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Abstrak  
 

 Tesis ini mencadangkan keupayaan teknik FEM yang bertambah baik yang 

dikenali sebagai kaedah elemen terhingga lanjutan (XFEM) untuk menganalisis 

pertumbuhan retakan lesu di bawah beban amplitud yang berterusan. Tesis ini 

membandingkan penyebaran retakan berangka model dalam spesimen keluli lentur 

dengan uji kaji dan simulasi sebelum ini menggunakan teknik FEM tradisional. Tujuan 

kajian ini adalah untuk melakukan analisis pereputan retakan retakan untuk 

menentukan bentuk sambungan retak. Model spesimen ujian disediakan berdasarkan 

parametres geometrik dan keadaan beban kitaran. Analisis berangka dilakukan 

menggunakan Abaqus 6.12-2. Penyebaran retak disimulasikan dengan menggunakan 

kaedah elemen terhingga berangka numerik (XFEM) di bawah kriteria lesu kitaran 

rendah menggunakan pendekatan kitaran langsung. Tesis ini, mengesahkan kesahihan 

kaedah berangka ini untuk penyebaran retak. Keputusan berangka arah perambatan 

retakan dibandingkan dengan penemuan eksperimen dalam spesimen sebenar dan 

sebelum ini disimulasikan menggunakan kaedah teknik penyesuaian dalam 

kesusasteraan [1]. Hasil daripada kaedah yang dicadangkan ini tidak seperti yang 

dijangkakan kerana pembiakan retak itu tidak seperti digambarkan dalam 

kesusasteraan. Telah ditunjukkan bahawa laluan retak yang dikira tidak membenarkan 

pertimbangan sebelumnya. 
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Abstract 
 

This thesis proposes the ability an improved FEM technique known as extended 

finite element method (XFEM) to analyse fatigue crack growth under constant 

amplitude loading. This thesis compares numerically modelled crack propagation in a 

bending steel specimen with experimentally conducted and simulated previously using 

traditional FEM technique. The aim of the study was to perform numerical analysis of 

crack propagation in order to determine the shape of the crack extension. Model of the 

test specimen was prepared based on geometric parametres and cyclic load condition. 

The numerical analysis was performed using Abaqus 6.12-2. Crack propagation was 

simulated by using the numerical extended finite element method (XFEM) under low-

cycle fatigue criterion using direct cyclic approach. This thesis, verifies the validity of 

this numerical method for crack propagation. The numerical results of the direction of 

the crack propagation were compared with the experimental findings in a real specimen 

and previously simulated using adapative technique method in the literature [1]. The 

outcome of  the proposed method is not as what was expected due to the crack 

propagation was not like illustrated in the literature. It is shown that the computed crack 

path does not justify the previous findings. 
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Chapter 1 Introduction 
 

1.1 Research Background 

 

Modeling crack growth in a traditional finite element framework is inefficient due to 

the need for the mesh to match the geometry of the discontinuity. This becomes a major 

difficulty when treating problems with evolving discontinuities where the mesh must 

be regenerated at each step. Moreover, the crack tip singularity needs to be accurately 

represented by the approximation [1]. Due to the fact that standard finite element 

methods are based on piecewise differentiable polynomial approximations, they are not 

well suited to problems with discontinuous and/or singular solutions. Typically, finite 

element methods require significant mesh refinement or meshes which conform with 

these features to get accurate results. In response to this deficiency of standard finite 

element methods, extended finite elements have been developed.  

 

Extended finite element method (XFEM) which is also known as partition of unity 

method (PUM) is a numerical technique that extends the classical finite element method 

(FEM) approach by extending the solution space for solutions to differential equations 

with discontinuous functions. The extended finite element method was developed to 

ease difficulties in solving problems with localized features that are not efficiently 

resolved by mesh refinement 

 

In isotropic linear elastic fracture analysis, two sets of functions are used to handle the 

presence of a crack: a discontinuous function for the crack line and a set of asymptotic 

functions for the crack tip [5]. For the purpose of fracture analysis, the enrichment 

functions typically consist of the near-tip asymptotic functions that capture the 

singularity around the crack tip and a discontinuous function that represents the jump 

in displacement across the crack surfaces. The approximation for a displacement vector 

function  with the partition of unity enrichment is 
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𝑢 = ∑ 𝑁𝐼(𝑥)

𝑁

𝐼=1

[𝑢𝐼 + 𝐻(𝑥)𝑎𝐼 + ∑ 𝐹𝛼(𝑥)𝑏𝐼
𝛼],

4

𝛼=1

 (1.1) 

where 𝑁𝐼(𝑥) are the usual nodal shape functions; the first term on the right-hand side 

of the above equation, 𝑢𝐼, is the usual nodal displacement vector associated with the 

continuous part of the finite element solution; the second term is the product of the 

nodal enriched degree of freedom vector, 𝑎𝐼, and the associated discontinuous jump 

function H(x) across the crack surfaces; and the third term is the product of the nodal 

enriched degree of freedom vector, 𝑏𝐼
𝛼, and the associated elastic asymptotic crack-tip 

functions, 𝐹𝛼(𝑥). The first term on the right-hand side is applicable to all the nodes in 

the model; the second term is valid for nodes whose shape function support is cut by 

the crack interior; and the third term is used only for nodes whose shape function 

support is cut by the crack tip.  

