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DIVERSIFIKASI FENOTIPIK TERESTRIAL SINOBAKTERIA DARIPADA 

HABITAT TERPILIH DI PULAU SIGNY, PULAU ORKNEY SELATAN, 

ANTARTIKA 

 

ABSTRAK 

 

 

Satu kajian floristik telah dijalankan ke atas sinobakteria daripada habitat 

terestrial di Pulau Signy (60.7170° S, 45.6000° W), Pulau Orkney Selatan, Antartika 

pada musim panas 2015/2016, semasa ekspedisi Antartika bersama British Antarctic 

Survey (BAS). Sampel telah diambil mengikut 120 lokasi yang telah direkodkan 

oleh Broady (1979). Tiga puluh tujuh daripada 120 lokasi persampelan yang telah 

direkodkan oleh Broady (1979) berjaya diperolehi dan dibandingkan untuk kajian 

ini. Perubahan komuniti sinobakteria yang telah direkodkan oleh Broady (1979) akan 

memberikan maklumat asas mengenai status kepelbagaian dan penyebaran 

mikroflora Antartika. Ini sangat penting untuk memahami bagaimana kehidupan 

Antartika bertindak balas terhadap perubahan persekitaran semasa dan bagaimana 

benua pada masa yang lalu. Kajian ini merangkumi pendekatan taksonomi morfologi 

tradisional dan molekul moden yang memberikan pandangan baru mengenai 

sinobakteria. Tujuh belas morfospesies daripada 14 genera: Chamaesiphon, 

Cyanosarcina, Desmonostoc, Leptolyngbya, Microcoleus, Nodosilinea, Nostoc, 

Oscillatoria, Phormidium, Phormidesmis, Pseudanabaena, Synechocystis, 

Trichocoleus dan Wilmottia telah direkodkan dalam kajian ini. Kajian ini telah 

merekodkan sepuluh morfospesies yang menyamai rekod terdahulu yang diperolehi 

oleh Broady (1979). Tujuh morfospesies baru telah direkodkan dari Pulau Signy; 

Leptolyngbya cf. subcapitata, Nodosilinea signiensis, Oscillatoria cf. subsala, 

Phormidium uncinatum, Trichocoleus cf. hospitus, Wilmotia murrayi Morfotip 1 dan 



xiv  

Wilmottia murrayi Morfotip 2. Penemuan spesis baru daripada genus Nodosilinea, 

Nodosilinea signiensis sp. nov. R. Radzi & F. Merican 2019 telah dilaporkan 

berdasarkan klasifikasi polifasa yang telah dijalankan keatas strain di dalam kultur. 

Kedudukan Nodosilinea ini terpisah daripada spesis Nodosilinea yang lain di dalam 

pokok filogenetik 16S rDNA. Secara morfologi, strain ini juga menunjukkan 

perbezaan terutamanya dari segi saiz sel, bentuk sel, pengecilan filamen, morfologi 

sarung dan granulasi. Helix DI-D1’ dari analisis 16S-23S ITS juga menunjukkan 

bahawa N. signiensis secara genetik berbeza daripada spesies Nodosilinea lain yang 

telah direkod sebelum ini. Dua morfotip sinobakteria telah diasingkan dan 

dikategorikan dengan menggunakan pendekatan polifasa. Kedua-duanya 

menunjukkan ciri morfologi yang sama dengan genus Phormidium, khususnya 

dengan trikom yang ringkas, uniseriat dan tidak bercabang. Walaubagaimanapun, 

analisis filogenetik 16S rDNA menunujukkan bahawa mereka jelas berbeza daripada 

klad Phormidium. Kedua-dua morfotip dikelompokkan dalam klad utama W. 

murrayi. Menariknya, klad utama W. murrayi telah membentuk dua kelompok yang 

memisahkan spesies dari kawasan sejuk daripada spesies di kawasan tropika. 

Sehingga kini, genus ini hanya mengandungi tiga spesies, W. murrayi, W. stricta dan 

W. koreana. Dalam kajian ini, penemuan kedua-dua W. murrayi M1 dan M2 

merupakan rekod pertama yang dilakukan di Pulau Signy. dan ini telah 

memperluaskan taburannya di Antartika. Oleh itu, morfospesies yang telah 

direkodkan dalam kajian ini secara signifikannya telah memberikan maklumat yang 

berharga terhadap kepelbagaian dan penyebaran sinobakteria terrestrial di Antartika. 
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PHENOTYPIC DIVERSIFICATION OF TERRESTRIAL 

CYANOBACTERIA FROM SELECTED HABITATS ON SIGNY ISLAND, 

SOUTH ORKNEY ISLANDS, ANTARCTICA 

 

 

ABSTRACT 

 

 

A floristic study was conducted on cyanobacteria from terrestrial habitats in 

Signy Island (60.7170° S, 45.6000° W), South Orkney Islands during the expedition 

of British Antarctic Survey (BAS) in austral summer of 2015/2016. Samples were 

collected following the previous 120 locations that was provided by Broady (1979). 

Thirty seven out of 120 collection sites established by Broady (1979) were 

successfully obtained and compared in this study. Changes in the cyanobacteria 

community at sites previously studied by Broady (1979) will provide excellent 

baseline information on the status of Antarctic terrestrial cyanobacteria diversity and 

dispersal. It is crucial to understand how the Antarctic life form is responding to 

current environmental change and what the continent was like in the past. This study 

has integrated traditional morphological and modern molecular taxonomic 

approaches providing new insights into the taxonomy of Antarctic cyanobacteria. 

