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KAEDAH KECAMUKAN MENINGKATKAN KEUPAYAAN PETA CAMUK

DIGITAL SATU DIMENSI UNTUK APLIKASI KRIPTOGRAFI

ABSTRAK

Peta camuk digital satu dimensi menjadi semakin popular dalam bidang kripto-
grafi kerana kedua-duanya mempunyai banyak persamaan dan mempunyai struktur
yang mudah. Walau bagaimanapun, peta ini mempunyai banyak kelemahan yang telah
dikenal pasti yang menyumbang secara negatif terhadap keselamatan algoritma krip-
tografi yang menggunakannya. Oleh itu, menambahbaikkan peta camuk digital satu
dimensi dari segi kecamukan dan sifat statistik akan menyumbang terhadap penam-
bahbaikan kepada algoritma kriptografi yang berasaskan kecamukan. Banyak kaedah
mempertingkatkan kecamukan telah dicadangkan untuk menangani isu-isu ini. Walau
bagaimanapun, kebanyakan kaedah ini bergantung kepada sumber entropi luaran un-
tuk meningkatkan ciri-ciri peta camuk satu dimensi. Dalam kajian ini, empat kaedah
mempertingkatkan kecamukan yang baru telah dicadangkan untuk menangani isu-isu
tersebut tanpa memerlukan sumber luaran. Kaedah pertama ialah automata terbatas
deterministik yang dihibridisasi dengan peta camuk satu dimensi di bawah kawalan
kaedah mempertingkatkan kecamukan yang sedia ada. Tujuan kaedah ini adalah un-
tuk melemahkan isu degradasi dinamik dengan memanjangkan panjang kitaran. Untuk
mempertingkatkan kerumitan dan memperluaskan julat parameter kecamukan, kaedah
kedua dicadangkan berdasarkan kepada perubahan nilai keadaan kecamukan dengan
memperbalikkan urutan bit pecahannya. Dengan menggabungkan kedua-dua kaedah
pertama dan kedua, kaedah ketiga dicadangkan berdasarkan kepada peta camuk satu
dimensi dan automata terbatas deterministik yang dikawal oleh permutasi bit. Kae-

dah keempat yang diperkenalkan adalah berasaskan kepada kaedah lata dan gabungan
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beberapa kaedah lain sebagai rangka kerja mudah untuk membesarkan julat parameter
camuk dan juga untuk meningkatkan prestasi camuk. Analisis teori dan penilaian pres-
tasi camuk menunjukkan bahawa kaedah yang dicadangkan mempunyai panjang kitar-
an yang panjang (panjang kitaran > 10° pada ketepatan bit 10~®), tahap tidak-linear
yang lebih tinggi (purata entropi simpangan pada tahap lebih-kurang 0.824), tahap ke-
rumitan yang lebih baik (purata entropi fuzzy pada tahap lebih-kurang 1.87), dan julat
parameter camuk yang lebih besar (parameter kawalan r € (0,0)) berbanding dengan
kaedah-kaedah baru lain yang telah dicadangkan. Peta camuk ini kemudiannya akan
digunakan dalam reka bentuk algoritma kriptografi baru (enkripsi imej, fungsi hash,
penjana nombor/bit pseudo-rawak). Analisis keselamatan dan prestasi menunjukkan
bahawa algoritma penyulitan imej camuk yang dicadangkan sangat terjamin kesela-
matannya seperti yang dibuktikan oleh skor purata piksel (NPCR) dengan skor purata
sehingga 99.65% dan skor nilai perubahan intensiti tergabung (UACI) dengan skor
sehingga 33.45%. Dari segi keselamatan dan prestasi algoritma, algoritma yang di-
cadangkan juga melampaui prestasi algoritma-algoritma penyulitan imej camuk yang
lain. Sejumlah analisis yang dilakukan pada kajian fungsi hash camuk baru ini telah
menunjukkan bahawa fungsi yang dicadangkan mempunyai sifat statistik yang baik
dengan perubahan bit dan kebarangkalian B = 64.127 dan P = 50.09 masing-masing,
rintangan perlanggaran dengan perlanggaran sifar WN(0) = 9403, dan secara amnya
mempunyai prestasi statistik yang lebih baik jika dibandingkan dengan fungsi hash
camuk sedia ada yang lain. Penjana nombor rawak camuk telah dicadangkan dan ha-
sil statistik menunjukkan bahawa penjana yang dicadangkan mempunyai keselamatan
yang lebih baik daripada penjana camuk yang sedia ada, seperti yang ditunjukkan yang