The modified Heaviside function associated with the crack line is 

𝐻(𝑥) = 𝑓(𝑥) = {
+1, 𝑖𝑓 (𝑥 − 𝑥∗) ∙ 𝑛 ≥ 0
−1,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1.2) 

where x is a sample (integration) point, x is the projection of x onto the crack surface, 

and n is the unit outward normal to the crack at x. Figure 1.1 shows the type of 

enrichment active on each node in an isotropic fracture model. 

 

Figure 1.1 : Nodal enrichment scheme for bulk fracture [3]. 
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Components are subjected to a fluctuating load of a certain magnitude for a sufficient 

amount of time, small cracks will nucleate in the material. Over time, the cracks will 

propagate, up to the point where the remaining cross-section of the component is not 

able to carry the load, at which the component will be subjected to sudden fracture [1]. 

This process is called fatigue, and is one of the main causes of failures in structural and 

mechanical components [2]. In order to assess the safety of the component, engineers 

need to estimate its expected lifetime. The fatigue life is the sum of the number of 

loading cycles required for a fatigue crack to nucleate/initiate, and the number of cycles 

required for the crack to propagate until its critical size has been reached. Estimations 

of the fatigue crack propagation rate, da/dN, are normally based on a relation with the 

range of the stress intensity factor, ΔK, which is a linear elastic fracture mechanics 

(LEFM) parameter for quantifying the load and geometry of the crack.  

The loading and displacement of a crack can be described by the three modes of 

fracture, each with its own stress intensity factor. The different modes require different 

values for the constants in the crack propagation law. In the case of mixed-mode fatigue, 

it may be necessary to use an effective mixed-mode stress intensity factor. The crack 

propagation life can be estimated by integrating equation (2.4). However, the stress 

intensity factors Kmax and Kmin are normally functions of the crack length a, and 

depend on the geometry of the structure. Analytical integration of equations (2.3) and 

(2.4) is rarely viable for complicated geometries. Instead, crack propagation problems 

are normally solved using some computational method, the Finite Element Method 

(FEM) [12]. The crack propagation process is then solved in a step-wise manner. For 

each step, the crack is advanced a small length, and the number of cycles required for 

the next crack increment is estimated using one of the crack propagation laws. In order 

to overcome remeshing techniques which costs time XFEM is suitable for its capability 

for crack propagation problems. 
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1.2 Problem Statement 

 

Inspections are used to look for cracks, and if a crack is found the component can be 

fixed or replaced as necessary. Inspection intervals could then be set at some fraction 

of the fatigue fracture life of the structure. Fatigue fracture life is calculated as the 

number of cycles required to grow a crack from a minimum detectable size to a critical 

size when the structure fails. Analytical fatigue crack growth models are available in 

(ABAQUS, C., 2012. Analysis user’s manual) for many generalized geometries 

including an edge crack, center crack, and etc. As geometry, loading and boundary 

conditions become more complex, the analytical equations quickly become more 

complicated and it may be difficult to account for all effects on crack propagation. The 

Finite Element Method (FEM) has been used for decades to assist engineers in 

analysing complex, cracked structures. Until recently, cracks had to be modeled as part 

of the structure's geometry. As the crack grew, the model would be rebuilt and 

remeshed, requiring significant user interaction or specialized programs. The eXtended 

Finite Element Method (XFEM) was developed in 1999 by [7], where cracks could be 

defined arbitrarily, independent of the mesh. This method fit to fatigue crack growth, 

where a crack propagates along a solution dependent path, independent of the mesh. 

The main aimof this thesis is to take a look at the ability of XFEM to evaluate crack 

growth. 

1.3 Scope of Research 

 

Before the XFEM can be used to model fatigue crack growth and estimate fatigue 

fracture life in everyday structures with complex geometry, complex loading and 

boundary conditions, material variability, and numerous other external factors, we must 

first focus on a simplified model with a known analytical solution. This thesis focuses 

on a specially designed specimen under cyclic Lateral Force Bending with Holes 

(LFBH). The LFBH offers simplifieded geometry, simplified boundary and loading 

conditions, and has been studied since the beginning of fracture mechanics. The scope 

is further limited to Linear Elastic Fracture Mechanics (LEFM) in two dimensions. 

LFBH crack propagation data and illustration of the simulation of fatigue crack growth 

was previously collected and illustrated by [1] for Structural Steel E335, thus the 

analysis will be limited to the same homogeneous, isotropic material and specimen 

geometry. All finite element analyses were performed in Abaqus 6-12.2. 
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1.4 Objectives 

 

The primary goals of this thesis are to investigate the capabilities of the eXtended Finite 

Element Method for modeling crack propagation and estimating fatigue fracture life. 

The following objectives were met to realize these goals: 

1. To develop the FCG life and to illustrate graphically FCG life and crack propagation 

of the specimen used in [1]. 

