UNIVERSITI SAINS MALAYSIA

Second Semester Examination
2002/2003 Academic Session
February - March 2003

ZCT 304E/3 - Electricity and Magnetism II

Time : 3 hours

Please check that the examination paper consists of ELEVEN printed pages before you commence this examination.

Answer all FIVE questions. Students are allowed to answer all questions in English OR bahasa Malaysia OR combination of both.

1. The surface of a sphere of radius a (centered at the origin) is charged with a uniform surface charge density σ.
(a) Calculate the total charge Q^{\prime} on the sphere.
(b) Find the force exerted by this charge distribution on a point charge q
located on the z axis if:
(i) $z>a$
(ii) $z<a$
2. A square of side a is located in the $x y$ plane with its center at the origin.
(a) Calculate the magnetic induction (\vec{B}) at a point located on the z-axis if a current I flows around the square.
(b) Show that your answer gives the result $\frac{2 \sqrt{2} \mu_{0} I^{\prime}}{\pi a}$ for the magnetic induction at the center of the square.
3. A certain \vec{B} field is given in cylindrical coordinates by:

$$
\begin{array}{ll}
\vec{B}=0 & 0<\rho<a \\
\vec{B}=\frac{\mu_{0} I}{2 \pi \rho}\left(\frac{\rho^{2}-a^{2}}{b^{2}-a^{2}}\right) \hat{\phi} & a<\rho<b \\
\vec{B}=\frac{\mu_{0} I}{2 \pi \rho} \hat{\phi} & b<\rho
\end{array}
$$

(a) Find the current density \vec{J} everywhere.
(b) How might one produce such a field?
4. The region between two cylinders (coaxial and infinite, as shown in the following figure) is filled with charge of density $\rho_{\mathrm{ch}}=A \mathrm{e}^{-\alpha \rho}$. Calculate \vec{E} everywhere.

5. An infinitely long, thin wire carrying current I is surrounded coaxially by a
cylindrical shell (radii a and b) of cylindrical shell (radii a and b) of l.i.h magnetic material of susceptibility χ.
(a) Find \vec{B} and \vec{H} everywhere.
(b) Find the distribution of magnetisation current densities.

LAMPIRAN

Mathematical Guidance

Possibly Useful Integrals:
$\int_{-1}^{1} \frac{(z-r \mu) d \mu}{\left(r^{2}+z^{2}-2 z r \mu\right)^{3 / 2}}=\frac{1}{z^{2}}\left(\frac{z-r}{|z-r|}+\frac{z+r}{|z+r|}\right)$
$\int_{-1}^{1} \frac{d \mu}{\left(r^{2}+z^{2}-2 z r \mu\right)^{1 / 2}}=\frac{1}{z r}(|z+r|-\lfloor z-r\rfloor)$
$\int \frac{d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=\frac{1}{a^{2}} \cdot \frac{x}{\left(x^{2}+a^{2}\right)^{1 / 2}}$
$\int x e^{a x} d x=e^{a x}\left[\frac{x}{a}-\frac{1}{a^{2}}\right]$

Useful Constants

$$
\begin{array}{ll}
k=\frac{1}{4 \pi \varepsilon_{0}}=8.99 \times 10^{9} \frac{N \cdot m^{2}}{C^{2}} & e=1.60 \times 10^{-19} \mathrm{C} \\
\varepsilon_{0}=8.85 \times 10^{-12} \frac{C^{2}}{N \cdot m^{2}} & \mu_{0}=4 \pi \times 10^{-7} \frac{T \cdot m}{A}
\end{array}
$$

LAMPIRAN

Vector Calculus

Cartesian Coordinates

$\bar{\nabla} u=\hat{x} \frac{\partial u}{\partial x}+\hat{y} \frac{\partial u}{\partial y}+\hat{z} \frac{\partial u}{\partial z}$
$\vec{\nabla} \cdot \vec{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}$
$\vec{\nabla} \times \vec{A}=\hat{x}\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right)+\hat{y}\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right)+\hat{z}\left(\frac{\partial A_{x}}{\partial y}-\frac{\partial A_{y}}{\partial x}\right)$
$d \tau=d x d y d z \quad d a_{x}= \pm d y d z \quad d a_{y}= \pm d x d z \quad d a_{z}= \pm d x d y$

