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ABSTRAK 

 

Pakej Set Perisisan Mudah Alih, Boleh Perluas untuk Pengiraan Saintifik 

(PETSc) ialah alat pengkomputeran yang popular dalam kalangan para penyelidik 

kerana pakej ini menyediakan kemampuan untuk melaksanakan pengaturcaraan selari 

dalam menyelesaikan pelbagai jenis analisis unsur terhingga melalui penggunaan 

pelbagai rutin dan set perisian yang dapat dimanipulasi melalui pilihan waktu 

eksekusi. PETSc, seperti yang didakwa, membolehkan pertukaran kod saintifik sedia 

ada dari struktur bersiri ke dalam struktur selari dengan cara yang mudah. 

Tumpuan utama projek ini adalah untuk menilai prestasi kod selari unsur 

terhingga melalui penggunaan PETSc. Perbandingan prestasi antara pelbagai jenis 

penyelesai selari juga dilakukan dalam kajian ini. Tahap pengoptimuman selari yang 

berbeza juga dikaji. Platform ujian terdiri daripada pemproses Intel Xeon X5650 yang 

mempunyai 6 teras fizikal (12 teras logik) dan 24GB RAM serta kod kaedah unsur 

terhingga (FEM) dibina dengan pengkompil versi GCC 4.4 dan OpenMPI 3.0. 

Hasil dari projek ini menunjukkan prestasi pengiraan selari yang agak baik 

berbanding prestasi pengiraan bersiri. Sebagai contoh, kebanyakan simulasi pengiraan 

selari boleh mendapat kelajuan 3 kali lebih laju berbanding pengiraan bersiri. Selain 

itu, pelaksanaan pilihan pengoptimuman waktu eksekusi tidak semestinya 

meningkatkan prestasi kod selari tersebut. Dalam kajian ini, penggunaan penyelesai 

selari yang berbeza iaitu penyelesai LU tidak lengkap (ILU) dan multigrid (MG) juga 

menunjukkan perbezaan dalam prestasi pengiraan selari. 

Ringkasnya, kerja ini menunjukkan bahawa prestasi pengiraan selari jauh 

lebih baik daripada prestasi pengiraan bersiri. Walau bagaimanapun, terdapat banyak 

ruang untuk meningkatkan kelajuan pengiraan selari kerana didapati kadar 

peningkatan dalam kelajuan pengiraan selari mula menyusut apabila bilangan teras 

pemproses yang agak banyak mula digunakan. Selain itu, kajian ini menunjukkan 

bahawa beberapa penyesuaian perlu dilakukan untuk meningkatkan prestasi 

penyelesai selari versi optimum. 
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ABSTRACT 

 

The Portable, Extensible, Toolkit for Scientific Computation (PETSc) library 

package is a popular computational tool among researchers that provides the 

capability of implementing parallel schemes in solving various kinds of finite element 

analysis through the use of its many routines and libraries that can be manipulated 

through runtime options. PETSc, as is claimed, allows a migration of existing 

scientific code from a sequential structure into a scalable, parallel paradigm structure 

in a convenient manner. 

The main focus of this project is to evaluate the parallel performance of finite 

element code through the use of PETSc. Performance comparisons between different 

types of parallel solver are also done in this study. Different levels of parallel 

optimisation are also studied. The test platform consists of an Intel Xeon X5650 

processor which has 6 physical cores (12 logical cores) and 24GB RAM and the FEM 

code is built with GCC compiler version 4.4 and OpenMPI 3.0. 

 The results from this project show a considerably good parallel performance 

compared to the serial performance. For instance, most of the parallel computation 

simulations could gain at least 3 times speedup compared to the serial computation. 

Apart from this, the implementation of build-time optimisation option does not 

necessarily increase the parallel performance of the code. In this study, the use of 

different parallel solvers, in this case, the incomplete LU (ILU) and multigrid (MG) 

solvers, also shows difference in the parallel performance. 