Seventeen morphospecies belonging to 14 genera; Chamaesiphon, Cyanosarcina, 

Desmonostoc, Leptolyngbya, Microcoleus, Nodosilinea, Nostoc, Oscillatoria, 

Phormidium, Phormidesmis, Pseudanabaena, Synechocystis, Trichocoleus and 

Wilmottia have been recorded with robust descriptions by using streaking and most 

probable number techniques. Ten morphospecies recorded were similar to records by 

Broady (1979). Seven of the morphospecies; Leptolyngbya cf. subcapitata, 

Nodosilinea signiensis, Oscillatoria cf. subsala, Phormidium uncinatum, 

Trichocoleus cf. hospitus, Wilmotia murrayi M1 and Wilmottia murrayi M2 are new 
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records for Signy Island. A novel species of Nodosilinea, Nodosilinea signiensis sp. 

nov. R. Radzi & F. Merican 2019 have been reported based on a polyphasic 

assessment of the strain in culture. This member of the genus Nodosilinea is well 

separated from the other Nodosilinea species in the 16S rDNA phylogenetic tree. 

Morphologically, the strain also showed difference in its morphological 

characteristics especially in cell size, cell shape, filament attenuation, sheath 

morphology and granulation. The D1-D1’ helix of the 16S – 23S ITS region  

analyses showed that N. signiensis is genetically distinct from other recorded species 

of Nodosilinea. Two cyanobacterial morphotypes were also successfully isolated and 

characterized using a polyphasic assesment. Both showed similar morphological 

characteristic to the genus Phormidium, in particular with simple, uniseriate and 

unbranched trichomes. However, 16S rDNA phylogenetic analyses showed a clear 

separation from members in the Phormidium. Both strains were grouped within the 

major clade of the Wilmottia murrayi. Interestingly, there are two lineages within the 

major clade of W. murrayi separating tropical species with those from the cold 

regions. To date, this genus at present contains only three species, W. murrayi, W. 

stricta and W. koreana. In this study, the occurrence of both W. murrayi M1 and M2 

were first described from Signy Island. Therefore, the morphospecies recorded in 

this study have significantly provide a valuable information towards the diversity  

and dispersal of terrestrial cyanobacteria in Antarctica. 
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CHAPTER 1 

 
GENERAL INTRODUCTION 

 

 

 
 

1.1 The phylum Cyanobacteria 

 
Cyanobacteria or blue-green algae are an ancient group that has existed on the Earth 

from 3.5 billion years ago (Knoll, 2008; Rasmussen et al., 2008). The largest known 

calcareous cyanobacteria microbialites were discovered in Lake Van, Turkey, and are 

believed to be 700 million years old (Kempe et al., 1991). Fossil evidence of 

cyanobacterial mats existing 440 million years ago from Early Silurian in Virginia 

USA indicate that cyanobacteria were the dominant colonizers in the oceans (Tomescu 

et al., 2006). Examples of these ancient fossils have included both unicellular and 

multicellular morphotypes (Amard & Bertrand-Sarfati, 1997), some having 

specialized cells (Graham & Wilcox, 2000). For eons, they have been present in most 

sun-exposed environments on Earth (Whitton & Potts, 2012) and were the sole 

photosynthesizers generating oxygen (Seckbach & Oren, 2007; Broady & Merican, 

2012). Cyanobacteria were key in the “Great Oxygenation Event” 3 billion years ago 

allowing the rise of other eukaryotic organisms (Bekker et al., 2004; Blakenship, 

2010). 

 

 
 

Oxygenic phototrophic cyanobacteria are well-known for their ability to survive and 

thrive in a wide range of conditions of pH, salinity, radiation and temperature 

(Seckbach & Oren, 2007). Cyanobacteria have been recorded to be present in acidic 

lakes, Bavaria with pH as low as pH of 2.9 (Steinberg et al., 1998). Some members of 

the group can tolerate high salt concentrations and are able to grow in salinity up to 



2 
 

180 ppt in Solar Lake, Sinai (Padan, 1979; Padan & Cohen, 1982). The highest 

temperature at which active growth of cyanobacteria has been recorded is 84℃ in 

Yellowstone (Copeland, 1936; Papke et al., 2003; Yilmaz-Sariozlu & Yilmaz- 

Cankilic, 2018). Cyanobacteria are abundant in cold environments such as in both 

Polar Regions, where they occur both in and on ice and snow, in freshwater and saline 

lakes and streams, in soils and below and within rocks (Taton et al., 2003; Vincent & 

Quesada, 2012). 

 

 
 

1.2 Antarctic region 

 
Antarctica has been physically isolated from the rest of the world since its separation 

from southern South America in the final stages of the breakup of Gondwana 30-35 

million years ago and the subsequent formation of the oceanic Antarctic Polar Front 

around 18 million years ago (Clarke et al., 2005; Convey et al., 2008; 2018). It hosts 

amongst the most extreme environments on Earth, with persistent low temperatures, 

associated fluctuations in water availability and desiccation, exposure to repeated 

freeze-thaw cycles and highly variable light environment (Vincent, 2000; Namsaraev 

et al., 2010). According to Vincent & Quesada (2012), cyanobacteria often dominate 

extreme cold environments, occupying restricted habitats such as under or within 

rocks, where they are physically protected to some degree from the harsh ambient 

conditions. Cyanobacteria are well suited to the cryosphere because of their broad 

tolerance towards low temperatures with the added ability to survive prolonged 

dormancy, and their resistance to many natural environmental stressors (Seckbach & 

Oren, 2007). 
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Cyanobacteria taxonomy and diversity in Antarctica is currently uncertain, despite the 

acknowledged functional importance of the group (Broady, 1996; Vincent, 2000; 

Vincent & Quesada, 2012). There is evidence that some cyanobacteria taxa are 

endemic to Antarctica (e.g. Taton et al., 2006; Komárek et al., 2008). However, 

Jungblut et al., (2010) reported that Antarctic cyanobacteria genetic diversity was 

similar by (>99 %) to that was present in Arctic and Alpine regions. Some studies have 

also reported that strains isolated from both Polar Regions overlap geographically with 

others isolated from temperate regions (Vincent & Quesada, 2012). The application of 

molecular tools to Antarctic communities, such as the use of PCR fingerprinting and 

phylogenetic analyses such as of the 16S rDNA and 16S – 23S ITS are of particular 

utility in determining the genetic relationships of Antarctic cyanobacteria 

communities (Vincent, 2000). Utilization of these techniques will help reveal the true 

diversity of cyanobacteria inhabiting the continent. 