mana penjana yang dicadangkan telah lulus semua 15 sub-ujian NIST SP 800-22.
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CHAOTIFICATION METHODS FOR ENHANCING ONE-DIMENSION

DIGITAL CHAOTIC MAPS FOR APPLICATIONS IN CRYPTOGRAPHY

ABSTRACT

Digital one-dimensional chaotic maps are becoming increasingly popular in the
area of cryptography due to their commonalities and their simple structures. How-
ever, these maps have well-known drawbacks which contribute negatively towards
the security of the cryptographic algorithms that utilize them. Thus, enhancing dig-
ital one-dimensional chaotic maps in terms of their chaoticity and statistical prop-
erties will contribute towards the improvement of chaos-based cryptography. Many
chaotification methods have been recently proposed to address these issues. How-
ever, most of these methods are dependent on an external entropy source to enhance
the characteristics of one-dimensional chaotic maps. In this study, four novel chao-
tification methods are proposed to address these issues without the need of external
entropy sources. The first method hybridizes deterministic finite state automata with
one-dimensional chaotic maps under control the existing chaotification methods. The
aim of this method is to weaken dynamical degradation issue through prolonging cy-
cle length. To increase chaotic complexity and enlarge chaotic parameter range, the
second method is proposed based on modifying chaotic state values by reversing the
order of their fractional bits. To take advantage of the first two proposed methods, the
third method is proposed based on a one-dimensional chaotic map and deterministic
finite state machine under the control of bitwise permutations. The fourth method is
introduced based on cascade and combination methods as a simple framework to en-
large the chaotic parameter range and to enhance chaotic performance. Theoretical

analysis and chaotic performance evaluation indicate that the proposed methods have

xxiii



long cycle lengths (cycle length > 10° at bit precision 10~ ), higher nonlinearity (av-
erage symplectic entropy of approximately 0.824), better complexities (average fuzzy
entropy of approximately 1.87 ), and larger chaotic parameter ranges (control param-
eter r € (0,00) ) as compared to other recently proposed chaotification methods. The
new chaotic maps are then used in the design of new cryptographic algorithms (image
encryption, hash function, pseudo random number/bit generator). Security and per-
formance analysis indicate that the proposed chaotic image encryption algorithms are
highly secure as indicated by average number of pixels change rate (NPCR) scores of
up to 99.65% and unified average changing intensity (UACI) values of up to 33.45%.
The proposed algorithms also surpass existing chaotic image encryption algorithms in
terms of security and performance. A number of analysis performed on the new chaotic
hash function indicates that the proposed function has a good statistical properties with
average bit changes and probabilities of B = 64.127 and P = 50.09 respectively, colli-
sion resistance with zero collisions of Wy (0) = 9403, and generally has better statisti-
cal performance when compared to the other existing chaotic hash functions. Chaotic
random number generators are proposed and the statistical results shows that the pro-
posed generator has better security than existing chaotic generators, as indicated by the

passing of all the 15 sub-tests of NIST SP 800-22.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Natural and non-natural phenomena such as the weather, fluid dynamics, lasers and
climate can produce chaotic behaviors (Raymond, [1997; |Xubin et al., 1993). Chaotic
behaviors can be studied by using mathematical paradigms, known as chaotic sys-
tems. Chaotic systems possess the following common characteristics: sensitivity to
slight changes to control parameters and initial conditions, topological mixing prop-
erty, dense periodic trajectories and unpredictability. Each initial condition is highly
capable of determining the nature of the chaotic trajectory. Any random small change
to the initial condition leads to a completely different trajectory. Due to these impor-
tant characteristics, chaos theory is widely studied in many fields, such as engineering,
economics, geology, physics, biological, chemical, meteorology, mathematics, poli-
tics, robotics, philosophy, cryptography, algorithmic trading and secure communica-
tions (J1 et al., 2018; Kyrtsou and Labys, 2007; Radek and Radmila, 2016; |Strogatz,

2018; 'Wu et al., 2014).

