SULIT

KSCP Examination
2020/2021 Academic Session
September 2021

EAS151 - Statics and Dynamics

Duration: 2 hours

Please ensure that this examination paper contains NINE (9) printed pages before you begin the examination.

Instructions: This paper contains FIVE (5) questions. Answer THREE (3) questions in Part A. Question 5 in Part B is COMPULSORY.

All questions MUST BE answered on a new page.

PART A

1. (a). In Figure 1, the tension in cable BC is 145 N , determine the resultant of the three forces exerted at point B of beam $A B$.
[12 marks]

Figure 1
(b). A collar that can slide on a vertical rod is subjected to the three forces as shown in Figure 2. For equilibrium condition, determine:
i) the value of the angle α so that the resultant of the three forces is horizontal.
[10 marks]
ii) the corresponding magnitude of the resultant force.

Figure 2
2. (a). The rig shown in Figure 3 consists of a horizontal member ABC and a vertical member DBE welded together at B. The rig is used to raise a 1620 kg box with its center of mass at G . Assume the 5.4 kN self-weight of the horizontal member $A B C$ is acting at 2.6 m from B . The rig is supported by a cable ADCF with a tension of 18 kN .
i) Replace the force system acting on the rig with an equivalent system of a resultant force and a couple moment at point B.
[6 marks]
ii) If a single equivalent resultant force system is to be developed, specify the new location of the resultant force along AB , measured from point A.
[4 marks]

Figure 3
(b). By referring to Figure 4, determine the resultant moment produced by forces F_{B} and F_{C} about point O. Express the resultant moment in a Cartesian vector form. What will be the direction angle of the resultant moment from x, y and z axes?

Figure 4
3. (a). A uniform concrete slab has a mass of 2400 kg supported by three cables at A, B, and C, as shown in Figure 5. In addition, a concentrated load of 15 kN acts at D . Determine the tension in each of the three parallel supporting cables when the slab is held in the horizontal plane. Consider the mass of the concrete slab in the analysis.
[7 marks]

Figure 5
(b). A boom supports the two vertical loads, F_{1} and F_{2}, at D and B, respectively, as shown in Figure 6. The boom is pinned at A. Ignore the self-weight of the boom.
i) Draw a free-body diagram of the system.
[2 marks]
ii) Determine the horizontal and vertical force components at pin A and the force in cable CB. Set $F_{1}=800 \mathrm{~N}$ and $F_{2}=350 \mathrm{~N}$.
[7 marks]
iii) The cable CB can sustain a maximum load of 1500 N before it fails, determine the critical loads if $F_{1}=2 F_{2}$. Also, determine the magnitude of the maximum reaction at pin A.

Figure 6
4. (a). By referring to Figure 7, formulate the moment of inertia for the shaded vertical strip with respect to x - and y - axes.

Figure 7
(b). Determine the second moment of area of the shape shown in Figure 8 about the axis S-S. All dimensions in meters. Given $I_{\overline{\mathrm{x}}, \text { circle }}=\mathrm{I}_{\overline{\mathrm{y}}, \text { circle }}=\frac{\pi r^{4}}{4}$.
[17 marks]

Figure 8
...8/-

PART B

5. (a). A particle starts from rest with an acceleration of $A \mathrm{~m} / \mathrm{s}^{2}$. The acceleration then decreases linearly with time to zero in 15 seconds. After that, the particle continues to move at a constant speed of $60 \mathrm{~m} / \mathrm{s}$. Determine A and the position of the particle at time $\mathrm{t}=15 \mathrm{~s}$.
[8 marks]
(b). Figure 9 shows an assembly of a slider system. The collar has a mass of 2.5 kg and is attached to the light spring. The spring has a stiffness of 30 N / m and an unstretched length of 1.5 m . The collar is released from rest at A and slides down the smooth rod. Another spring with stiffness $\mathrm{k}_{\boldsymbol{B}}$ is located at point B, which will be compressed by the slider as it slides beyond point B.
i) Calculate the velocity v of the collar as it reaches point B.
[9 Marks]
ii) If it is desired that the slider does not move beyond point C , as shown in Figure 10, check if $k_{B}=45 \mathrm{kN} / \mathrm{m}$ is sufficient.
[8 Marks]

Figure 9

Figure 10