 

 
 

Not all parts of the continent have been subjected to a thorough cyanobacteria diversity 

assessment. Most of the studies on cyanobacteria to date have been centred on 

Antarctic Peninsula, West Antarctica and Ice shelves (Šabacká, 2004; Komárek & 

Anagnostidis, 2005; Casamatta et al., 2005; Taton et al., 2006; Comte et al., 2007; 

Strunecký et al., 2011). These studies have been conducted using various methods; 

light microscopy (Broady, 1979; Komárek, 2007) and molecular genetics (Taton et 

al., 2006; Strunecký et al., 2012). Only recently, studies have been conducted by 

utilizing the combination of both morphological and molecular assessment in 

determining the identity of cyanobacteria present in Antarctica (Comte et al., 2007; 

Taton et al., 2011; Strunecký et al., 2011; Radzi et al., 2019). Hence, more work is 

required to achieve a full inventory of all the species present in Antarctica. 
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1.3 Project aims and an overview of the structure of this thesis 

 
This study examined in detail the present-day diversity of terrestrial cyanobacteria on 

Signy Island, South Orkney Islands, maritime Antarctic. The findings were compared 

with prior detailed records from the 1970s from the same island by Broady (1979), a 

unique opportunity to make inferences about changes over time in Antarctic microbial 

communities. Descriptions of the cyanobacteria diversity in terrestrial habitats across 

the island were compiled. 

 

 
 

Chapter 2 describes the diversity of cyanobacteria found on the island. Morphospecies 

diversity was assessed through light microscopy of cultures derived from a range of 

newly collected soil samples and from mixed cultures established in Antarctica. 

 

 
 

Chapter 3 considers the molecular phylogenetic of selected cyanobacteria. It 

recognises the need for use of polyphasic approaches in order to fully characterize and 

identify specific morphospecies. Ultrastructural analyses, 16S rDNA phylogenies, and 

16S-23S internal transcribed spacer (ITS) compositions were completed for three 

selected morphotypes and integrated with identification made using traditional 

morphological approaches (Chapter 2). 

 

 
 

The study has considerably increased knowledge of terrestrial cyanobacteria in Signy 

Island, building on the baseline provided by Broady (1979). Chapter 4 presents a short 

concluding discussion for the study, with suggestions for further work. 
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CHAPTER 2 

 
THE DIVERSITY OF TERRESTRIAL CYANOBACTERIA 

 

 

 
 

2.1 Introduction 

 
2.1.1 Prior research on terrestrial cyanobacteria in Antarctica 

Cyanobacteria are an ancient group of photosynthesising prokaryotes found in most 

sun-exposed ecosystems on Earth (Whitton & Potts, 2012), including Antarctica. 

Cyanobacteria are present in all habitats in high latitude environments, including soils, 

rocks, glaciers, ice shelves, streams, ponds and lakes (Vincent, 2000). The first 

discovery of Antarctic cyanobacteria was made during the Shackleton’s expedition 

(1907-1909) to Ross Island, Antarctica (Murray, 1910), which documented the 

presence of benthic mats consisting of filamentous cyanobacteria under the ice of a 

frozen lake. More discoveries on the occurrence of cyanobacteria were made during 

Scott’s Terra Nova Expedition 1910-1913 to Ross Island and Victoria Land (Fritsch, 

1917). These identified 12 morphospecies of cyanobacteria including Anacystis 

marginata, Chroococcus minutus, Gleocapsa shuttleworthiana, Merismopedia 

tenuissima, Microcystis marginata, Nostoc fuscescens, Phormidium autumnale, P. 

fragile, P. laminosum, P. priestleyi, Oscillatoria autumnalis and Schizothrix 

antarctica, mainly from freshwater lakes at Cape Sustruzi and Cape Adare (Figure 

2.1). These earlier collections of cyanobacteria from Antarctica gave the first 

confirmation of the presence of the group in this environmentally challenging 

continent. 
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Figure 2.1: Drawings of cyanobacteria by Fritsch collected from Ross Island, 

Antarctica during Scott’s Terra Nova expedition (Fritsch, 1917). 

 

 
 

Less than 0.3% of Antarctic land surface area is free of ice, with this area mostly 

consisting of frigid deserts, nunataks (mountain summits protruding through 

surrounding ice sheets) and coastal oases (Convey, 2017). Previous studies have 

indicated that cyanobacteria are the dominant photosynthesising microorganisms in 

the regions of Antarctica that are ice-free during the polar summer (Broady, 1989; 

Pandey et al., 1992; 1995). Recent warming trends across the Antarctic Peninsula have 

been reported to contribute to the expansion of vegetated areas, as well as changing 

the distribution patterns throughout this region (Fowbert & Smith, 1994; Smith, 

1994; Convey, 2003; Convey & Peck, 2019). 

 

 
 

According to Vincent (2000), cyanobacteria are amongst the most widely distributed 

microorganisms in Antarctic soils, and are primary colonizers as ice and snow cover 

retreat. They play a vital role in soil stabilization, photosynthetic carbon fixation and 

https://onlinelibrary.wiley.com/doi/full/10.1111/j.1462-2920.2007.01379.x#b5
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1462-2920.2007.01379.x#b6
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1462-2920.2007.01379.x#b6
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1462-2920.2007.01379.x#b7
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release of fixed nitrogen, whilst forming the base of the terrestrial food web (Vincent, 

2000; Gaydon et al., 2012). They can form visible dark crusts on the rock (epilithic) 

or thin biofilms under translucent rock (hypolithic) and even grow within rock fissures 

(chasmoendolithic) in Antarctic terrestrial ecosystems (Friedmann, 1982; Broady, 

1996; Mur et al., 1999; Vincent, 2000; Vincent & Quesada, 2012). Nostoc commune 

was reported from terrestrial habitats of Ross Island and Victoria Land by Holm- 

Hansen (1963). Schizothrix calcicola was recorded from the soil of cinder cones on 

Deception Island, South Shetland Islands (Cameron & Benoit, 1970). However, 

despite the existing work on terrestrial cyanobacteria in Antarctica, the overall 

diversity of the group in terrestrial habitats remains poorly unknown. Several hundred 

species of cyanobacteria have been recorded from terrestrial habitats worldwide. 