 In brief, this work shows that the performance of the parallel computation is 

considerably better than serial computation performance. However, there is much 

room for improvement of the scalability of the parallel computation speedups since 

the most speedups start to scale poorly when more number of cores used. Moreover, 

this work hints that some tunings of the compiler should be taken to enhance the 

optimised versions of the parallel solver. 
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CHAPTER 1:  INTRODUCTION 

 

1.1 The Portable, Extensible Toolkit for Scientific Computation (PETSc) 

 

 Developing parallel, nontrivial partial differential equation (PDE) solvers that 

deliver high performance is still difficult and requires long period of concentrated 

effort. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a 

toolkit that can ease these difficulties and reduce the development time. PETSc is 

portable and can be installed on any operating systems. The software has a powerful 

set of tools for the numerical solution of partial differential equations and related 

problems on high-performance computers (Gropp, 2001). 

PETSc includes linear system solvers (sparse/dense, iterative/direct), nonlinear 

system solvers, tools for distributed matrices and support for profiling, debugging and 

graphical output. PETSc provides abstract interface that eases user to manipulate the 

routines provided by PETSc through runtime options (‘PETSc: Features’, n.d.).  

 

1.2 Advantages of Using PETSc 

 

           The operation performed on the objects has abstract interface which is simply a 

set of calling sequences, which makes the use of PETSc easy during the development 

of large-scale scientific application codes. The use of libraries provided in PETSc 

could deliver high performance computing. 

           PETSc includes libraries of numerical methods that can be applied directly to 

applications. With abstraction level interfaces, process of porting PETSc into the 

existing application codes becomes easier than developing. The parallel finite element 

computation of interested problems is done with PETSc subroutines.  

            Routines provided with PETSc enable scalable parallelism. PETSc library 

provides its users a platform to develop applications exploiting fully parallelism and 

the flexibility to experiment many different models, linear and nonlinear large system 

solving methods avoiding explicit calls to MPI library. PETSc could reduce 

computational time in solving linear system since all linear solvers in PETSc are 

iterative solvers (iterative solvers use successive approximations of the solution 
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instead of solving a linear system Ax = b with Gaussian elimination which can take 

lots of time and memory). 

 

1.3 Parallelisation Using PETSc 

 

           To enable parallel computation using PETSc, a message passing interface 

library is needed. The Message Passing Interface (MPI) is a library for parallel 

communication. It is a system for launching parallel jobs. PETSc users can use shared 

memory programming through MPI library. MPI has basic tools that send elementary 

datatypes between processors while PETSc has intermediate tools that insert matrix 

element in arbitrary location and do parallel matrix-vector product.  

            Parallel computation is preferred over the serial computation in finite element 

modelling because the problem can be solved faster. Hence, it is possible to obtain a 

more accurate solution or solve a more complicated problem in the same amount of 

time. 

 

1.4 Problem Statement 

 

            The serial computing takes much longer time compared to parallel computing. 

The big interest in creating finite element analysis (FEM) program is the ability to 

implement parallel computing into its solvers. Though practically it is almost 

impossible to achieve ideal scaling of parallel speedup, the implementation of parallel 

computing still can greatly increase the speed of the FEM simulation of the program.  

            Free and open-source FEM code implementations are widely available. 

However, parallel FEM code is limited. On the other hand, PETSc is an established 

toolkit and library for parallel computing. The parallel performance of PETSc for 

using in FEM needs to be understood as far as computing time and memory 

requirements are concerned. PETSc could provide scalability, which is an important 

concern of parallel processing (‘Measuring Parallel Scaling Performance - 

Documentation’, 2016), through established MPI libraries such OpenMPI library. 
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1.5 Objectives of Project 

 

i) To acquire and set up case studies for parallel solution with PETSc. 

ii) To evaluate and analyse the performance of the parallel solvers through strong 

scaling analysis.  

iii) To characterise the algebraic multigrid solver. 

 

1.6 Scope of Work 

 

This project focuses to implement parallel scheme for solving finite element 

modelling problem through the use of open-source software, which is PETSc toolkit 

in this case. The parallel schemes are implemented through runtime options which 

allow users to manipulate certain routines for implementation of parallel solver. The 

measuring of the parallel performance is done by using only one node of the HPC 

server. 