The first chaotic system was introduced by E. N. Lorenz to study the change of
weather (Edward, [1963)). Thereafter, a lot of chaotic systems have been proposed to
study various kinds of phenomena such as population (Robert, 2004), kneading oper-
ation (Ronald, |1997), Arnold’s cat map (Igorevich and André, 1968)), etc. The chaotic
systems can be one dimensional (1D) or high dimensional (HD) and can be divided

into two classes: continuous-time and discrete-time chaotic systems. Continuous-time



chaotic systems is usually defined by a differential equations such as partial or ordi-
nary differential equation. Examples of continuous-time systems include Lu chaotic
attractor (Jinhu and Guanrong, |2002), Chua circuit (Leon et al., [1993), Lorenz system
(Edward, [1963)) and oscillating circuits (Bao et al., 2017). In contrast, discrete-time
chaotic systems usually take the method of iterated functions to generate chaotic be-
haviors and defined by a difference equations. Examples of discrete-time systems

include sine map, tent map and logistic map.

A discrete chaotic system is implemented on finite precision machines, such as
computers. It generates chaotic behavior in the bounded space, which is called pseudo-
chaos or digital chaos. A digital chaos map has dynamical characteristics, with low
chaotic complexity compared to the chaotic system that is implemented on the analog
circuit (Erivelton et al.,|2019). An analog chaotic system is extremely complex, hard to
predict, and unstable. However, an analog chaotic system requires the development of
an electronic circuit to each chaotic system to generate chaotic behavior. Furthermore,
due to the fact that cryptography handles digital data, the analog chaotic system is not

appropriate for cryptographic applications.

With fast growth of communication technology, it is vital to protect private data
from unauthorized access. Information security offers five basic principles to protect
data, which are confidentiality, authentication, integrity, non-repudiation, access con-
trol, and availability. Cryptography is a science related to the achievement of these
security principles. As a result, a number of different cryptographic algorithms have

been proposed to suit different security applications.



Digital chaos has been used in different applications, such as watermarking, opti-
mization, cryptography. Cryptography and chaos have many common characteristics,
such as unpredictability, sensitivity to slight change to initial condition or control pa-
rameter, random-like behavior, ergodicity, and uniform distribution. Thus, chaotic
maps are used as a source of diffusion and confusion in several chaotic cryptographic
algorithms such as image encryption, hash function, and pseudo-random number gen-
erator (PRNG). Furthermore, the control parameters and the initial conditions of the
chaotic maps are used as the key in a lot of chaotic cryptographic algorithms. 1D and
HD chaotic maps are widely used to design new chaotic cryptographic algorithms dur-
ing the last decades. 1D chaotic maps, such as unimodal maps, have attracted many
researchers because they are simple mathematical equations and do not require more

time to implement them.

1.2 Motivation

Chaos-based cryptography has several benefits compared to conventional cryptog-
raphy, it is easy to expand the keyspace and swap the internal chaotic maps for different
data encryption purposes. Besides, conventional cryptography shown to be unsuitable
for fast encryption of bulky data such as color images encryption and video encryption
(Chen et al., 2012; Luo et al., |2015; Zhang and Wang, [2015). In image encryption,
the popular conventional symmetric algorithms such as DES, AES, and others are not
suitable for image encryption due to the special characteristics of images such as large
data capacity, and strong redundancy with high correlations between adjacent pixels
(L1 et al., 2018; Niyat et al., 2017). On the other hand, a digital chaotic map is more

suitable for image encryption, which can remove the correlation and provides good



confusion and diffusion on the large data. As a consequence, many chaos-based image
encryption algorithms have been proposed, and there are also many issues that have

not yet been addressed (Ghadirli et al., 2019).