However, in Antarctica, less attention has been given to assessing terrestrial 

cyanobacteria diversity other than pioneering studies such as those of Broady (1979), 

Castenholz (1992), Davey & Clarke (1992), Broady & Weinstein (1998) and Nadeau 

et al. (2001), which mostly focussed on specific locations. 

 

 
 

In the Antarctic maritime, the first collection of cyanobacteria was made from wet 

soils, moss-covered rocks, damp moss and mud from a penguin rookery on Laurie 

Island, South Orkney Islands, during the Scottish National Antarctic Expedition 1902- 

04 (Fritsch, 1912). Fritsch (1912) recorded the presence of approximately 18 

morphospecies of cyanobacteria; Synechococcus aeruginosa, Entophysalis granulosa, 

Aphanothece saxicola, Microcystis olivacea, M. merismopedia, Clathrocystis 

reticulate, Gomphosphaeria aponina, Coelosphaerium kutziangianum, Merismopedia 

glaucum, M. tenuissimum, Oscillatoria brevis, O. splendida, O. subtilissima, O. tenuis, 

Spirulina subtilissima, Isocystis infusionum, Nostoc minutissimum, and Calothrix 
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aeruginea. Although the early expeditioners initiated studies on the maritime 

Antarctic islands, subsequent studies have been limited. The only extensive study of 

terrestrial cyanobacteria was that of Broady (1976, 1977, 1979a, b). He investigated 

samples from over 120 sites around Signy Island, also in the South Orkney Islands, 

and reported the presence of 49 morphospecies of cyanobacteria. The family 

Oscillatoriaceae was the most prominent cyanobacteria family recorded. 

 

 
 

2.1.2 Approaches to cyanobacteria taxonomy 

 
There have been numerous approaches to the taxonomy of cyanobacteria. The 

‘traditional approach’ in cyanobacteria taxonomy developed in the 19th century. At 

that point, cyanobacteria were classified solely based on morphological features of 

field-collected samples observed under light microscopy (Geitler, 1932; Desikachary, 

1959). Samples with similar phenotypic appearance were placed in the same species. 

Almost 2000 morphospecies in about 150 genera have been described this way 

(Waterbury, 2006; Broady & Merican, 2012). Drouet (1968, 1978, 1981) later 

reviewed the morphological classification approach, and proposed that many 

morphospecies recorded previously were invalid due to phenotypic plasticity in 

response to environmental variation. This reduced the number of cyanobacteria 

morphospecies recognised drastically (Castenholz, 2001) and led to confusion in 

identification as well as loss of ecological information (Whitton, 2008). 

 

 
 

Later, Stanier et al. (1971), a bacteriologist who was convinced that cyanobacteria are 

bacteria established an approach that includes morphospecies described from cultures. 

This “bacteriological approach” was based on morphological, physiological and 



9 
 

genetic characteristics of axenic and clonal strains. Although providing additional 

information that can be very useful in identification, this approach was later found to 

be biased towards cultured morphospecies (Whitton, 2011). The use of bacteriological 

nomenclature further complicated the taxonomy of the group as it conflicted with 

earlier classifications that were based on the International Code of Botanical 

Nomenclature (ICBN) (Oren, 2004). 

 

 
 

At present, a combination of data from morphological, ultrastructural, ecological and 

molecular evaluation are being used in the renaming and reorganisation of families 

and genera (Anagnostidis & Komárek 1999; Komárek & Anagnostidis 2005; 

Komárek, 2013, 2014, 2016, 2018). This is known as a polyphasic approach 

(Anagnostidis & Komárek 1999; Komárek & Anagnostidis 2005; Komárek, 2013, 

2014, 2016, 2018). This wide-ranging approach enhances the credibility of species 

identification for cyanobacteria (Yu et al., 2015). Polyphasic approaches in 

cyanobacteria classification are now widely used to define new taxa (Komárek et al., 

2014; Komárek, 2016, 2018; Mares, 2018). Based on this approach, the phylum 

Cyanobacteria is currently divided into eight orders as shown in Table 2.1 (Komárek 

et al., 2014; Komárek, 2016, 2018). 



10 
 

Table 2.1: Cyanobacteria classification system for Orders and Families (Komárek et 

al., 2014; Komárek, 2016, 2018). 
 

No. Order Families 

I Gloeobacterales Gloeobacteraceae 

II Synechococcales Synechococcaceae, Merismopediaceae, 

Prochloraceae, Coelosphaeriaceae, 

Acaryochloridaceae, Chamaesiphonaceae, 

Romeriaceae, Pseudanabaenaceae, 

Leptolyngbyaceae, Heteroleibleiniaceae, 
Schizotrichaceae 

III Spirulinales Spirulinaceae 

IV Chroococcales Microcystaceae, Aphanothecaceae, 

Cyanobacteriaceae, Cyanothrichaceae, 

Stichosiphonaceae, Chroococcaceae, 

Gomphosphaeriaceae, Entophysalidaceae 

V Pleurocapsales Hydrococcaceae, Dermocarpellaceae, 
Xenococcaceae, Pleurocapsaceae, 

