65 °C had these three criteria which successfully enhanced PCA using Rh.B (in solution), CH₃SH and HCHO (in gaseous phase) as targeted pollutants.

Another group of researchers reported that mixed phase of anatase with fraction of rutile or brookite enhanced the PCA compared to pure anatase due to electron and hole transfer between the two phases (Tian *et al.*, 2008, Kho *et al.*, 2010, Cihlar *et al.*, 2015). Kho *et al.* (2010) suggested that the mixed phase provide synergistic effect between anatase and rutile due to efficient charge separation across phase junction. Vargeese and Muralidharan (2011) observed similar behavior as anatase with small fraction of brookite (36%) synthesized using sol-gel method show high PCA using ammonium nitrate as model compound.

2.5.3 TiO₂ dosage

It is well documented that the rate and efficiency of photocatalytic would increase with catalyst loading. The increase in the efficiency seems to be attributed to the effective surface area of catalyst and the absorption of light. At lower catalyst loading, the absorption of light controlled the photocatalytic process due to the limited catalyst surface area. However, as the catalyst loading increased, an increase in the active surface area of TiO_2 is obtained. The enlarged amount of photons absorbed and the amount of organic pollutants adsorbed on the TiO_2 surface improved the photocatalytic.

Several studies are found to support this idea. Liu *et al.* (2008) studied the effect of TiO₂ loading on formaldehyde under UV light irradiation for 3 h. They found that the photocatalytic reaction rate did not increased significantly when TiO₂ loading was higher than 2 mgcm⁻². Suwarnkar *et al.* (2014) investigated the effect of Ag doped TiO₂ loading (0.6 to 1.4 gdm⁻³) on MO solution. They found that the efficiency of PCA is increased with catalyst loading from 0.6 to 1 gdm⁻³ while loading more than that detriment the PCA. The overdosed TiO₂ decreased PCA is due to an increased in the particles aggregation leading to the decreased of number of active site (Sobana *et al.*, 2006). Another reason is attributed to the increment of turbidity of suspension which resulted to the inhabitation of the photon absorption by the photocatalyst (Huang *et al.*, 2008).

2.6 TiO₂ synthesis

Basically there are many methods available to produce TiO_2 nanoparticles such as vapor deposition, sonochemical and sol-gel method. The details of each method are reviewed in the subsequent section.