2. To verify the result of simulation of [1] using XFEM by simulating the specimen in 

two-dimensional under low-cycle fatigue analysis using direct cyclic approach. 
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Chapter 2 Literature Review 
 

The following literature review has been provided to give a brief background into 

fracture mechanics and fatigue crack growth laws that will be used in this thesis. XFEM 

technique in fatigue fracture analysis are considered, and procedure of their use in 

Abaqus are discussed.  

Bulk fracture mechanics is concerned with systems where only a single material factors 

in to the fracture analysis. The term crack will be used to denote any physical 

discontinuity in the material such as voids or fractures. When a given crack is subjected 

to loading, these loads can be decomposed into three modes, as shown in Figure 2.1. 

Plane strain conditions are assumed for the present work and therefore mode III loading 

may be neglected. A single type of loading tends to be the exception, rather than the 

rule, and so the term mode-mixity is used when there is more than one loading mode 

operating on a given crack [8]. 

 

 

Figure 2.1 : Three modes of crack displacement at the crack tip. 
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One of the central assumptions of fracture mechanics is that, if one get sufficiently close 

to the crack tip, the stress, strain, and displacement fields become independent of the 

specimen geometry and the manner in which the sample is loaded. The fields near the 

crack tip may then be characterized by the three stress intensity factors(SIF) - KI, KII, 

and KIII corresponding to the three types of loading shown in Figure 2.1. 

 

Figure 2.2 : Crack Tip. 

It is evident that the above displacement fields (and the corresponding stress fields) are 

asymptotic in nature. This would imply that the stresses go to infinity as one approaches 

the crack tip. This, of course, does not occur, but it does go to the heart of the validity 

of the specimen-independence assumption listed above.  

For a crack in a perfectly elastic material, the asymptotic solution are expected to 

become increasingly accurate as one approaches the crack tip [5]. In regions far away 

from the tip, the fields are influenced by boundary conditions, sample geometry, etc. 

and therefore do not conform to the asymptotic solution. At the other extreme, when 

very close to the crack tip, the solution also breaks down - the infinite stresses do not 

occur at least in part because of material plasticity, a clear violation of the elastic 

assumption inherent in LEFM [5]. 

 In between these two cases there exists a region termed the region of K dominance, 

where one is close enough to the crack tip to ignore the specifics of the test specimen 

but far enough away for the assumptions of linearity and elasticity to still hold. It is 

within this area that the fields are governed solely by the stress intensity factors [5]. 
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Another way of characterizing a crack is to use so-called energy methods. The energy 

release rate is one such method. It is based on the assumption that, whatever the 

specifics involved in a particular crack propagation, energy is dissipated[9]. It takes a 

small amount of energy to create the new free surfaces produced by crack growth. Even 

if the assumptions of LEFM are violated very near the crack tip (plasticity, etc.), as long 

as such processes remain constant during propagation, the energy dissipated will also 

remain constant and may be quantified [10]. The energy release rate is shown below in 

the Griffith energy balance where W is the external work, U is the elastic energy, V is 

the energy required for crack growth, and a is the length of the crack. 

𝑑𝑊

𝑑𝑎
−

𝑑𝑈

𝑑𝑎
=

𝑑𝑉

𝑑𝑎
 (2.1) 

When the left hand side is divided by the sample thickness, the energy release rate, G, 

is obtained. If G ≥ Gc then the crack will propagate, with Gc being the fracture 

toughness of the material [10]. With E and v denoting the Young’s modulus and 

Poisson’s ratio, respectively 

𝐺 =
(𝐾𝐼

2+𝐾𝐼𝐼
2 )

𝐸̅
,     𝐸̅ =

𝐸

(1−𝑉2)
 (plane strain) (2.2) 

 

2.1 Fracture Mechanics 
 

LEFM assumes small deformations and minimal yielding at the crack tip, while EPFM 

can account for large deformations and plastic effects [1]. In LEFM, the Stress Intensity 

Factor (SIF), K, is a measure of the stress field at a crack tip as shown in Figure 2.2 and 

is calculated with Eq. (2.3) where F is a dimensionless geometry factor, σ is a remote 

nominal stress, and a is the crack length. This equation was developed from a theory of 

elasticity solution of the stress field around a sharp notch [7]. From the elastic solution 

it was concluded that the stress field is proportional to 
1

√𝑟
 where r is the radial distance 

from the crack tip. This stress proportionality results in a stress singularity at the crack 

tip where r → 0 [8]. 

𝐾 = 𝐹𝜎 √𝜋𝑎 (2.3) 

 



9 
 

SIFs are divided into three modes based on the displacement at the crack tip, as shown 

in Fig. 2.1. Mode I, the opening mode, is caused by a displacement perpendicular to the 

crack plane, which is typically a result of tensile stresses [10]. Mode I is primarily 

responsible for crack growth. Displacements perpendicular to the crack tip edge from 

in-plane shear stresses cause the sliding mode, Mode II. Out-of-plane shear stresses 

result in displacements parallel to the crack tip edge and a tearing mode, Mode III [8].  