This study aims to analyse the efficiency and performance of parallel 

computing of the finite element analysis problem through the use of a parallel solver 

available in PETSc. There are so many types of algorithm can be tested and used to 

set up the solver through runtime options. Different type of solvers will influence the 

perfomance of parallel computation. In this project, a parallel solver will be created 

based on the algebraic multigrid method (linear solver) and compared to another 

typical solver.  

The problems involved for the implementation of the parallel solver only 

include the steady-state cases, for instance, a 3D steady-state thermal conduction 

problem. Hence, the efficiency of the simulation of the typical 3D conduction 

problem will provide a platform to analyse and evaluate the performance and 

effectiveness of parallel solver implementation for other similar finite element 

modelling cases.  
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CHAPTER 2:  LITERATURE REVIEW 

 

2.1 Use of PETSc 

 

         In finite element analysis of large scale, most of the computation time is spent 

on the solution of the assembled matrix system which sometimes includes time 

integration. This project however, does not include transient problem. The 

computation time could be reduced significantly if parallel solver is implemented. 

PETSc is one of the softwares that provide toolkit for development and 

implementation of parallel solver. PETSc provides an abstract interface for users to 

PETSc enables users to easily implement the formation and solution of finite element 

analysis. PETSc has been used for parallel finite element modelling in many areas 

which include computational fluid dynamics, aerodynamics, material science and 

even earthquakes (Knepley, Katz, & Smith, 2006). 

 

2.2 Parallel Finite Element Modelling Using PETSc 

 

            One particular research has been done to develop a parallel finite element 

model for elasticity problems (Zhang, 2015). In this study of, the conjugate gradient 

(CG) algorithm is used since the linear system derived from finite element 

discretization of the elasticity problems is sparse and symmetric positive definite 

(SPD). A comparative analysis of serial performance of various preconditioned CG 

solvers is conducted. The precondioners tested are Jacobi, successive over-relaxation 

(SOR), and algebraic multigrid (AMG) and none preconditioner. Besides that, parallel 

performance of the finite element linear system solution stage on coarse and fine 

meshes for Jacobi and AMG also has been measured. 

            Apart from that, PETSc routines also had been used to create a parallel FEM 

scheme for the simulation of large scale thermochemical energy storage (Wang, 

Kolditz, & Nagel, 2017). Here, PETSc routines embedding parallelisation approach 

are used to conduct an efficient simulation of the thermochemical heat storage model. 

The finite element method used in this specific study includes weighted residual 

method for the weak forms formulation of the problem and isoparametric Galerkin 
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mixed finite element approach for the discretisation of the weak forms. Picard method 

(fixed point iteration) is used for the linearisation. The solver used is basically KSP 

(Krylov subspace) linear solver. The evaluation of the parallel computation in this 

particular study is based on the comparison with the serial computation of the 

simulation of the thermochemical heat storage problem. 

       In another study, the principle of thermal recovery simulation is analyzed 

through a parallel scheme created using PETSc (Liu, Xue, Shu, & Ma, 2010). This 

study compared the solution time for two preconditioners which are Additive Schwarz 

Method (ASM) and block Jacobi (BJACOBI). This study also compared parallel 

computation with the serial computation of the thermal recovery simulation. 

 

            There are also studies that were conducted to analyze hybrid parallel 

programming techniques (Castro, Paz, Storti, & Sonzogni, 2009; Paz, Storti, & 

Castro, 2010). In these studies, parallel hybrid finite element code is developed and its 

performance evaluated, using Message Passing Interface (MPI) through PETSc for 

communication between cluster nodes and Open Multi-Processing (OpenMP) for 

parallelism within a symmetric multiprocessing (SMP) node. 
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CHAPTER 3:  RESEARCH METHODOLOGY 

 

3.1 Hardware and System Requirements 

 

            Computations were carried out on the high-performance computing (HPC) 

server that consists of three nodes with each node consists of an Intel Xeon X5650 

processor, a 24 GB RAM system and 1 TB hard disk. Each of the Intel Xeon X5650 

processor has 6 physical cores with total of 12 logical cores (threads) which runs at 

2.67 GHz speed with 3.1 GHz turbo speed. This project used one node.  

           The HPC server uses Red Hat Enterprise Linux Server release 6.7 (Santiago) 

operating system. A personal laptop is with any Linux operating system is needed to 

connect to the HPC server through a Linux console. In this project, openSUSE of 

Tumbleweed version is installed on the personal laptop.  