Many various cryptographic algorithms have adopted 1D chaotic maps in their pro-
posed designs (Hou et al.,|2017;|Hua and Zhou, 2018)), because the maps can be defined
by simple mathematical equations which are easily coded into computer instructions.
The security of chaotic cryptographic algorithms is derived from the adopted chaotic
maps, whereby the chaotic characteristics are obviously reflected in algorithms. For
instance, the initial condition and control parameter are always used in the design of
the key in the chaotic ciphers, a small change to these parameters leads to a new inde-
pendent chaotic cipher. Despite its simplicity and ease of implementation, 1D chaotic
behaviors suffer from many security challenges such as limited chaotic range and small
cycle length. This leads to a lot of research that studies 1D chaotic behaviors. Thus,
these challenges attracted many researchers to propose new solutions to avoid secu-
rity loopholes (Arroyo et al., 2008; Lingfeng and Suoxia, [2015; |[Nagaraj et al., 2008};
Shujun et al., 2004). Many studies examine the impact of directly applying 1D chaotic
maps in the cryptographic algorithms without modifications or enhancements. They
found that these algorithms suffered from different security loopholes, such as rel-
atively small keyspace, low complexity behavior, and unable to withstand different

types of attacks.

Based on the cryptanalytic algorithm, many proposed cryptographic algorithms
based on 1D chaotic maps are found to be insecure (Ponnain and Chandranbabu, [2016;

Wang et al., 2018; Yong et al., 20177)). The selection of 1D chaotic map is considered the



main challenge of chaotic cryptographic algorithms. Hence, many novel chaotification
methods have been recently proposed to enhance the existing 1D chaotic maps (Deng
et al., [2015a; Hua and Zhou, [2018; Hua et al.| [2015; |[LingFeng et al., |2014). They all
contributed towards better chaos performance, which better reflects on the security of
chaotic cryptographic algorithms. Therefore, despite these new methodologies, chaos-
based cryptography is still in its infancy and has yet to be adopted for general purpose
usage. Thus, there is still a lot of potential work to be done in the area before chaos-

based cryptography is widely accepted for cryptographic use.

1.3 Problem Statement

In recent decades, chaotic cryptographic applications have attracted many inter-
ests from researchers due to the common properties shared between cryptography and
chaotic behavior. Thus, the chaotic cryptography is regarded as a new direction along-
side traditional cryptography. Many chaotic cryptography algorithms have been de-
signed to protect the different multimedia types (Alvarez and Li, 2006; |(Ghadirli et al.,
2019). Existing 1D chaotic maps, which generally includes unimodal maps, are sim-
ple mathematical equations and easy to execute on a computer. They were therefore
selected to be used in the design of many chaotic cryptographic algorithms. Unfortu-
nately, these algorithms are unable to resist different types of well-known attacks (Feng
et al., 2019;|L1 et al., 2013} Ponnain and Chandranbabu, |2016; Wang et al.,[2018};|[Zhao
et al., 2012). The main defect behind these weak algorithms is the adopted 1D chaotic

maps which are known to have security loopholes.



In digital chaos, the dynamical degradation phenomenon arises when the chaotic
systems are implemented on finite precision computing devices such as on computers.
One of the causes of dynamical degradation is the truncation process. Using truncation
functions such as flooring, rounding, and fixing on each chaotic iteration, the truncated
chaotic points approach each other. After a certain number of the iterations, the chaotic
trajectory lies in a cycle. When a chaotic trajectory generates a small cycle length, the
chaotic points are repeated and have many negative properties such as non-uniform dis-
tribution, low linear complexity, low ergodicity and the strong correlation of chaotic
trajectory. 1D chaotic maps rapidly degrade after a small number of iterations as com-
pared to their HD counterparts and have small cycle lengths (Chengqing et al., 2019;

Chunlei et al., 2019; Deng et al.,[2015b} Liu and Miao, 2017; Liu et al., 2017b).