2.2 Fatigue Crack Growth Models 

 

Besides static loading, crack growth can occur when a subcritical load is repetitively 

applied. Paris conclude that the fatigue crack growth rate, da/dN, was related to the 

stress intensity range, ∆𝐾 = 𝐾𝑚𝑎𝑥 −  𝐾𝑚𝑖𝑛 [17]. On a log-log plot, it is now known that 

da/dN has a sigmoidal relation with ∆𝐾 as seen Figure 2.3. The crack growth curve can 

be divided into three regions. In the threshold region, crack growth is slow as 

∆𝐾 asymptotically approaches the threshold value, ∆𝐾𝑡ℎ, where crack growth may not 

occur. The slope of the crack growth curve is approximately linear in the intermediate, 

or Paris region. The unstable region is characterized by rapid, unstable crack growth 

where 𝐾𝑚𝑎𝑥 asymptotically approaches 𝐾𝑐 and fracture is about to happen.  

Paris and Erdogan  approximated the intermediate crack growth region with a power 

law relationship known today as the Paris equation, where C and m are determined 

empirically material constants. One disadvantage of this relationship is that it applies 

to a single stress ratio, 𝑅 =  𝜎𝑚𝑎𝑥/𝜎𝑚𝑖𝑛, where stresses are defined far from the crack 

tip.[11] 

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚 (2.4) 
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Figure 2.3 : Crack growth curve on log-log axes [12]. 

Experiments have shown that the crack length a is an exponential function of the 

number of cycles N. This means that crack growth is very slow until the final stage in 

the fatigue life, where a relative short number of cycles will result in fast crack growth 

leading to failure. The initial fatigue crack length ai seems to be a very important 

parameter for the fatigue life Nf [13].  

 

For an initially undamaged material, it takes Ni cycles to initiate a crack by dislocation 

movement. At this fatigue crack initiation life the initial crack has been formed, but in 

most cases it is so small that it cannot be detected. In this stage I, the crack propagation 

rate is very low, typically < 0.25 nm/cycle. After Ni cycles, in stage II of crack growth, 

crack propagation is faster, typically μm’s per cycle. The crack growth is triggered by 

tensile stresses and involves plastic slip on multiple slip planes at the crack tip, resulting 

in striations [13].  

 

After a large number of cycles the crack reaches a length a1, which can be detected by 

non-destructive techniques. The crack growth is now much faster and after the fatigue 

life Nf its length is af and after a few cycles ac the critical crack length is reached and 

failure occurs. For higher loading amplitudes, the crack growth will be faster. After N 

cycles, the cycles to go until failure at Nf , is indicated as Nr. The rest-life is the ratio 

of Nr and Nf.[13]. 
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Figure 2.4 : Crack length increase with number of cycles [8]. 

𝑁𝑟

𝑁𝑓 
= 1 −

𝑁

𝑁𝑓
 (2.5) 

To predict the fatigue life of structures, crack growth models have been proposed, 

which relate grow rate da dN to load amplitude or maximum load, which can be 

expressed in the stress intensity factor K, because we assume to be in the high cycle 

fatigue regime, where stresses are low [13].  

Sequencing of the loads can play a large role in crack growth rates. An example is when 

overloading occurs prior to normal service loads. Overloading the crack can lead to 

large plastic deformation at the crack tip. The plasticly deformed region is surrounded 

by undeformed material that, upon removal of the applied overload, elasticily returns 

to its original configuration. The undeformed region places a compressive stress on the 

deformed region around the crack tip [13].  

2.3 Onset of fatigue crack growth 

 

The onset of fatigue crack growth refers to the beginning of fatigue crack growth at the 

crack tip in the enriched elements. In a low-cycle fatigue analysis the onset of the 

fatigue crack growth criterion is characterized by , which is the relative fracture energy 

release rate when the structure is loaded between its maximum and minimum values 

[6]. The fatigue crack growth initiation criterion is defined as 

𝑓 =
𝑁

𝑐1∆𝐺𝐶2
≥ 1.0, (2.6) 
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Where 𝑐1  and 𝑐2 are material constants and N is the cycle number. The enriched 

elements ahead of the crack tips will not be fractured unless the above equation is 

satisfied and the maximum fracture energy release rate, ∆𝐺, which corresponds to the 

cyclic energy release rate when the structure is loaded up to its maximum value, is 

greater than 𝐺𝑡ℎ𝑟𝑒𝑠ℎ  [6]. 

2.4 Fatigue crack growth using the Paris law 

 

Once the onset of the fatigue crack growth criterion is satisfied at the enriched element, 

the crack growth rate, da/dN, can be calculated based on the relative fracture energy 

release rate, ∆𝐺 [6]. The rate of the crack growth per cycle is given by the Paris law if 

𝐺𝑡ℎ𝑟𝑒𝑠ℎ < 𝐺𝑚𝑎𝑥 < 𝐺𝑃𝑙, 

𝑑𝑎

𝑑𝑁
= 𝑐3∆𝐺𝐶4 (2.7) 

where 𝑐3and 𝑐4 are material constants. 