 

Figure 3.1 shows the graphical reperesentation for the HPC system. 

 

Figure  3.1: Graphical definition of processor, core and node. 

Figure 3.1 above shows how a node is defined in this particular case. The HPC server 

has 3 nodes, however only one node is used in this project with total of 6 cores (12 

threads) are usable. 
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3.2 Configuring PETSc 

 

            PETSc is installed on the HPC server. The version of the PETSc used is 

version 3.8.1 which was released on 4 November 2017.  

In this work, the solution stage of the parallel finite element computation of interested 

problems is implemented using PETSc subroutines. Figure 3.2 below various 

numerical libraries and objects available through PETSc. 

 

 

Figure  3.2: Numerical libraries of PETSc (Gropp, 2001). 

            From Figure 3.2, each library manipulates a particular family of objects such 

as vectors and also the operations performed on the objects. The operation performed 

on the objects has abstract interface which is simply a set of calling sequences. Thus, 

PETSc enables users to employ the level of abstraction that is most appropriate for a 

particular problem through runtime options.  
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            In this project, the main objects that were manipulated through the runtime 

options were those under the Domain Management (DM) and Preconditioners (PC) 

libraries. The sample of the runtime options implemented is attached in Appendices 

section. 

            As shown in the Figure 3.2, Basic Linear Algebra Subprograms (BLAS), 

Linear Algebra Package (LAPACK) and Message Passing Interface (MPI) libraries 

are also needed to use PETSc. Next sections briefly provide some information on 

these libraries. 

 

3.2.1 MPI  

 

The Message Passing Interface (MPI) is a library specification that allows the passing 

of information between various nodes and clusters of computers. This enables the 

implementation of parallel programming in the HPC server. In this project, the 

specific library used for the MPI implementation was OpenMPI. The option to use 

OpenMPI library was done in the configuration sricpt of PETSc. OpenMPI is an 

open-source, portable implementation of the MPI standard. The version of the 

OpenMPI used was OpenMPI 3.0 together with GCC compiler version 4.4. 

 

3.2.2 BLAS and LAPACK Library 

 

The BLAS (Basic Linear Algebra Subprograms) provide routines for standard 

building blocks to enable the basic operations of vector and matrix. There are three 

main levels in BLAS. The Level 1 BLAS perform scalar, vector and vector-vector 

operations, the Level 2 BLAS perform matrix-vector operations, and the Level 3 

BLAS mainly perform matrix-matrix operations. BLAS are commonly used in the 

development of high quality linear algebra software, such as LAPACK. 

 

LAPACK (Linear Algebra Package) provides routines for solving systems of 

simultaneous linear equations, least-squares solutions of linear systems of equations, 

eigenvalue problems, and singular value problems. LAPACK also allows efficient 

computation on shared-memory vector and parallel processors (‘LAPACK — Linear 

Algebra PACKage’, 2017). 
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3.3 Case Studies 

 

Two PETSc application codes were used as main case studies for parallel 

computation analysis in this project. The code solves a 2D driven cavity problem 

while the second code solves 3D thermal conductivity problems that are modelled in 

terms of Poisson’s equation. 

 

3.3.1 2D Driven Cavity Problem 

 

The first case study is a about a 2D nonlinear driven cavity problem.  

Figure 1 below shows the graphical representation of the problem. This problem is 

solving values for temperature, velocity and vorticity of 2D driven cavity problem 

inside a unit square domain. 

 

Figure  3.3: Boundary conditions for the nonlinear driven cavity problem. 

