

First Semester Examination Academic Session 2021/2022

February/March 2022

EAS663 – Dynamics and Stability of Structures

Duration: 2 hours

Please ensure that this examination paper contains **EIGHT (8)** printed pages before you begin the examination.

Instructions: This paper contains FIVE (5) questions. Answer FOUR questions.

All questions **MUST BE** answered on a new page.

SULIT EAS663

-2-

(1). (a). Derive the non-linear elastic in plane bending of simply supported beam column as shown in **Figure 1**. Show that the maximum moment M_{max} may be closely approximated by using greater of $M_{max}=qL^2/8$ and $M_{max}=qL^2/8$ and $M_{max}=qL^2/8$ and $M_{max}=qL^2/8$

where, $N_{cr,v} = \pi^2 E I_v / L^2$

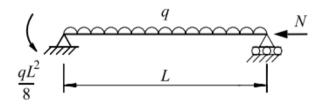


Figure 1

[12 marks]

(b). Derive the non-linear elastic in plane bending of propped cantilever beam as shown in **Figure 2**. Show that the maximum moment M_{max} may be closely approximated by using $\frac{M_{max}}{9qL^2/8} \approx \frac{(1-0.18N/N_{cr,y})}{(1-0.49N/N_{cr,y})}$

where, $N_{cr,y} = \pi^2 E I_y / L^2$

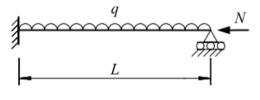


Figure 2

[13 marks]

(2). A SDOF building is modeled as a mass-spring-damper system. Effects of the damping and stiffness on the system are evaluated through a series of tests for the system with the properties as shown in **Table 1**.

Table 1

Test	Case	Damping coefficient	Stiffness	Mass
1	Α	0.01	1.0	1.0
	В	0.05	1.0	1.0
	С	0.1	1.0	1.0
2	Α	0.1	0.5	1.0
	В	0.1	1.0	1.0
	С	0.1	2.0	1.0

The results of the test are plotted in Figure 3(a) to Figure 3(b)

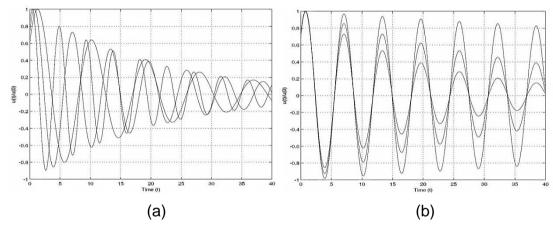


Figure 3

(a). Identify which result in **Figure 3** showing the effect of damping and stiffness. Indicate Case A, Case B and Case C in each test. Give explanation to your answer.

[5 marks]

- (b). A single degree of freedom building system as shown in **Figure 4** is excited by ground acceleration, 8 cos 5t m/s². Assume that the girder is rigid whereas the columns are flexible to the lateral deformation but rigid in the vertical direction. Using E = 35 GPa and $I = 25(10^6)$ mm⁴, 5 % damping and neglect the mass of columns, determine
 - (i). the natural period of building,
 - (ii). the steady state amplitude of vibration, and
 - (iii). the maximum shear force and bending moment in the column.

[20 marks]

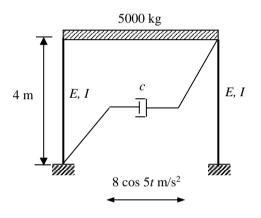


Figure 4

(3). The equations of motion in matrix form for the system shown in **Figure 5** are:

$$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{Bmatrix} \ddot{u}_1 \\ \ddot{u}_2 \end{Bmatrix} + \begin{bmatrix} 18 & -10 \\ -10 & 10 \end{bmatrix} \begin{Bmatrix} \dot{u}_1 \\ \dot{u}_2 \end{Bmatrix} + \begin{bmatrix} 450 & -200 \\ -200 & 200 \end{bmatrix} \begin{Bmatrix} u_1 \\ u_2 \end{Bmatrix} = \begin{Bmatrix} 30 \sin 5t \\ 50 \sin 2t \end{Bmatrix}$$

and the natural frequencies and mode shapes for modes 1 and 2 for the system are:

$$\omega_1 = 5.67 \text{ rad/s}$$
; $\omega_2 = 16.11 \text{ rad/s}$

$$\phi_1 = \begin{cases} 0.5184 \\ 1.0000 \end{cases}; \phi_2 = \begin{cases} -0.3456 \\ 1.0000 \end{cases}$$

Solve the equations of motion and determine the steady state response of the system.