At the end of cycle , Abaqus/Standard extends the crack length, , from the current cycle 

forward over an incremental number of cycles,  to  by fracturing at least one enriched 

element ahead of the crack tips. Given the material constants  and , combined with the 

known element length and the likely crack propagation direction  at the enriched 

elements ahead of the crack tips, the number of cycles necessary to fail each enriched 

element ahead of the crack tip can be calculated as , where j represents the enriched 

element ahead of the the` crack tip. The analysis is set up to advance the crack by at 

least one enriched element after the loading cycle is stabilized [6].  

The element with the fewest cycles is identified to be fractured, and its  is represented 

as the number of cycles to grow the crack equal to its element length, . The most critical 

element is completely fractured with a zero constraint and a zero stiffness at the end of 

the stabilized cycle [6]. As the enriched element is fractured, the load is redistributed 

and a new relative fracture energy release rate must be calculated for the enriched 

elements ahead of the crack tips for the next cycle [5]. This capability allows at least 

one enriched element ahead of the crack tips to be fractured completely after each 

stabilized cycle and precisely accounts for the number of cycles needed to cause fatigue 

crack growth over that length. If , the enriched elements ahead of the crack tips will be 

fractured by increasing the cycle number count, dN, by one only[6]. 
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2.5 Specifying the crack propagation direction 

 

Many models are available for predicting the direction of crack extension based on 

either stress, strain, energy, or any combination of these. Appropriate models should be 

selected based on material and loading conditions. In ABAQUS/Standard we have to 

specify the crack propagation direction when the fracture criterion is satisfied it is a 

must [6]. There are three ways the crack can extend : at a direction normal to the 

direction of the maximum tangential stress, based on Maximum Energy Release Rate 

(MERR) criterion, and 𝐾𝐼𝐼 = 0 criterion. It is set defined by defaoult the crack 

propagates normal to the direction of the maximum tangential stress.The model 

presented here were selected since they are presented in the literature [1].  

𝜃𝐶 = arccos (
3𝐾𝐼𝐼

2 + √𝐾𝐼
4 + 8𝐾𝐼

2𝐾𝐼𝐼
2

8𝐾𝐼
2 + 9𝐾𝐼𝐼

2 ) (2.8) 

Where θc is the angle that will follow the crack for each of the crack increments. θc is 

measured with respect to a local polar coordinate system with its origin at the crack tip 

and aligned with the direction of the existing crack. The sign convention is such that θc 

< 0 when KII > 0 and vice-versa. Once the crack growth orientation is determined, a 

propagation increment ∆a is added to the existing crack geometry and the analysis 

procedure is repeated. 

Maximum Tangential Stress (MTS) was proposed by Erdogan and Sih [14] which states 

that crack extension will happen radially from the crack tip and perpendicular to the 

maximum applied tensile load [13]. These two criterion are met when the tangential 

stress, 𝜎𝜃, is maximized and the shear stress, 𝜏𝑟𝜃 is zero. MERR states that crack 

extension will occur at an angle, 𝜃, that maximizes G in Eq. (2.6) for a mixed Mode I-

II condition. It is stated in literature [12] that crack extension occurs in a direction where 

𝐾𝐼𝐼 = 0 for isotropic, homogeneous materials and also the previous aouthors of the 

article proposed that the MTS and MERR models’ solutions meet the 𝐾𝐼𝐼 = 0 criterion 

once the crack has extended. 

Each crack extension direction criterion will give slightly different results. Therefore, 

analysis of crack propagation in Abaqus should be run with each criterion described in 

this section and compared to experimental data for selection of the most appropriate 

one. 
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2.6 Methods of Fracture Analysis 

 

A fracture analysis typically starts with an initial crack size, or crack initiation criteria 

based on stress or strain, and propagates the crack until a critical value is reached such 

as Kc or Gc [5]. Growth rates are calculated using a fatigue crack growth model such 

as the Walker equation, Eq. (2.11). Several methods have been developed in the 

literature and a few methods are selected and presented in the following sections. 

2.6.1 Virtual Crack Closure Technique 

 

To study the onset and propagation of cracking in quasi-static problems by using the 

virtual crack closure technique (VCCT). VCCT uses the principles of linear elastic 

fracture mechanics (LEFM) , so it is appropriate for problems in which brittle crack 

propagation occurs along predefined surfaces [10]. VCCT is based on the assumption 

that the strain energy released when a crack is extended by a certain amount is the same 

as the energy required to close the crack by the same amount. 

We can include a VCCT crack in a static or quasi-static analysis procedure. 

Alternatively, VCCT crack can be include in an implicit dynamic analysis procedure to 

simulate the fracture and failure in a structure under high-speed impact loading. VCCT 

is available only for Abaqus/Standard (three-dimensional solid and shell and two-

dimensional planar and axisymmetric models). The purpose of VCCT is to study a 

crack in parts containing geometry, orphan mesh elements, or a combination of the two 

[6]. For example, Figure 2.5 illustrates the similarity between crack extension from i to 

j and crack closure at j. The energy released when a crack is extended by a certain 

amount is the same as the energy required to close the crack[15]. 
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Figure 2.5 : Finite elemet representation of the VCCT method [6]. 