Figure 3.3 shows the driven cavity problem represented in a unit square domain. 
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Boundary Conditions 

No-slip, rigid-wall conditions are used for the walls of the cavity. As shown in Figure 

1, Dirichlet conditions are used for temperature on the left and right walls, and 

insulation homogeneous Neumann conditions are used for temperature on the top and 

bottom walls. All the boundary conditions can be expressed by equations: 

                                                  on the left wall                                                 (3.1) 

                                                  on the right wall                                               (3.2) 

                                              
  

  
   on the top wall                                                (3.3)  

                                            
  

  
   on the bottom wall                                         (3.4) 

The lid velocity, W, is set to different values for different grid refinement level. Table 

3.1 below shows different values used for the lid velocity. 

 

Table 3.1: Lid velocity for different grid refinement levels. 

Grid Refinement Level Lid Velocity (m/s) 

6 (Coarse) 2.6846e-05 

    7 (Medium) 6.7465e-06 

           8 (Small) 1.6910e-06 

           9 (Fine) 4.2330e-07 

 

Governing Equations 

A number of partial differential equations are used to generate the mesh of structured 

grid for solving the nonlinear driven cavity problem. 

The velocity of the fluid in the cavity is given by 

                                                     𝝆  𝑈𝑥, 𝒊 + 𝑉𝑥, 𝒋                                                 (3.5) 
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The vorticity is represented by equation 

                                                      Ω   ∇ 𝑈 + ∇𝑥𝑉                                              (3.6) 

where along each constant coordinate boundary, the tangential derivative is zero 

which is given by equations  

                                                              ∆𝑈  ∇ Ω                                             (3.7) 

                                                               ∆𝑉  ∇𝑥Ω                                            (3.8) 

Two more partial differential equations used to model this problem are given by 

                            ∆Ω + ∇. ([𝑈 ∗ Ω, 𝑉 ∗ Ω])  𝐺𝑅 ∗ ∇𝑥                                    (3.9) 

                                        ∆ + 𝑃𝑅 ∗ ∇. ([𝑈 ∗  , 𝑉 ∗  ])                                  (3.10) 

where GR is the Grashof number, the dimensionless temperature gradient and PR is 

the Prandtl, the dimensionless thermal or momentum diffusivity ratio. In this problem 

both PR and GR are set to 1.0. 

The problem is uniformly discretised in each of x and y in the unit square domain. 

 

3.3.2 3D Thermal Conduction Problem with Constant Coefficient 

 

This problem aims to determine values of u(x,y,z) in one unit cube domain such that                  

                                                                     . ∇                                             (3.11) 

where     and f = 4. 

Hence, the equation can be rewritten as 

                                                  (
   

 𝑥 +
   

   +
   

   )                                          (3.12) 

 

The boundary conditions of the problem are defined as Dirichlet conditions based on 

the exact solution of the equation 3.12. The exact solution is: 
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                                ( ,  ,  )  
 

 
(  +   +  )                                                   (3.13) 

Hence, the boundary conditions for all six faces of the cube domain are given by the 

following equations: 

 

                                  
 

 
(  +   +  )  on the top area (z = 1)                          (3.14) 

                                  
 

 
(  +   ) on the bottom area (z = 0)                            (3.15)      

                                  
 

 
(  +   ) on the front area (y = 0)                               (3.16) 

                                  
 

 
(  +   +  ) on the back area (y = 1)                        (3.17) 

                                  
 

 
(  +   +  ) on the right area (x = 1)                        (3.18) 

                                  
 

 
(  +   ) on the left area (x = 0)                                  (3.19) 

 

 

Figure 3.4 shows the orientation of axis and notation of surface orientation of 3D unit 

cube of the 3D thermal conduction problem. 