VI Oscillatoriales Cyanothecaceae, Borziaceae, 

Coleofasciculaceae, Microcoleaceae, 

Homoeotrichaceae, Oscillatoriaceae, 
Gomontiellaceae 

VII Chroococcidiopsidales Chroococcidiopsidaceae 

VIII Nostocales Scytonemataceae, Symphyonemataceae, 

Rivulariaceae, Tolypothrichaceae, 

Godleyaceae, Chlorogloeopsidaceae, 

Hapalosiphonaceae, Capsosiraceae, 

Stigonemataceae, Gloeotrichiaceae, 
Aphanizomenonaceae, Nostocaceae 

 

 
Up-to-date information on cyanobacteria diversity can be retrieved from AlgaeBase 

(Table 2.2). This is an online database resource for algae that provide free access to 

the latest authoritative information on taxonomic, distributional and nomenclatural 

data (Guiry & Guiry, 2019). 
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Table 2.2: Most recent cyanobacteria classification system for Orders and Families 

retrieved from AlgaeBase (Guiry & Guiry, 2019). 
 

Order Families 

 
Chroococcales 

Aphanothecaceae, Chroococcaceae, Cyanobacteriaceae, 

Cyanothrichaceae, Entophysalidaceae, Microcystaceae, 

Stichosiphonaceae 

Chroococcidiopsidales Chroococcidiopsidaceae 

Gloeobacterales Gloeobacteraceae 

Gloeomargaritales Gloeomargaritaceae 

 

 

 
Nostocales 

Aphanizomenonaceae, Capsosiraceae, Cyanomargaritaceae, 

Dapisostemonaceae, Fortieaceae, Geitleriaceae, 

Gloeotrichiaceae, Godleyaceae, Hapalosiphonaceae, 

Microchaetaceae, Nostocaceae, Nostochopsidaceae, 

Rhizonemataceae, Rivulariaceae, Scytonemataceae, 

Stigonemataceae, Symphyonemataceae, Tolypothrichaceae 

 

 
Oscillatoriales 

Ammatoideaceae, Borziaceae, Camptothricaceae, 

Coleofasciculaceae, Cyanothecaceae, Desertifilaceae, 

Gomontiellaceae, Homoeotrichaceae, Microcoleaceae, 

Oscillatoriaceae, Phormidiaceae 

Pleurocapsales 
Dermocarpellaceae, Hydrococcaceae, Hyellaceae, 

Xenococcaceae 

Pseudanabaenales Schizotrichaceae 

Spirulinales Spirulinaceae 

 

 
Synechococcales 

Acaryochloridaceae, Chamaesiphonaceae, 

Coelosphaeriaceae, Heteroleibleiniaceae, Leptolyngbyaceae, 

Merismopediaceae, Oculatellaceae, Prochlorotrichaceae, 

Pseudanabaenaceae, Romeriaceae, Trichocoleusaceae 
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2.2 Objectives 

 
The diversity of cyanobacteria morphospecies have been investigated from 37 sites 

from Signy Island, South Orkney Islands, maritime Antarctic, to achieve the following 

aims: 

1. To provide robust descriptions of morphospecies, using selected culture 

techniques to aid identification. 

2. To compare morphospecies recorded from this study with previous records 

provided by Broady (1979). 

 

 
2.3 Materials and Methods 

 
2.3.1 Study Sites 

 
A study was conducted on cyanobacteria obtained from terrestrial habitats on Signy 

Island (60̊ 43.02’S, 45̊ 36.00’W), South Orkney Islands, during British Antarctic 

Survey (BAS) supported fieldwork in the austral summer of 2015/2016. The samples 

were collected from previously sampled locations as listed by Broady (1979) (Figure 

2.2). 

 

 
 

Due to Malaysian import permit conditions that allow a maximum of only 1 kg to be 

imported, only samples from 37 sites that are similar with Broady (1979) (Table 2.3 

and Figure 2.2) were transported back to the laboratories of Universiti Sains Malaysia. 

The remaining soil samples are held at the British Antarctic Survey. 
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Figure 2.2: Map showing the study sites on Signy Island, South Orkney Islands, 

Antarctica; a., Location of Signy Island, South Orkney Islands, in relation to the 

Antarctic Peninsula and southern South America. b., Enlargement of sampling areas 

within the red box on the main figure. All dot represented the total of 120 sites that 

were previously collected by Broady (1979). Red dots indicated 37 sites present 

collection. Map prepared by Laura Gerrish (BAS). 
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Table 2.3: Location and description of the sampling sites with site numbers for sites 

that were resampled in the 2015/16 season. 
 

Num. 
Site 

Number 
Locality Coordinates Description 

1. 1 
Lateral moraine of 
Orwell Glacier 

60̊ 42.63’S, 45̊ 36.56’W Mineral soil 

 

2. 
 

3 

Northern end of lateral 

moraine of Orwell 
Glacier in Cemetery Bay 

 

60̊ 42.57’S, 45̊ 36.55’W 
 

Moss 

3. 4 
Col between Garnet Hill 
and Rusty Bluff 

60̊ 43.17’S, 45̊ 36.50’W Lichen on soil 

4. 5 
Summit of hill south- 
west of Rethval Point 

60̊ 43.57’S, 45̊ 35.75’W Fine soil 

 

5. 
 

6 

West-facing slopes at 

northern end of Moraine 

Valley 

 

60̊ 42.62’S, 45̊ 36.18’W 
 

Fine soil 

 

6. 
 

7 

North west-facing slope 

above east side of 

Cemetery Bay 

 

60̊ 42.57’S, 45̊ 36.31’W 
Fine soil / lichen 

on rock 

 

7. 
 

8 

 

Pinder Gully 

 

60̊ 42.67’S, 45̊ 35.08’W 
Raw fine- 

grained mineral 
soil on rock. 

 

8. 
 

9 

 

Pinder Gully 
 

60̊ 42.67’S, 45̊ 35.08’W 
Mineral soil 

mixed with 

organic debris 

 

9. 
 