In the general case involving Mode I, II, and III the fracture criterion is defined as 

equation where 𝐺𝑒𝑞𝑢𝑖𝑣  is the equivalent strain energy release rate calculated at a node, 

and 𝐺𝑒𝑞𝑢𝑖𝑣𝐶 is the critical equivalent strain energy release rate calculated based on the 

user-specified mode-mix criterion and the bond strength of the interface.  

The crack-tip node will debond when the fracture criterion reaches the value of 1.0. 

Abaqus provide three common mode-mix formulae for computing 𝐺𝑒𝑞𝑢𝑖𝑣𝐶: 

the BK law, the power law, and the Reeder law models [6]. 

𝑓 =
𝐺𝑒𝑞𝑢𝑖𝑣

𝐺𝑒𝑞𝑢𝑖𝑣𝐶
≥ 1.0 (2.9) 
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2.6.2 eXtended Finite Element Method 

 

In comparison to the long-established finite element method, the X-FEM provides 

significant benefits in the numerical modelling of crack propagation. In the traditional 

formulation of the FEM, the existence of a crack is modelled by requiring the crack to 

follow element edges. n contrast, the crack geometry in the X-FEM need no longer be 

aligned with the element edges, which provides flexibility and versatility in modelling 

[6]. 

 The method is based on the enrichment of the FE model with additional degrees of 

freedom (DOFs) that are tied to the nodes of the elements intersected by the crack [16]. 

In this manner, the discontinuity is included in the numerical model without modifying 

the discretization, as the mesh is generated without taking into account the presence of 

the crack. Therefore, only a single mesh is needed for any crack length and orientation. 

In addition, nodes surrounding the crack tip are enriched with DOFs associated with 

functions that reproduce the asymptotic LEFM fields [5]. This enables the modelling 

of the crack discontinuity within the crack-tip element and substantially increases the 

accuracy in the computation of the stress intensity factors (SIFs). 

 

Figure 2.6 : XFEM nodes with enrichment and jump functions [12]. 
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We can study the onset and propagation of cracking in quasi-static problems using the 

extended finite element method (XFEM). XFEM allows to study crack growth along 

an arbitrary, solution-dependent path without needing to remesh the model [6]. XFEM 

is available only for three-dimensional solid and two-dimensional planar models. We 

can use XFEM to study a crack in parts containing geometry, orphan mesh elements, 

or a combination of the two. We can choose to study a crack that grows arbitrarily 

through the model or a stationary crack. We can specify the initial location of the crack 

or we can allow Abaqus to determine the location of the crack during the analysis based 

on the value of the maximum principal stress or strain calculated in the crack domain 

[6]. 

There are a few authors proposed the procedure for fatigue crack growth analysis using 

XFEM such as shown in Figure 2.7. The basic procedure is as follows according to 

literature [12] : 

1. Build and mesh a finite element model. 

2. Define the crack location by nodal level set values. 

3. Apply quasi-static load from minimum to maximum value. 

4. Determine ∆K's or ∆G's. 

5. Determine crack extension direction. 

6. Calculate incremental crack growth length. 

7. Determine the cycles required to grow the crack this incremental length based on a 

fatigue crack growth model. 

8. Add cycles to the previous cycle count. 

9. Redefine crack location by adjusting nodal level set values without remeshing. 

10. Repeat steps 3 through 9 until critical values are reached. 
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Read input data (Material property etc.) 

Submit job.inp file with XFEM crack, mesh, unit load etc. 

Extract SIF from job.dat file by averaging contours value 

Claculate β factor 

Calculate SIF range ∆𝐾1 
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)1 from eq(1), 𝑎2 =  𝑎1 + ∆𝑎1 

  

Calculate SIF range ∆𝐾2 

Y2 ≤ Y1 

(
𝑑𝑎

𝑑𝑁
)2 from Eq(1) 

𝑎3 =  𝑎2 + ∆𝑎2 

KR, Reff (
𝑑𝑎

𝑑𝑁
)2 

𝑎3 =  𝑎2 + ∆𝑎2 

 

 

 

 

 

 

∆ai_TOT ≥ Predefined value 

Update XFEM crack tip 

coordinates 

am+1 =  am + ∆ai_TOT 

es 

𝜎𝑚𝑖𝑛,2, 𝜎𝑚𝑎𝑥,2 (From spectrum) 

Y2 = a2 +
Kmax.2

2

C ∗ SYS
2  

 

 

C 

𝜎𝑚𝑖𝑛,1, 𝜎𝑚𝑎𝑥,1 (From spectrum) 

Y1 = a1 +
Kmax.1

2

C ∗ SYS
2  

 

 

C 

Kc reached? Stop 

simulation 

Retardation 

Yes No 

a1 = a3 

Yes 

No 

Yes 

Figure 2.7 :  Proposed Fatigue Crack Growth Algorithm by 
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2.6.3 eXtended Finite Element Method with Phantom Nodes.  

 

Phantom nodes, which are superposed on the original real nodes, are introduced to 

represent the discontinuity of the cracked elements, as illustrated in Figure 2.8. When 

the element is intact, each phantom node is completely constrained to its corresponding 

real node[13]. When the element is cut through by a crack, the cracked element splits 

into two parts. Each part is formed by a combination of some real and phantom nodes 

depending on the orientation of the crack [13].  