 

Figure  3.4: The cube domain and showing the surface orientation of the cube domain. 
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3.3.3 3D Thermal Conduction Problem with Nonlinear Coefficient 

 

This problem aims to determine values of u(x,y,z) in one unit cube domain such that  

 

                                      ∇.  ( ,  ,  )∇                                              (3.20) 

where f is given by equation 

                                                        (  +   +  )                              (3.21) 

 

The exact solution is used for the Dirichlet conditions with a nonlinear coefficient (p-

Laplacian with p = 4). The exact solution is given by equation 

                                          ( ,  ,  )  
 

 
(  +   +  )                                (3.22) 

 

Hence, for this specific case, the value of   is 

                                                    
  

 
(  +   +  )                                        (3.23)          

 

With 

     +   +  , 

then 

                      (
 

 𝑥
    

 𝑥
+

 

  
    

  
+

 

  
    

  
)  

  

 
(  +   +  )                 (3.24) 

 

The Dirichlet boundary conditions are based on exact solution are given by 

same equations 3.14 to 3.19, the exact same conditions as in linear case in described 

in section 3.3.2. 

 

3.4 Implementation of PETSc Routines 

 

The subsections below provide brief explanation of the PETSc routines that are used 

in implementing the parallel solver through runtime options. 

 

 



14 

 

3.4.1 Control of Domain Management  

 

The meshing for 2D driven cavity problem is structured. The example of main routine 

used to vary the grid size to refinement level 2 is 

 

> –da_refine 2 

 

 

Figure  3.5: Images showing how the grid sizes vary from one level to one level.  

 

Figure 3.5 shows how grid size varies when the grid refinement level was increased 

by one level. In this study 4 different grid refinement levels are used starting from 

level 6 to level 9. Table 3.2 below shows the number of unknowns associated with 

each level used. 

 

Table 3.2: Number of unknowns for different grid sizes used. 

Grid Refinement Level No. of Unknowns 

  6 (coarse size)                 148,996 

  7 (medium size)                 592,900 

  8 (small size)              2,365,444 

  9 (fine size)          188,891,152 

 

For 3D thermal problem, the meshing is unstructured. Table 3.3 shows the main 

differences between structured mesh and unstructured mesh. 
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Table 3.3: Main differences between structured and unstructured grids or meshes. 

Structured Grid Unstructured Grid 

Domain is divided into a structured 

assembly of quadrilateral cells. 

Computational domain is divided into an 

unstructured assembly of computational 

cells. 

Each interior nodal point is surrounded 

by the same number of mesh cells (or 

elements). 

The number of cells surrounding each 

interior node is not necessarily constant. 

Directions within the mesh can be 

immediately identify by associating a 

curvilinear co-ordinates system 

(represented by i, j, k indices). 

The nodes and the elements have to be 

numbered. 

 

Figure 3.6 shows the unstructured grid of the 3D thermal problem. 

 

 

Figure  3.6: Unstructured mesh of the 3D thermal problem. 

 

From Figure 3.6, it is clearly shown that node 1 and 2 are surrounded by 

different number of elements. Node 1 is surrounded by 7 elements while node 2 is 

surrounded by 6 elements. 

            In this project, meshing refinement level is fixed to level 7 both linear and 

nonlinear cases. 16,581,375 unknowns are solved for this particular mesh size. 

Runtime option shown below is the main command used to refine the mesh to level 7.  

 

> –dm_refine 7 
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Figure 3.7 shows how mesh size refined when meshing refinement level is increased 

by one level. 

 

 

Figure  3.7: Pictures from the left to right indicate the meshing refinement level 4 and 5 

respectively. 

 

3.4.2 Using MPI 

 

PETSc is configured together with OpenMPI library to allow the manipulation of 

number of cores used in running the simulation of the problem codes. This will enable 

the measuring of the scaling efficiency of PETSc. This could indicate how efficient 

PETSc parallel solvers are when using increasing number of cores.  Example use of 

routine for this purpose is: 

 

> –mpirun  –n no. of cores 

 

The number of cores ranges from 1 to 12. 

 

3.4.3 Assigning Type of Solver  

 

Figure 3.8 gives a brief definition of solver and preconditioner in solving a system of 

equations.  
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Figure  3.8: Definition of solver. 