10 

Summit of marble knoll 

above eastern slopes of 
Three Lakes Valley 

 

60̊ 42.09’S, 45̊ 36.63’W 
Nodular marble 

soil 

 

10. 
 

11 

Summit of marble 

outcrop on Gourlay 
Peninsula 

 

60̊ 43.68’S, 45̊ 35.47’W 
Nodular marble 

soil 

 

11. 
 

12 
Sea-washed rock in Tern 

Cove 

 

60̊ 41.18’S, 45̊ 36.09’W 
Raw fine- 

grained mineral 

soil on rock 

12. 20 
West-facing slope of 
Moraine Valley 

60̊ 42.67’S, 45̊ 36.41’W Moss soil 

13. 25 
South-east coast of 
Factory Cove 

60̊ 42.56’S, 45̊ 35.75’W 
Moss pale blue- 
green 

 

 

14. 

 

 

29 

 

 
North-facing slope 

below Observation Bluff 

 

 

60̊ 42.67’S, 45̊ 35.08’W 

Cushion of 

Pottia austro- 

georgica Card. 

From 

immediately 

below the nest 
of a cape pigeon 

15. 31 
Hillier moss, bordering 
site 

60̊ 43.68’S, 45̊ 35.96’W Moss/soil 

 

16. 
 

33 

Summit of cliffs above 

west side of Factory 
Cove 

 

60̊ 42.55’S, 45 ̊35.98’W 

 

Moss/soil 

 

17. 
 

34 

Floor of Moraine 

Valley, near Orwell 

Glacier moraines 

 

60̊ 42.62’S, 45̊ 36.50’W 

 

Moss/soil 
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18. 35 
West-facing slopes of 
Moraine Valley 

60̊ 42.73’S, 45̊ 36.18’W Moss/soil 

 
19. 

 
38 

 

North-west facing slope 

below Rethval Point 

 
60̊ 43.57’S, 45̊ 35.82’W 

P. alpestre 

bordering a 

small melt 
runnel 

20. 39 
Northern end of Moraine 
Valley 

60̊ 42.67’S, 45̊ 36.30’W Moss/soil 

21. 47 
Slope north-west of 
Waterpipe Beach 

60̊ 42.02’S, 45̊ 36.48’W Moss/soil/lichen 

22. 48 
Lower slopes above Paal 
Harbour 

60̊ 43.01’S, 45̊ 35.94’W Moss 

23. 57 
Above Rock Haven, 
Gourlay Peninsula 

60̊ 43.79’S, 45̊ 35.08’W Moss/lichen 

 

 

24. 

 

 

60 

 

 
Close to cemetery near 

Mooring Point 

 

 

60̊ 42.43’S, 45̊ 36.14’W 

C. sarmentosum 

carpet on which 

elephant seals 

had wallowed 

and killed the 

living moss 
surface 

 

25. 
 

64 

North facing slope 

below Observation Bluff 
west of Pinder Gully 

60̊ 42.66’S, 45̊ 35.16’W 
 

Moss/soil 

 
26. 

 
67 

 

North facing slope 

below Robin Peak 

 
60̊ 40.54’S, 45̊ 37.08’W 

Receiving some 

water from 

marble outcrops 
above moss 

 
 

27. 

 
 

69 

 
 

Mooring Point 

 
 

60̊ 42.45’S, 45̊ 36.05’W 

Along the 

sloping sides of 

a temporarily 

water-filled melt 
runnel moss 

 

 
28. 

 

 
71 

 

South-west of the 

British Antarctic Survey 

station; below Factory 

Bluffs 

 

 
60̊ 42.58’S, 45̊ 35.72’W 

Flushed with 

water run-off 

from cliffs 

above on which 

many nesting 

birds moss 

 
29. 

 
72 

West side of Mirounga 

Flats cliffs 500m south- 

south-west of North 
Point 

 
60̊ 40.60’S, 45̊ 37.57’W 

 

Lichen on 

rock/no grass 

 

 
30. 

 

 
87 

 

 
Pageant Point 

 

 
60̊ 43.80’S, 45̊ 34.90’W 

Deep gully in 

cliff. 

Algae/53.38m 

from real point 

real sample in 
water/sea 

 

31. 
 

88 
Marble outcrop of Foca 

cave 

 

60̊ 41.86’S, 45̊ 38.90’W 
Aerial site: 

Exposed rock 

face Algae 

32. 89 
Marble outcrop Gourlay 
Peninsula 

60̊ 43.68’S, 45̊ 35.53’W 
Rock fragments 
small rock 
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33. 
 

90 
Marble outcrop 400m 

south of North Point 

 

60̊ 40.58’S, 45̊ 37.50’W 
Rock fragments 

subaerial alga 

mat 

34. 110 
Coastal rocks in Foca 

Cave 
60̊ 41.82’S, 45̊ 38.90’W 

Damp rock 

faces damp rock 

 

 
35. 

 

 
113 

 
Shore of Foca Cove 

100m west of Waterpipe 

Beach 

 

 
60̊ 42.08’S, 45̊ 36.62’W 

Algae on rock, 

cracks and 

cervices in rocks 

and beneath 

loose fragments 
of stone. 

 

 
36. 

 

 
117 

 
 

North facing slope 

above Foca Cove 

 

 
60̊ 41.87’S, 45̊ 38.90’W 

Algae on rock, 

cracks and 

cervices in rocks 

and beneath 

loose fragments 

of stone. 

 

 
37. 

 

 
120 

 
 

West facing slope below 

Robin Peak 

 

 
60̊ 40.75’S, 45̊ 37.29’W 

Algae on rock, 

cracks and 

cervices in rocks 

and beneath 

loose fragments 
of stone. 