The phantom node method was first proposed by Hansbo and Hansbo [18]. In the 

phantom node method, a material domain with internal discontinuity namely real nodes 

and ghost nodes can be modelled by one element with two pair of nodes [18]. When the 

stresses of the element reach the material strength, a discontinuity is modelled by 

forming two superposing elements with the help of ghost nodes. Each of the two 

elements contains as it were portion of the domain space. Since all the modes of the 

components are at the external boundaries of the domain, the area of the irregularity 

does not got to be know.When modelling a strong discontinuity inside an element, the 

phantom node method has been proven to be equivalent to the eXtended Finite Element 

Method (XFEM) with only the Heaviside enrichment function [6].  

Both methods essentially use extra Degrees Of Freedom (DOFs) to interpolate the new 

crack surfaces. The difference between the two is that the phantom node method keeps 

the nodal DOFs as displacement DOFs and stores the extra DOFs needed as the 

displacement DOFs of the ghost nodes, while XFEM keeps the number of nodes 

constant and stores the extra DOFs needed as enriched DOFs at each node [3]. The 

advantage is it is easier to be implemented in existing FEM programmes because each 

node has only the standard displacement DOFs and only the standard FEM shape 

functions are needed to interpolate them [18]. 

 

Figure 2.8 : The concept of Phantom Node Method [6]. 



20 
 

2.6.4 eXtended Finite Element Method (XFEM) Approach for Modelling Crack 

Propagation 

 

2.6.4.1 Approaches to low-cycle fatigue analysis 

 

The traditional approach for determining the fatigue limit for a structure is to establish 

the  curves (load versus number of cycles to failure) for the materials in the structure. 

Such an approach is still used as a design tool in many cases to predict fatigue resistance 

of engineering structures. However, this technique is generally conservative, and it does 

not define a relationship between the cycle number and the degree of damage or crack 

length. 

One alternative approach is to predict the fatigue life by using a crack/damage evolution 

law based on the inelastic strain/energy when the structure's response is stabilized after 

many cycles. Because the computational cost to simulate the slow progressive damage 

in a material over many load cycles is prohibitively expensive for all but the simplest 

models, numerical fatigue life studies usually involve modeling the response of the 

structure subjected to a small fraction of the actual loading history. This response is 

then extrapolated over many load cycles using empirical formulae to predict the 

likelihood of crack initiation and propagation. Since this approach is based on a 

constant crack/damage growth rate, it may not realistically predict the evolution of the 

crack or damage. 

2.6.4.2 Low-cycle fatigue analysis in Abaqus/Standard 

 

The direct cyclic analysis capability in Abaqus/Standard provides a computationally 

effective modeling technique to obtain the stabilized response of a structure subjected 

to periodic loading and is ideally suited to perform low-cycle fatigue calculations on a 

large structure. The capability uses a combination of Fourier series and time integration 

of the nonlinear material behavior to obtain the stabilized response of the structure 

directly.  

The direct cyclic low-cycle fatigue procedure models the progressive damage and 

failure both in bulk materials and at material interfaces. The former can be based on 

either a continuum damage mechanics approach or the principles of linear elastic 

fracture mechanics with the extended finite element method.  
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The response is obtained by evaluating the behavior of the structure at discrete points 

along the loading history as shown in Figure 2.9. The solution at each of these points is 

used to predict the degradation and evolution of material properties that will take place 

during the next increment, which spans a number of load cycles. The degraded material 

properties are then used to compute the solution at the next increment in the load 

history. Therefore, the crack/damage growth rate is updated continually throughout the 

analysis. 

 

Figure 2.9 : Elastic stiffness degradation as a function of the cycle number [6]. 

The elastic material stiffness at a material point remains constant and contact conditions 

remain unchanged when the stabilized solution is computed at a given point in the 

loading history. Each of the solutions along the loading history represents the stabilized 

response of the structure subjected to the applied period loads, with a level of material 

damage at each point in the structure computed from the previous solution. This process 

is repeated up to a point in the loading history at which a fatigue life assessment can be 

made. 

In bulk material, there are two approaches to modeling the progressive damage and 

failure. One approach is based on continuum damage mechanics. This approach is more 

appropriate for ductile material, in which the cyclic loading leads to stress reversals and 

the accumulation of plastic strains, which in turn cause the initiation and propagation 

of cracks. The other approach is based on the principles of linear elastic fracture 

mechanics with the extended finite element method. This approach is more appropriate 

for brittle material or material with small scale yielding, in which the cyclic loading 

leads to material strength degradation causing fatigue crack growth along an arbitrary 
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path. The onset and growth of the crack are characterized by the relative fracture energy 

release rate at the crack tip based on the Paris law. 

At interfaces of laminated composites the cyclic loading leads to interface strength 

degradation causing fatigue delamination growth. The onset and growth of 

delamination are also characterized by the relative fracture energy release rate at the 

crack tip based on the Paris law. 

Both the progressive damage mechanism in the bulk material and the progressive 

delamination growth mechanism at interfaces can be considered simultaneously, with 

the failure occurring first at the weakest link in a model. 

