SULIT

KSCP Examination
2020/2021 Academic Session
September 2021

EAS254 - Structural Analysis

Duration : 3 hours

Please ensure that this examination paper contains SIX (6) printed pages including appendix before you begin the examination.

Instructions: This paper contains FIVE (5) questions. Answer ALL questions.
All questions MUST BE answered on a new page.

1. Figure 1 shows a frame subjected to a concentrated moment of 20 kNm about point B and a linearly varying distributed load from $0 \mathrm{kN} / \mathrm{m}$ at point C to $5 \mathrm{kN} / \mathrm{m}$ at point B. Support A is a fixed support and support C is a roller support placed on an inclined plane at 15^{0} from horizontal plane. Use the virtual work method to determine the horizontal deflection at joint B of the frame. Take $E=200 \mathrm{GPa}$ and $I=250 \times 10^{6} \mathrm{~mm}^{4}$. Neglect the deflection due to axial work.

Figure 1
2. Figure 2 shows a beam carrying a uniformly distributed load of $5 \mathrm{kN} / \mathrm{m}$ for span AB and $10 \mathrm{kN} / \mathrm{m}$ for span CD. Two additional point loads of 20 kN each act on span $B C$. Supports A and E are fixed, whereas supports B, C and D are pinned. $E l$ is constant for the beam.
(a). Compute the internal moments at the joints of the beam by using Moment Distribution Method. Fixed end moment is given in the Appendix.
[14 marks]
(b). Draw the shear force diagram and the qualitative deflected shape for the beam.
[6 marks]

Figure 2
3. Figure 3 shows a frame carrying a uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}$ for member ABCD. A 20 kN point load acts at the middle span of BE and CF. Support A is pinned whereas supports D, E and F are fixed. $E /$ is constant for the frame.
(a). Compute the internal moments at the joints of the frame by using Slope Deflection Method. Fixed end moment is given in the Appendix.
(b). Draw the bending moment diagram for the frame.

Figure 3
4. (a). The truss system shown in Figure 4 is subjected to two vertical loads, F_{1} and F_{2} at Joints B and C, respectively. Supports A and D consist of a pin and roller, respectively. Determine the reaction forces at supports A and D, and the force in each truss member using the method of least work. Set $F_{1}=50 \mathrm{kN}$ and $F_{2}=40 \mathrm{kN}$. The cross-sectional area, A and Young's Modulus, E of the truss members are constant.
[16 marks]
(b). The truss system shown in Figure 5 is subjected to a few concentrated loads. Without any calculation, explain the analysis procedure to determine the force in each member of the truss.
[4 marks]

Figure 4

Figure 5
5. The cross-sectional area for segments $A B, B C$ and $C D$ of the beam shown in

Figure 6 are constant. The beam is subjected to various point loads and uniformly distributed loads. Calculate the plastic moment M_{p} for the beam using
(i). Equilibrium method
(ii). Virtual work method
[20 marks]

Figure 6

APPENDIX

$(A$	
	(FEM) ${ }_{A B}^{\prime}=\frac{9 w L^{2}}{128}$
	(A)