 

 

 

2.3.2 Sample collection 

 
Samples were collected by Dr. Japareng Lalung, who participated in the expedition 

with British Antarctic Survey (Figure 2.3). Samples consisted of moss, soil, lichen and 

small rocks were collected from sites as close as possible to the original location that 

remained accessible. Collections were made of all visible growth of cyanobacteria. At 

each sampling location, about 10 cm3 samples were collected and stored in zip-lock 

plastic bags (Figure 2.3a). 
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Figure 2.3: Sample collection from Signy Island; a. soil samples stored in zip-lock 

plastic bags. b. culture establishment in Antarctica by using streaking technique. 

 

 
 

2.3.3 Culture establishment in Antarctica 

 
While on Signy Island, Dr. Japareng Lalung managed to establish 27 mixed cultures 

by using streaking techniques (Figure 2.3b). Freshly collected field samples were used 

to inoculate these cultures. However, no further isolation was carried out by Dr. 

Japareng Lalung in Antarctica. Hence, the cultures received for this study are all mixed 

cultures from the initial inoculation of the field materials. Of these, only nine cultures 

were utilised by using light microscope in this study as these plates contained 

cyanobacteria. Both BBM and BG-11 media culture plates were used. The samples 

were kept frozen (-20 °C) in sterile containers during subsequent transport to the 

United Kingdom and then on to Malaysia. 

 

 
 

2.3.4 Preparation of culture media in USM laboratory 

 
Both BBM and BG-11 media were prepared. Distilled water was added at the end to 

make up to a final volume of 500 mL. Both were supplemented with 100 µg/ml 

cycloheximide to prevent growth of eukaryotes (Bolch & Blackburn, 1996). 



18 
 

Agar was prepared by adding 10 g of agar powder (NextGene, Malaysia) to 250 mL 

of distilled water. The prepared media were autoclaved in separate Schott bottles for 

both solutions of 500 mL of media and 250 mL of agar. Then, the two autoclaved 

solutions were cooled to approximately 58 °C and were aseptically mixed together in 

a Schott bottle. Then, 0.1 g of cycloheximide was added to 250 mL of distilled water. 

The cycloheximide solution was filter-sterilised using a 0.25 µm pore filter. Then, the 

250 mL filtered cyloheximide solution was added into the agar mixture solution to 

give a final volume of 1 L medium. The prepared media were then poured into 

sterilised 90 mm Petri dishes and allowed to set. Once the agar had solidified, the 

plates were inverted and stored in airtight plastic bags at 4 °C. Agar preparation was 

carried out in a laminar flow cabinet for sterility. 

 

 
 

2.3.5 Isolation techniques 

 
In this study, two different isolation methods were used to obtain unialgal cultures. 

These were the streaking technique (Anderson & Kawachi, 2005) and the dilution 

technique (Meynell & Meynell, 1965). 

 

 
 

2.3.5(a) Streaking technique 

 
The cyanobacteria isolation process is similar to standard bacterial isolation methods. 

This method was used only for 27 mixed culture plates initially prepared in Signy 

Island by Dr. Japareng Lalung. First, a small quantity of sample was scraped from the 

culture plate by using a sterile streaking loop to examine the samples under the light 

microscope. Selected colonies were picked and introduced onto a new agar plate. The 

colonies were then spread across the agar plates by using the streaking loop to separate 



19 
 

the cells thoroughly. Plates were prepared in triplicates, and were sealed using 

Parafilm (Bemis, United State) to avoid evaporation. They were then incubated with 

the same settings as Broady (1979) for three to four weeks at 15 ± 2 °C with 24 h light 

supplied by cool white fluorescent lamps at 27 µmol m-2 s-1. This process was repeated 

several times in order to achieve unialgal cultures. 

 

 
 

2.3.5(b) Most probable number 

 
The dilution technique is used to obtain cultures of algal species from field samples, 

commonly from mineral soil (Anderson & Kawachi, 2005). It is effective for 

organisms that are abundant in the sample but is largely ineffective for rare organisms 

(Kufferath, 1929; Droop, 1954; Meynell & Meynell, 1965; Throndsen, 1978; 

Anderson, 2005). This method was applied to the 37 sites of soil samples collected 

and returned from Signy Island. A schematic illustration of the approach is presented 

in Figure 2.4. 
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Figure 2.4: Illustration of the dilution technique; BG-11 + 100 µg/mL CHX was 

diluted by transferring 300 µL of the solution to the subsequent well containing BG- 

11 + 100 µg/mL CHX of the same volume, successively reducing the concentration 

by half in each well. 

 

 
 

Five grams of each soil sample was placed into separate capped culture flasks seeded 

with 50 mL sterile distilled water. The flasks were constantly agitated using an orbital 

shaker (150 rpm) overnight at 15 ± 2°C to allow for disintegration of large soil 

particles and homogenous mixing of soil in the solution (Prasanna et al., 2006). As an 



21 
 

alternative to glass tubes often employed in dilution techniques, 96 well plates were 

used in this study. Each well was seeded with 200 µL liquid BG-11 + 100 µg/ml CHX. 

Aliquots (300 µL) of the suspension formed above the soil were taken from the 

overnight incubation and mixed with the 200 µL liquid BG-11 + 100 µg/ml CHX 

following the standard dilution techniques. The procedure was carried out aseptically 

in a laminar flow cabinet. The sample was placed into the first well (well A). The 

solution was pipetted repeatedly in order to mix well. Then, 300 µL was removed from 

the first well (well A) and dispensed into the next well (well B) using a new sterile 

pipette tip for each dilution. The process was repeated until the last well (well H). Six 

replicates were prepared for each dilution, and each experiment was repeated three 

times. All 96 well plates were shaken at 150 rpm and were sealed with Parafilm to 

avoid contamination and evaporation. All cultures were incubated with the same 

setting as Broady (1979) at 15 ± 2 °C with 24 h light supplied by cool white fluorescent 

lamps at 27 µmol m-2 s-1. 

 

 

2.3.6 Identification of morphospesies 

 
For cultures growing on agar, small sub-samples were scraped from the agar medium 

for slide preparation. For liquid cultures, wells that had visible growth were observed 

after one to two weeks incubation. Twenty microliter samples were taken for slide 

preparation. Cover slips were sealed on the slides using nail polish in order to avoid 

evaporation during observation. 

