SULIT

KSCP Examination
2020/2021 Academic Session
September 2021

EAH221 - Fluids Mechanics for Civil Engineers

Duration : 3 hours

Please ensure that this examination paper contains TWELVE (12) printed pages before you begin the examination.

Instructions: This paper contains SIX (6) questions. Answer FIVE (5) out of SIX (6) questions.

All questions MUST BE answered on a new page.

1. (a). A closed vessel is divided into two compartments, which contain oil and water as shown in Figure 1.

Determine the value of h.

Figure 1
(b). A circular plate of 5 m in diameter has a circular hole of 2 m diameter with its centre 1.25 m above the centre of the plate as shown in Figure 2.

The plate is immersed in water at an angle of 45° to the horizontal and with its top edge 3.0 m below the free surface and the circular hole is located nearer to the water surface.

Given that moment of inertia of a circle is $I=\frac{\pi D^{2}}{64}$.

Calculate the force due to pressure on the plate and the depth of centre of pressure.

Figure 2
2. (a). Describe briefly the following conditions of equilibrium of a Floating Body.
i) Stable Equilibrium
ii) Unstable Equilibrium
iii) Neutral Equilibrium
(b). A solid cone of weight 7.5 kN is floating in oil of specific weight $9.0 \mathrm{kN} / \mathrm{m}^{3}$ as shown in Figure 3. Determine the minimum apex angle to ensure that the cone floats with its apex downwards.

Given:
Centre of gravity for a cone is c.g. $=\frac{3}{4} H$ and
Moment of inertia of a circle from plan view $I=\frac{\pi D^{4}}{64}$
Volume of a cone $V=\frac{\pi r^{2} h}{3}$

Figure 3
3. (a) i) Describe the principle and conditions for continuity of flow.
ii) In Figure 4, oil flows through a pipe line which contracts from 500 mm diameter at A to 350 mm diameter at B and then forks, one branch being 120 mm diameter discharging at C and the other branch 250 mm diameter discharging at D. If the velocity at A is $2.0 \mathrm{~m} / \mathrm{s}$ and the velocity at D is $4.0 \mathrm{~m} / \mathrm{s}$, calculate the discharge at sections C and D and the velocity at points B and C.
[10 marks]

Figure 4
(b). In Figure 5, a siphon with a uniform circular bore of 90 mm diameter and consists of a bend pipe with its crest 2.0 m above water level discharging into the atmosphere at a level 3.8 m below water level. Determine the velocity of the flow, discharge and the absolute pressure at crest level if the atmospheric pressure is equivalent to 10 m of water. Neglect losses due to friction.

Figure 5
4. (a). i) Explain how provision can be made in Bernoulli's equation for loss of energy occuring between two points in the stream of liquid.
[4 marks]
ii) A conical tube carrying water is fixed vertically with its smaller end upwards. The velocity of flow down the tube is $5.0 \mathrm{~m} / \mathrm{s}$ at the upper end and $2.0 \mathrm{~m} / \mathrm{s}$ at the lower end. The tube is 1.5 m long and the pressure head at upper end is 3 m . The loss in the tube is expressed as $\frac{0.3\left(V_{1}-V_{2}\right)}{2 g}$ where v_{1} and v_{2} are the velocities at the upper and lower end, respectively. Calculate the pressure at the lower end.
(b). A jet of water is discharged through a nozzle with an effective diameter, D of 85 mm and the velocity, v of $23.5 \mathrm{~m} / \mathrm{s}$.
i) Calculate the power of the issuing jet
ii) If the nozzle is supplied from a reservoir which is 30 m above it, determine the head loss (cause by the nozzle) in the pipe and efficiency of power transmission. (Ignore friction losses in pipe)
[10 marks]
5. (a) The flow around blunt and streamlined bodies will affect pressure drag and friction drag and ultimately produce different types of wakes. Using a diagram, distinguish the resulting pressure drag, friction drag and the resulting wake on each of the following shape:
(i)

(ii)

(iii)

(iv)

(b). A $0.5 \mathrm{~m} \times 0.5 \mathrm{~m}$ square pile and 10.2 m long is to be driven into a river. If the velocity of the flow in the river is $2.5 \mathrm{~m} / \mathrm{s}$ and temperature of $20^{\circ} \mathrm{C}$, determine the drag force and the bending moment at the bottom of the pile.
[10 marks]
6. (a). Venturi tube is a short pipe with a constricted middle section. By applying Bernoulli's Theorem to a venturi meter, prove that the velocity in a venturi meter can be determined using the following equation:

$$
v_{1}=\sqrt{\frac{2 g\left[\frac{p_{1}-p_{2}}{\gamma}+\left(z_{1}-z_{2}\right)-h_{L}\right]}{\left(\frac{A_{1}}{A_{2}}\right)^{2}-1}}
$$

(b) A venturi meter and manometer can typically be used to measure volume flowrate. An apparatus as shown in Figure 7 consisting of a venturi meter and manometer was installed in the hydraulic laboratory. Determine the volume flowrate for the manometer reading Δh. It is given that $D_{1}, D_{2}, Z_{1}, Z_{2}$ and $\Delta \mathrm{h}$ is $225 \mathrm{~mm}, 165 \mathrm{~mm}, 1.2 \mathrm{~m}, 1.75 \mathrm{~m}$, and 0.35 m , respectively. The density of the flowing liquid and mercury is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and $13600 \mathrm{~kg} / \mathrm{m}^{3}$, respectively.

Figure 7

APPENDIX

Table 1 - Properties of Water

TABLEA. 1 SI units [101 kPa (abs)]

Temperature $\left({ }^{\circ} \mathbf{C}\right)$	Specific Weight	$\boldsymbol{\gamma}$ $\left(\mathbf{k N} / \mathbf{m}^{3}\right)$	Density $\boldsymbol{\rho}$ $\left(\mathbf{k g} / \mathbf{m}^{3}\right)$	Dynamic Viscosity $\boldsymbol{\eta}$ $(\mathrm{Pa} \cdot \mathrm{s})$

(a) C_{D} vs. N_{R} for lower values of N_{R}

(b) C_{D} vs. N_{R} for higher values of N_{R}

Figure 7 - Drag coefficients for spheres and cylinders

NOTE: $1 \mathrm{cP}=0.001 \mathrm{Ns} / \mathrm{m}$.

Figure 8 - Drag coefficients for spheres and cylinders ($\operatorname{Re} \geq 10^{4}$)

Moment /Momen

$$
M_{0}=\frac{F L}{2}
$$