 

The main types of solver used include Newton’s method, incomplete LU 

factorisation (ILU) method and multigrid method. The solver type could be specified 

using command: 

 

> –pc_type 

> –snes_type 

 

The Scalable Nonlinear Equations Solver (SNES) used is Newton’s line search 

method.  

Newton’s method is really useful in solving nonlinear equations (Briggs, Henson, & 

McCormick, 2000).  

            Suppose that, to solve the scalar equation F(x) = 0, the F term is expanded in a 

Taylor series about an initial guess x: 

                                              ( +  )   ( ) +    ( ) +
  

 
   ( )                     (3.25)               

 

where ξ is between x and x + s. If x + s is the solution, then (neglecting the higher-

order terms) the series becomes    ( ) +    ( ), from which     ( )   ( ). 

Thus, the initial guess of x can be updated using: 

                                                             
 (𝑥)

  (𝑥)
                                                  (3.26) 

Solver 

Direct Method Solver - initial 
linear system is transformed 

into simpler form. 

Iterative Method Solver - 
compute sequence of 

approximate solutions which 
converges to exact solution. 

Stationary 
Methods 

Nonstationary Methods - 
Preconditioner is used to 

improve convergence. 



18 

 

The ILU solver is a modification of LU factorisation method. Suppose that a 

matrix system Ax = b can be expressed by a mathematically equal preconditioned 

linear system expressed as follows: 

M
−1

Ax = M
−1

b, where M is a preconditioner. One simple way to construct 

preconditioners is to split A into A = M − N. In theory, any splitting with nonsingular 

M which is close to A in some sense can be used.   

The Jacobi preconditioner is a commonly used preconditioner with the form of 

M = diag(A). The successive over relaxation (SOR), Gauss-Seidel or subgrid scale 

(SGS) preconditioning matrix is of the form M = LU, where L and U are the lower 

triangular part and the upper triangular part of A, respectively. Another simple way of 

defining a preconditioner is incomplete factorisation of the matrix A. These 

incomplete LU factorisation (ILU) preconditioners perform decomposition of the 

form A = LU−R, where L and U are the lower and upper parts of A with the same 

nonzero structure and R is the residual of the factorisation (Zhang, 2015). 

            Multigrid method mainly can be divided into two types. Geometric multigrid 

is used for structured grid while algebraic multigrid is used for unstructured grid. 

Suppose that for matrix equation Ax = b, the x can approximated as v which then 

gives the error, e = x – v. Then, the residual is r = b – Av. Since e = x - v, the system 

Ax = b can be written as A(v + e) = b which means that Ae = b - Av   r. Residual 

equation is given by equation Ae = r while the residual correction is given by equation 

x = v + e. The nonlinear residual equation is given by A(v + e) - A(v) = r. 

 

3.4.4 Optimisation of Code 

 

            The codes in PETSc could be run either without optimisation or with 

optimisation option. To run the code in optimisation option, the PETSc was 

configured with debugging option. Debugging option was used in both case studies. 

            On the other hand, the debugging option is turned off to optimise the code. 

The optimization level could be manipulated from level 0 to level 3. Despite of some 

errors during configuring with optimisation of levels 2 and 3, the code for 2D driven 

cavity problem could still be run with the options. The screenshot that shows errors 

while configuring for the implementation of optimisation level 2 is attached as 

Appendix D.  
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Hence, all optimisation levels were used for the 2D driven cavity problem 

while for the 3D thermal problems, only optimisation level 1 is used to be compared 

with the code performance without optimisation. The 3D thermal problem could not 

run with the optimisation of levels 2 and 3. This is due to the errors during 

configuration of optimisation of levels 2 and 3. The script samples for configuring 

PETSc without optimisation and with optimisation are attached as Appendix A and 

Appendix B respectively.  