 

 
 

Observations were made using an Olympus BX-53 light microscope (Olympus 

America Inc., Center Valley, PA, USA) at 100 – 2000x magnification. 
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Photomicrographs were taken and illustrations were made with the aid of a camera 

lucida. Each entire preparation was examined and all morphospecies of cyanobacteria 

present were recorded. All relevant morphological features were recorded, including 

trichome colours, vegetative cell width and cell length, cell shape, motility, 

constriction at the cross wall, apical cells, presence of granules and sheath 

morphology. Measurements of specialised cells, heterocytes and akinetes were also 

made. Size measurements were made on 30 randomly chosen replicate samples for 

each morphospecies. 

 

 
 

Taxonomic assessment was based on Broady (1979), and Komárek & Anagnostidis 

(1999, 2005) and Komárek (2013). Where uncertainty existed after assessment, this is 

indicated by “cf.” (Latin conferature = to compare with). This is used for samples that 

resemble existing records but are not identical based on the description given in the 

main taxonomic source. 

 

 
 

2.4 Results 

 
2.4.1 Overview of morphospecies recorded 

 
Isolations from samples obtained from 20 of the 37 sampling sites showed good visible 

growth and were selected for light microscopy. Seventeen morphospecies including 

one Chroococcales, one Nostocales, three Oscillatoriales and six Synechococcales, 

were recognised from the isolations. Each morphospecies was assessed as rare (+) or 

dominant (++) (Table 2.4). Morphospecies were considered dominant when they 

contributed >60% of the cultures examined. Of the 17 morphospecies obtained, three 
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were successfully grown in unialgal culture and the remaining 14 in mixed cultures. 

Seven of the morphospecies recognised are new records for Signy Island. 

 

 
 

Table 2.4: List of cyanobacteria currently recorded from Signy Island, including 

comparison with previous records from the same locations reported by Broady (1979). 

Cultures from modified BG-11 + CHX agar medium are indicated by (M), and most 

probable number techniques by (MPN). Rarely presence is indicated by (+) and 

dominantly presence by (++). Blank indicates absent. 

Cultures obtain 
Family Species  from this study  

 
Broady 

(1979) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Coleofasciculaceae 

Wilmottia murrayi 

Morphotype 1 
 

 

Wilmottia murrayi 

Morphotype 2 
++ 

+ 

 M MPN  

Chamaesiphonaceae Chamaesiphon subglobosus 
 

+ + 

Chroococcaceae Cyanosarcina chroococcoides 
 

+ + 

Merismopediaceae Synechocystis minuscula 
 

+ + 

 
Desmonostoc muscorum 

 
+ + 

Nostocaceae Nostoc cf. commune 
 

+ ++ 

 
Nostoc punctiforme 

 
+ ++ 

Microcoleacea Microcoleus autumnalis 
 

+ ++ 

 
Oscillatoria cf. subsala 

 
+ 

 

Oscillatoriaceae  
Phormidium uncinatum 

  

++ 

 

 
Leptolyngbya foveolarum 

 
++ ++ 

Leptolyngbyaceae Leptolyngbya cf. subcapitata 
 

+ 
 

 
Phormidesmis priestleyi 

 
++ ++ 

Pseudanabaenaceae Pseudanabaena cf. catenata 
 

+ ++ 

Trichocoleusaceae Trichocoleus cf. hospita + 
  

Prochlorotrichaceae Nodosilinea signiensis + 
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2.4.2 Description of morphospecies 

 
Compilations of photomicrographs (characteristic details are shown with an arrow), 

camera lucida illustrations and descriptions for each morphospecies from 37 sites are 

given based on Table 2.4. Morphological identifications were based on the literature 

indicated for each morphospecies. Genera are listed alphabetically within the family. 

Occurrence details were recorded for each morphospecies and comparison are given 

with previous records from Broady (1979). 

 

 
 

2.4.2(a) Family Chamaesiphonaceae 

Chamaesiphon subglobosus (Rostafinski) Lemmerman: Figure 2.5a, b, e 

Broady (1979): Page 22; Figure 2o-q 

Komárek & Anagnostidis (1999): Page 390; Figures 487 & 509 

 

 

 
 

Description: Cell solitary or aggregated in small, irregular colonies, which later form 

two or more layers, or with several cells in irregular clusters (Figure 2.5a). Cell 

spherical to ovoid, pale grey, pale blue-green or yellow-brown to dark brown, (2.8)3 

– 4.2(5) µm wide and 4.8 – 6.0 µm long. Sheath (pseudovaginae) colourless or 

sometimes completely lacking in culture. Reproduction by exocytes, usually one or 

two (Figure 2.5b, e), which differentiate at the cell apex and are attached to mother 

cell. 
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Occurrence: Dominant in site 69. Recorded also from sites 6, 10, and 39. Previously 

recorded from site 6 (Broady, 1979). 

 

 
 

Remarks: The sample is consistent with the description of C. subglobosus (Komárek 

& Anagnostidis (1999). However, the cell length recorded by Broady (1979) was 

greater (6 – 7 µm) than in the present material. 

 

 
 

The taxon has previously been collected mainly from the southern polar region: 

streams in the Dry Valleys (Broady, 1982); periphyton of lakes, Hope Bay (Vinocur 

& Pizarro, 1995); lakes and ponds of Victoria Land (Tell et al., 1995); felt and ice 

bubble of Lake Otero, Cierva Point (Mataloni et al., 1998; Mataloni & Pose, 2001); 

terrestrial location in Victoria Land (Broady, 2005). Elsewhere has been recorded 

from freshwater lakes, streams, waterfalls, in unpolluted water, from lowlands to 

mountains, mainly in central Europe (Komárek & Anagnostidis, 1999). 