[25 marks]

SULIT EAS663

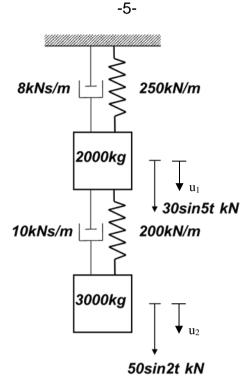


Figure 5

(4). (a). Define the meaning of critical load of a column. Obtain the critical load of the cantilever column in Figure 6 by using Rayleigh-Ritz method. Assume the following two cases of deflected shapes for the slightly bent configuration at the state of neutral equilibrium:

Case I: $y = Ax^2$ Case II: $y = A \left[1 - \cos \frac{\pi x}{2L}\right]$

where A: amplitude of lateral displacement of the column at the free-end. The exact solution for the critical load is $P_{cr, exact} = 2.467 \, EI/L^2$. Comment on the outcome of comparison of the solutions of critical load obtained for Case I and Case II with the exact solution.

[20 marks]

SULIT EAS663

Figure 6

(b). Mid-span deflection of the simply supported beam subjected to a lateral load, *W* at mid-span and axial load, *P* as shown in **Figure 7** is given by the following equation:

$$\delta = \Delta \frac{1}{1 - (P/P_{cr})}$$

where $\Delta = WL^3/(48EI)$: the mid-span deflection in the absence of axial load and $P_{cr} =$ critical axial load of the beam.

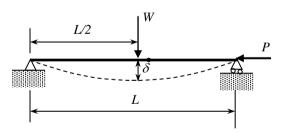


Figure 7

Using the above equation and suitable plot, explain the effect of constant *P* on the lateral stiffness of the beam.

[5 marks]

SULIT EAS663

-7-

(6). (a). Using slope-deflection method, determine the critical load of column AB for the frame shown in Figure 8. Sketch the slightly deformed configuration at the state of neutral equilibrium. Refer Appendix A for the basic equations used in slope deflection method.

[20 marks]

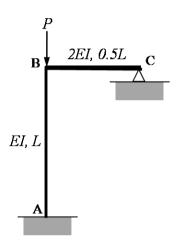


Figure 8

(b). Sketch **TWO (2)** possible modes of buckling for the braced frame shown in **Figure 9**. Indicate the one which will occur at lower buckling load. (5 marks)

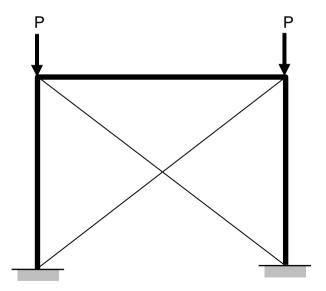


Figure 9

APPENDIX A

Slope deflection equations for a beam-column are given as follows:

$$M_{A} = \frac{EI}{L} \left(\alpha_{n} \theta_{A} + \alpha_{f} \theta_{B} \right)$$

$$M_{B} = \frac{EI}{L} \left(\alpha_{f} \theta_{A} + \alpha_{n} \theta_{B} \right)$$

where α_n and α_f are given as follows:

$$\alpha_{n} = \frac{\phi_{n}}{\phi_{n}^{2} - \phi_{f}^{2}}; \ \alpha_{f} = \frac{\phi_{f}}{\phi_{n}^{2} - \phi_{f}^{2}}$$

and

$$\phi_n = \frac{1}{(kL)^2} (1 - kL\cot kL); \quad \phi_f = \frac{1}{(kL)^2} (kL\csc kL - 1)$$

 M_A , M_B , θ_A and θ_B are as shown in Fig.A1.

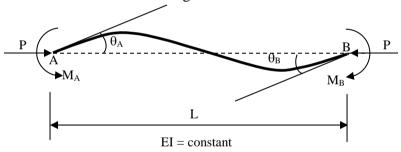


Fig.A1

-0000000-