2.6.4.3 Determining whether to use the Fourier coefficients from the previous 

step 

 

A low-cycle fatigue step using the direct cyclic approach can be the only step in an 

analysis, can follow a general or linear perturbation step, or can be followed by a 

general or linear perturbation step. Multiple low-cycle fatigue analysis steps can be 

included in a single analysis. In such a case the Fourier series coefficients obtained in 

the previous step can be used as starting values in the current step. By default, the 

Fourier coefficients are reset to zero, thus allowing application of cyclic loading 

conditions that are very different from those defined in the previous low-cycle fatigue 

step. 

As in a direct cyclic analysis, you can specify that a low-cycle fatigue step in a restart 

analysis should use the Fourier coefficients from the previous step, thus allowing 

continuation of an analysis to simulate more loading cycles. In a low-cycle fatigue 

analysis a restart file is written at the end of the stabilized cycle.  

Consequently, a restart analysis that is a continuation of a previous low-cycle fatigue 

analysis will start with a new loading cycle at t = 0. 
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2.6.4.5 Progressive damage and damage extrapolation in bulk ductile material 

based on continuum damage mechanics approach 

 

Low-cycle fatigue analysis in Abaqus/Standard allows modeling of progressive damage 

and failure for ductile materials in any elements whose response is defined in terms of 

a continuum-based constitutive model. This includes cohesive elements modeled using 

a continuum approach. The inelastic definition in a material point must be used in 

conjunction with the linear elastic material model. After damage initiation the elastic 

material stiffness is degraded progressively in each cycle based on the accumulated 

stabilized inelastic hysteresis energy.  

It is impractical and computationally expensive to perform a cycle-by-cycle simulation 

for a low-cycle fatigue analysis; Instead, to accelerate the low-cycle fatigue analysis, 

each increment extrapolates the current damaged state in the bulk material forward over 

many cycles to a new damaged state after the current loading cycle is stabilized. 

2.6.4.6 Damage initiation and evolution 

 

Damage initiation refers to the beginning of degradation of the response of a material 

point. In a low-cycle fatigue analysis the damage initiation criterion is characterized by 

the accumulated inelastic hysteresis energy per cycle.  and material constants are used 

to determine the number of the cycle in which damage is initiated, .  

At the end of a stabilized loading cycle, , Abaqus/Standard checks to see if the damage 

initiation criterion  is satisfied in any material point; material stiffness at a material 

point will not be degraded unless this criterion is satisfied.  

Once the damage initiation criterion is satisfied at a material point, the damage state is 

calculated and updated based on the inelastic hysteresis energy for the stabilized cycle. 

Abaqus/Standard assumes that the degradation of the elastic stiffness can be modeled 

using the scalar damage variable, . The rate of the damage in a material point per cycle, 

is calculated based on the accumulated inelastic hysteresis energy, the characteristic 

length associated with an integration point, and material constants.  

Typically, a material has completely lost its load carrying capacity when . You can 

remove an element from the mesh if all of the section points at all integration locations 

of the element have lost their load carrying capability. 
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2.6.4.7 Damage extrapolation technique in the bulk material 

 

If the damage initiation criterion is satisfied in any material point at the end of a 

stabilized cycle,𝐷𝑁 , Abaqus/Standard extrapolates the damage variable  from the 

current cycle forward to the next increment over a number of cycles, ∆𝑁. The new 

damage state,𝐷𝑁+∆𝑁, is given by where L is the characteristic length associated with an 

integration point, and 𝐶3  and 𝐶4  are material constants 

𝐷𝑁+∆𝑁 = 𝐷𝑁 +
∆𝑁

𝐿
𝑐3∆𝜔𝐶4 (2.10) 

2.6.4.8 Discrete crack propagation along an arbitrary path based on the 

principles of linear elastic fracture mechanics with the extended finite element 

method 

 

Low-cycle fatigue analysis in Abaqus/Standard allows the modeling of discrete crack 

growth along an arbitrary path based on the principles of linear elastic fracture 

mechanics with the extended finite element method. You complete the definition of the 

crack propagation capability by defining a fracture-based surface behavior and 

specifying the fracture criterion in enriched elements. 

 The fracture energy release rates at the crack tips in enriched elements are calculated 

based on the modified virtual crack closure technique (VCCT). VCCT uses the 

principles of linear elastic fracture mechanics. Therefore, VCCT is appropriate for 

problems in which brittle fatigue crack growth occurs, although nonlinear material 

deformations can occur somewhere else in the bulk materials. To accelerate the low-

cycle fatigue analysis, the damage extrapolation technique is used, which advances the 

crack by at least one element length after each stabilized cycle. 

2.6.4.9 Onset and growth of fatigue crack 

 

The onset and growth of fatigue crack at an enriched element are characterized by using 

the Paris law, which relates the relative fracture energy release rate,∆𝐺 , to crack growth 

rates. Two criteria must be met to initiate fatigue crack growth: one criterion is based 

on material constants, ∆𝐺 , and the current cycle number,N ; the other criterion is based 

on the maximum fracture energy release rate,𝐺𝑚𝑎𝑥 , which corresponds to the cyclic 

energy release rate when the structure is loaded up to its maximum value. Once the 
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