Cylindrical Coordinates

$$
\begin{aligned}
& \vec{\nabla} u=\hat{\rho} \frac{\partial u}{\partial \rho}+\hat{\phi} \frac{1}{\rho} \frac{\partial u}{\partial \phi}+\hat{z} \frac{\partial u}{\partial z} \\
& \vec{\nabla} \cdot \vec{A}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho A_{\rho}\right)+\frac{1}{\rho} \frac{\partial A_{\phi}}{\partial \phi}+\frac{\partial A_{z}}{\hat{z}} \\
& \vec{\nabla} \times \vec{A}=\hat{\rho}\left(\frac{1}{\rho} \frac{\partial A_{z}}{\partial \phi}-\frac{\partial A_{\phi}}{\partial z}\right)+\hat{\phi}\left(\frac{\partial A_{\rho}}{\partial z}-\frac{\partial A_{z}}{\partial \rho}\right)+\hat{z}\left[-\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho A_{\phi}\right)-\frac{1}{\rho} \frac{\partial A_{\rho}}{\partial \phi}\right] \\
& d \tau=\rho d \rho d \phi d z \quad d a_{\rho}= \pm \rho d \phi d z \quad d a_{\phi}= \pm d \rho d z \quad d a_{z}= \pm \rho d \rho d \phi \\
& \hat{\rho}=\cos \phi \hat{x}+\sin \phi \hat{y} \quad \hat{\phi}=-\sin \phi \hat{x}+\cos \phi \hat{y}
\end{aligned}
$$

Spherical Coordinates

$\vec{\nabla} u=\hat{r} \frac{\partial u}{\partial r}+\hat{\theta} \frac{1}{r} \frac{\partial u}{\partial \theta}+\hat{\phi} \frac{1}{r \sin \theta} \frac{\partial u}{\partial \phi}$
$\bar{\nabla} \cdot \vec{A}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} A_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta A_{\theta}\right)+\frac{1}{r \sin \theta} \frac{\partial A_{\phi}}{\partial \phi}$
$\tilde{\nabla} \times \bar{A}=\frac{\hat{r}}{r \sin \theta}\left[-\frac{\partial}{\partial \theta}\left(\sin \theta A_{\phi}\right)-\frac{\partial A_{\theta}}{\partial \phi}\right]+\frac{\hat{\theta}}{r}\left[\frac{1}{\sin \theta} \frac{\partial A_{r}}{\partial \phi}-\frac{\partial}{\partial r}\left(r A_{\phi}\right)\right]+\frac{\hat{\phi}}{r}\left[\frac{\partial}{\partial r}\left(r A_{\theta}\right)-\frac{\partial A_{r}}{\partial \theta}\right]$
$d \tau=r^{2} \sin \theta d r d \theta d \phi \quad d a_{r}= \pm r^{2} \sin \theta d \theta d \phi \quad d a_{\theta}= \pm r \sin \theta d r d \phi \quad d a_{\phi}= \pm r d r d \theta$
$\hat{r}=\sin \theta \cos \phi \hat{x}+\sin \theta \sin \phi \hat{y}+\cos \theta \hat{z} \quad \hat{\theta}=\cos \theta \cos \phi \hat{x}+\cos \theta \sin \phi \hat{y}-\sin \theta \hat{z}$ $\hat{\phi}=-\sin \phi \hat{x}+\cos \phi \hat{y}$

Important Equations

Maxwell's Equations:

$\vec{\nabla} \cdot \vec{D}=\rho_{f} \quad \vec{\nabla} \cdot \vec{B}=0$

$$
\vec{\nabla} \times \vec{E}=\frac{-\partial \vec{B}}{d t}
$$

$$
\vec{\nabla} \times \vec{H}=J_{f}+\frac{\partial \vec{D}}{d t}
$$

Lorentz Force:

$$
\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})
$$

Equation of Continuity: $\quad \vec{\nabla} \cdot \vec{J}_{f}+\frac{\partial \rho_{f}}{d t}=0$

Coulomb's Law: $\quad \bar{F}_{q}=\sum_{i} \frac{q q_{i} \vec{R}_{i}}{4 \pi \varepsilon_{0} R_{i}^{3}}$ (for a collection of point charges)

$$
\begin{aligned}
& \bar{F}_{q}=\frac{q}{4 \pi \varepsilon_{0}} \int_{L^{\prime}} \frac{\lambda\left(\vec{r}^{\prime}\right) \bar{R} d s^{\prime}}{R^{3}} \text { (for a line charge distribution) } \\
& \vec{F}_{q}=\frac{q}{4 \pi \varepsilon_{0}} \int_{S^{\prime}} \frac{\sigma\left(\vec{r}^{\prime}\right) \vec{R} d a^{\prime}}{R^{3}} \text { (for a surface charge distribution) } \\
& \vec{F}_{q}=\frac{q}{4 \pi \varepsilon_{0}} \int_{V} \frac{\rho\left(\bar{r}^{\prime}\right) \vec{R} d \tau^{\prime}}{R^{3}} \text { (for a volume charge distribution) }
\end{aligned}
$$