In chaotic complexity, 1D chaotic maps have simple mathematical definitions that
produce chaotic behavior, in which chaotic behavior is the main source of security
for chaotic cryptographic algorithms. Unfortunately, 1D chaotic maps generate low
chaotic behaviors (low complexity) that are easy to attack. Low chaotic complexity
arises as simple patterns and simple attractors in chaotic behaviors. Thus, the given or
extracted points of a chaotic trajectory can be easily used to estimate parameters of 1D
chaotic map such as initial condition and control parameter. For example, the logistic
map is one of the unimodal maps and has a critical point for each control parame-
ter (Arroyo et al., 2008). A critical point is the largest point of trajectory and always
indicates to control parameter such as 0.5 — 4, 0.25 — 3.75, 0.225 — 3 and so on.
Furthermore, the recent estimation technologies, coupled with lightweight complexity
analysis can quickly identify the 1D chaotic maps parameters (Arroyo et al., 2013}

Chengqing et al., 2019; Wang et al., 2009). These estimation techniques include op-



timization algorithms (He et al.l [2007; Jiang et al., 2015} Tang and Guan, 2009), gray
codes, symbolic dynamics (Arroyo et al., 2009a)), return map (Adrian, |2008) and phase
space reconstruction (Hamzal, 2017). Identification of the control parameter and esti-
mation of the initial condition leads to identifying the key in the chaotic cryptographic

algorithms.

Basically, chaotic parameter region is an important factor in chaotic cryptography
algorithms, it represents the keyspace of algorithms and provides high flexibility in al-
gorithm designs. Thus, a large chaotic parameter range is the most crucial for chaotic
cryptographic algorithms. Unfortunately, 1D chaotic maps have limited chaotic param-
eter ranges and discontinuous behaviors, with many periodic windows of non-chaotic
behaviors. Therefore, chaotic cryptographic algorithms based on 1D chaotic maps
have a small keyspace, can be attacked by brute force (Dhivya et al., 2016; [Hua and

Zhoul, [2016a; [Zhou et al., [2014).

To sum up, the main vulnerabilities of 1D chaotic maps are caused by several issues

such as:

1. 1D chaotic maps suffer from dynamical degradation at a rapid rate.

2. Easy to estimate control parameters and initial conditions.

3. Limited and discontinuous chaotic parameter ranges.

In the past few years, many chaotification methods such as cascade, switching and
perturbation have been proposed to enhance the existing chaotic maps (Deng et al.,

2015a; |Hua et al., 2018b). Most of the proposed methods require an external entropy



source to enhance a simple 1D chaotic map. These sources may include a continuous
chaotic system, a random number sequence, or additional digital chaotic maps. These
techniques adversely affect the efficiency of the resulting maps. In addition, the ex-
ternal entropy source itself may suffer from statistical defects. Rather, a chaotification
method should be simple, without needing an external source to generate excellent

chaotic behaviors.

1.4 Research Objective

Based on the issues highlighted in the problem statement, the major objectives
of this study is to propose novel chaotification methods to enhance the existing 1D
chaotic maps and to design new chaotic cryptographic algorithms based on each of the

proposed methods. Therefore, the goals of this research are as stated below:

1. To reduce the effect of the dynamical degradation of 1D digital chaotic maps by

hybridized 1D chaotic map and deterministic finite state automata (DFA).

2. To enhance the chaotic complexity of 1D chaotic maps by reversal order fraction

bits of chaotic point.

3. To expand the chaotic parameter range of 1D digital chaotic maps by hybridized

cascade and combination method in the simple framework.

4. To design secure and practical cryptographic algorithms based on each of the

proposed chaotification methods.



1.5 Research Scope

This study focuses on proposing novel chaotification methods to enhance the exist-
ing 1D chaotic maps and to improve the security of chaotic cryptographic algorithms.
The new and existing digital 1D chaotic maps are examined based on the proposed
chaotic benchmarks in the past two decades. This study uses the discrete chaotic maps
such as unimodal maps (logistic, sine, and tent maps) and Henon map in the proposed
chaotification methods. Other chaotic maps that are not included in the scope will not

be used in this study.