 

3.4.5 Obtaining Graphics for 2D Driven Cavity Problem 

 

PETSc has integrated various routines that could be called during runtime 

options. Among them are the options to use X Window system, a system for 

managing a windowed graphical user interface in a distributed network. Hence it 

enables the display of graphical solution for 2D driven cavity problem. Below are 

some runtime options to enable the graphics display of this specific problem solution: 

 

> –contour –draw_save –draw_pause –1 

 

3.4.6 Obtaining Graphics for 3D Problem 

 

For a 3D problem, the graphical result need to be saved as a file before 

opening the saved file using a supported software, which in this case is ParaView. To 

enable the view in ParaView, the file is usually saved in .vtu or .vts format. For this 

specific study, the file is saved in .vtu extension since the code involves unstructured 

mesh.  

 

> –vec_view vtk:filename.vtu:vtk_vtu 
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3.4.7 Obtaining Data for Analysis of the Parallel Implementation 

 

The output during each problem solution is saved into a log file that records all 

the data and information needed for the analysis of parallel performance of the codes. 

The information needed includes total running time of the code, total memory used 

and total number of unknowns. All these information are recorded and saved into a 

log file through options: 

 

> –log_view –memory_view –ksp_view –malloc_info 

 

A sample of log file is attached as Appendix C. 

 

3.5 Analysis of Results 

 

            The main interests of the analysis are to study about the speedup of the codes, 

the memory used, number of unknowns associated and relative performance of 

parallel solvers used. Hence, based on the simulations’ result, a number of graphs 

were plotted to analyse the interested parameters. The graphs plotted include 

information on speedup, solution time and also comparison between different 

optimisation levels.  
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CHAPTER 4:  RESULTS AND DISCUSSION 

 

4.1 2D Driven Cavity Problem 

 

The case study of this problem had been successfully set up by using incomplete LU 

decomposition solver. The main interest for this 2D driven cavity problem is to 

analyse the speedup of parallel computation for different sizes of meshing and to 

study the effect of optimisation of the code. 

 

4.1.1 Graphical Solution 

 

Figure 4.1 shows the velocity in x-direction of the fluid in the cavity. 

 

 

Figure  4.1: Velocity in x direction inside the cavity. 

Based on Figure 4.1, the graphical solution shows that the velocity in x-

direction range between -0.0039 m/s to 0.0039 m/s. 
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Figure 4.2 shows the velocity in y-direction of the fluid in the cavity which lies in the 

same range as that of velocity in x-direction. 

 

 

Figure  4.2: Velocity in y direction inside the cavity. 

 

Figure 4.3 shows the PETSc solution for the vorticity of the fluid inside the cavity. 

 

 

Figure  4.3: Vorticity of the fluid inside the cavity. 

 

The vorticity ranges from -0.0507 rad/s to 0.0357 rad/s. 
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Figure 4.4 shows the temperature distribution inside the cavity. 

 

Figure  4.4: Temperature distribution of the fluid inside the cavity. 

 

From the Figure 4.4, the temperature varies in x-direction from 0 ℃ at the left wall to 

1℃ at the right wall as described by Dirichlet conditions.  

 

4.1.2 Speedup of Code 

 

Figure 4.5 shows the scalability analysis of the code without optmisation. 

 

Figure  4.5: Speedup of 2D driven cavity problem code without optimisation. 
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Based on Figure 4.5, the speedup of the code starts to hit the peak with n = 6 for 

coarse and medium grid. The speedup then stays about the same until n = 12. 

             For small grid, the speedup increases until n = 10 but then significantly drops 

when the number of cores to 11 and remains constant with maximum cores used. For 

fine grid, the speedup gradually increases from n = 1 core to n = 12. 

 

Figure 4.6 shows the speedup for optimisation level 0. 

 

 

Figure  4.6: Speedup of code for three different grid sizes with optimisation level 0. 

 

            From Figure 4.6, the speedup for coarse gradually increases but then starts to 

fluctuate at n = 8 until n = 12. The speedup for the speedup trend for both medium 

seems about the same. The speedup seems starts to hit the peak at 6 cores. This 

speedup remains constant until 12 cores for medium grid but it shows a slight increase 

from n = 11 to n = 12 for small grid. Generally, the peak speedup of the parallel 

computation achieved lies in between 3 to 4 compared to the serial computation with 

n = 1. 
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