Electric Field: $\quad \vec{E}=\frac{\vec{F}_{q}}{q}$

Electric Flux: $\quad \Phi_{e}=\int \vec{E} \cdot d \vec{a}$

Gauss' Law: $\oint_{\delta} \vec{E} \cdot d \vec{a}=\frac{Q_{t}}{\varepsilon_{0}} \quad$ (integral form)

$$
\vec{\nabla} \cdot \vec{E}=\frac{\rho(\vec{r})}{\varepsilon_{0}} \quad \text { (differential form) }
$$

LAMPIRAN

Scalar Potential: $\quad \phi(\vec{r})=\sum_{i} \frac{q_{i}}{4 \pi \varepsilon_{0} R_{i}}$ (for a collection of point charges)

$$
\begin{aligned}
& \phi(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \int_{L^{\prime}} \frac{\lambda\left(\bar{r}^{\prime}\right) d s^{\prime}}{R} \text { (for a line charge distribution) } \\
& \phi(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \int_{s^{\prime}} \frac{\sigma\left(\vec{r}^{\prime}\right) d a^{\prime}}{R} \text { (for a surface charge distribution) } \\
& \phi(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\vec{r}^{\prime}\right) d \tau^{\prime}}{R} \text { (for a volume charge distribution) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Potential Energy: } \quad U_{e}(\vec{r})=q \phi(\vec{r}) \quad \text { (for an isolated point charge) } \\
& U_{e}=\frac{1}{2} \sum_{i} q_{i} \phi_{i}\left(\vec{r}_{i}\right) \quad \text { (for a collection of point charges) } \\
& U_{e}=\frac{1}{2} \int_{L} \lambda(\vec{r}) \phi(\vec{r}) d s \quad \text { (for a line charge distribution) } \\
& U_{e}=\frac{1}{2} \int_{-} \sigma(\vec{r}) \phi(\vec{r}) d a \quad \text { (for a surface charge distribution) } \\
& U_{e}=\frac{1}{2} \int \rho(\bar{r}) \phi(\bar{r}) d \tau \quad \text { (for a volume charge distribution) } \\
& u_{e}=\frac{1}{2} \varepsilon_{0} E^{2} \quad \text { (energy density in an electric field) } \\
& U_{e}=\int u_{e} d \tau \quad \text { (total energy) }
\end{aligned}
$$

Multipole Moments: $Q=\sum_{i} q_{i}$ or $Q=\int_{L} \lambda d s$ or $Q=\int_{S} \sigma d a$ or $Q=\int_{V} \rho d \tau$ (monopole)

$$
\vec{p}=\sum_{i} q_{i} \vec{r}_{i} \text { or } \vec{p}=\int_{L} \lambda \vec{r} d s \text { or } \vec{p}=\int_{S} \sigma \vec{r} d a \text { or } \vec{p}=\int_{V} \rho \vec{r} d \tau \text { (dipole) }
$$

Boundary Conditions: $\begin{array}{ll} & E_{t 2}-E_{t 1}=0 \text { and } E_{n 2}-E_{n 1}=\frac{\sigma}{\varepsilon_{0}} \text { (electric field) } \\ & \phi_{2}=\phi_{1} \text { (scalar potential) } \\ & B_{n 2}-B_{n 1}=0 \text { and } \vec{B}_{t 2}-\vec{B}_{t 1}=\mu_{0} \vec{K} \times \hat{n} \text { (magnetic induction) }\end{array}$

LAMPIRAN

Electricity in Matter:

$$
\begin{aligned}
& \rho=\rho_{f}+\rho_{b} \quad \text { (free charge and bound charge) } \\
& \rho_{b}=-\vec{\nabla} \cdot \vec{P} \text { and } \sigma_{b}=\vec{P} \cdot \hat{n} \quad \text { (bound charge densities) } \\
& \vec{D}=\varepsilon_{0} \bar{E}+\vec{P} \quad \text { (definition of electric displacement) } \\
& \vec{D}=\kappa_{e} \varepsilon_{0} \vec{E}=\varepsilon \vec{E} \quad \text { (for an l.i.h. dielectric) } \\
& u_{e}=\frac{1}{2} \vec{D} \cdot \vec{E} \quad \text { (energy density in matter) } \\
& \emptyset \vec{D} \cdot d \vec{a}=Q_{f, n} \text { and } \vec{\nabla} \cdot \vec{D}=\rho_{f} \quad \text { (Gauss' Laws for } \vec{D} \text {) }
\end{aligned}
$$

Electric Current: $\quad I=\frac{d q}{d t}=\int \vec{J} \cdot d \vec{a}=\int \bar{K} \cdot d \vec{s}$

$$
\vec{J}=\rho \vec{v} \quad \vec{K}=\sigma \vec{v} \quad \text { (current density) }
$$

$$
\begin{aligned}
& I d \vec{s}=\vec{K} d a=\vec{J} d \tau \quad \text { (current elements) } \\
& \vec{J}_{f}=\sigma \bar{E} \quad(\text { Ohm's Law })
\end{aligned}
$$

Magnetostatic Force: $\quad \vec{F}_{C^{\prime} \rightarrow C}=\frac{\mu_{0}}{4 \pi} \oint \oint \frac{I d \bar{s} \times\left(I^{\prime} d \bar{s}^{\prime} \times \hat{R}\right)}{R^{2}}$
Magnetic Induction: $\vec{B}=\frac{\mu_{0}}{4 \pi} \oint_{C^{\prime}} \frac{I^{\prime} d \vec{s}^{\prime} \times \hat{R}}{R^{2}} \quad$ (for a filamentary current)

$$
\begin{aligned}
& \bar{B}=\frac{\mu_{0}}{4 \pi} \int_{s^{\prime}} \frac{\bar{K}^{\prime} \times \hat{R} d a^{\prime}}{R^{2}} \text { (for a surface current) } \\
& \bar{B}=\frac{\mu_{0}}{4 \pi} \int_{V^{\prime}} \frac{\bar{J}^{\prime} \times \hat{R} d \tau^{\prime}}{R^{2}} \quad \text { (for a volume current) }
\end{aligned}
$$

Ampere's Law: $\quad \oint_{C} \vec{B} \cdot d \vec{s}=\mu_{0} I_{t} \quad$ (integral form)

$$
\vec{\nabla} \times \bar{B}=\mu_{0} \vec{J} \quad \text { (differential form) }
$$

LAMPIRAN

Vector Potential: $\quad \vec{B}=\vec{\nabla} \times \vec{A}$

$$
\begin{array}{ll}
\vec{A}=\frac{\mu_{0}}{4 \pi} \oint_{C^{\prime}} \frac{I^{\prime} d \bar{s}^{\prime}}{R} & \text { (for a filamentary current) } \\
\vec{A}=\frac{\mu_{0}}{4 \pi} \int_{S^{\prime}} \frac{\bar{K}^{\prime} d a^{\prime}}{R} & \text { (for a surface current) } \\
\vec{A}=\frac{\mu_{0}}{4 \pi} \int_{l} \frac{\vec{J}^{\prime} d \tau^{\prime}}{R} & \text { (for a volume current) }
\end{array}
$$

Magnetic Flux:

$$
\Phi_{b}=\int \vec{B} \cdot d \vec{a}
$$

Faraday's Law:

$$
\begin{aligned}
& \varepsilon_{t}=\oint \vec{E}_{t} \cdot d \vec{s}=\frac{-d \Phi_{b}}{d t} \quad \text { (integral form) } \\
& \bar{\nabla} \times \vec{E}=\frac{-\partial \bar{B}}{d t} \quad \text { (differential form) }
\end{aligned}
$$

Magnetism in Matter:

$$
\begin{aligned}
& \vec{J}=\vec{J}_{f}+\vec{J}_{m} \quad \text { (free current plus magnetisation current) } \\
& \vec{J}_{m}=\bar{\nabla} \times \vec{M} \quad \text { (magnetisation volume current density) } \\
& \vec{K}_{m}=\vec{M} \times \hat{n} \quad \text { (magnetisation surfacet density) } \\
& \vec{B}=\mu_{0}(\vec{H}+\vec{M}) \quad \text { (definition of magnetic field) } \\
& \vec{B}=\mu_{0}(\vec{H}+\vec{M})=\mu_{0}\left(1+\chi_{m}\right) \vec{H}=\mu \vec{H} \quad \text { (for l.i.h. material) }
\end{aligned}
$$