In order to investigate the security and flexibility of the proposed chaotification
methods, new chaotic cryptographic algorithms following the proposed methods are
designed such as digital image encryption, hash function, PRNG and PRBG. Hence,
symmetric cryptographic algorithms, block cipher, cryptographic hash functions and
pseudo random generator included in the scope of this thesis. Other cryptographic
branches such as asymmetric, stream cipher, lightweight cipher did not include in the

scope of this thesis.

1.6 Research Contribution

According to the objectives of this study, four novel chaotification methods are
introduced. Each one of these methods can generate many new chaotic maps. Further-
more, each proposed method is used in designing new chaotic cryptographic algorithm.
Thus, the research contributions of this study can be categorized into two groups,
chaotic maps and cryptographic algorithms. The basic contributions in a chaotic maps

are as below:



1. Deterministic chaotic finite state automata (DCFSA) configurations using DFA

with existing 1D chaotic maps under different existing chaotification methods.

2. Bit reversal approach (BRA) method based on reversal bit and fixed-point stan-

dard.

3. Tent map-deterministic finite state machine (TM-DFSM) based on tent map and

DFSM under bit-wise permutations.

4. hybrid chaotic system (HCS) based on simple hybrid method between cascade

and combination systems.

Also, the second group of contributions of this study focuses on multiple ways to
design new chaotic cryptographic algorithms. Each proposed chaotification method is
adopted in the design of a new algorithm. On a whole, the second group of contribu-

tions can be listed as below:

1. New image encryption algorithm based on TM-DFSM to create flexible keyspace

and achieve high security.

2. New image encryption algorithm based on HCS to generate high sensitivity im-

agecipher to a small change to key or plain-image.

3. New hash function based on DCFSA to achieve high collision resistance and

performance.

4. PRNG based on the application of the HCS method to investigate new chaotic

maps and achieve uniform distribution.
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5. PRBG based on the application of BRA method to investigate new chaotic maps

in secure cryptographic applications.

The novel methods and new algorithms are evaluated in terms of security, flexi-
bility and speed performance, which will be described and discussed in detail in the

following chapters.

1.7 Research Process

The methodology applied in this study is conducted in five phases. First, the ex-
isting literature of 1D chaotic maps and chaotic cryptographic algorithms are studied
to exhibit the shortcomings and difficulties. The weaknesses of 1D chaotic maps are
listed and studied. In addition, the comparison of the existing chaotification methods
is introduced to identify the research gap of these methods. The main issues of the
chaotic cryptographic algorithms are studied and highlighted. These algorithms in-
clude chaotic image encryption, chaotic hash function and chaos-based pseudorandom

number generator (PRNG).

In the second phase, based on internal entropy sources, novel chaotification meth-
ods are proposed to produce many new chaotic maps. To showcase the chaotic per-
formance of the proposed methods, theoretical analysis based on cycle analysis and
Lyapunov exponent (LE) are introduced and several experiments (including bifurca-
tion diagram, LE, Shannon entropy (SE), Fuzzy entropy (FuzzyEn), Fuzzy Correla-
tion Dimension (FCD), and cycle analysis) are performed in the third phase. These
measurements are carefully selected to study different security aspects such as chaotic

parameter sensitivity, ergodicity, chaotic range, strangeness, nonlinearity and complex-

11



ity. Meanwhile, decision and comparison to other existing chaotification methods are

introduced in the same phase.

In the fourth phase, new chaotic cryptographic algorithms based on the different
new chaotic maps that generated from the proposed chaotification methods are de-
signed. For example, new chaotic image encryption was proposed based on the new
chaotic maps to fulfill the security requirements and addressing defects that were dis-
cussed in Chapter 2. Finally, the experimental evaluation and performance analysis
of the new chaotic cryptographic algorithms are reported in the fifth phase, whereby
the results are compared to other chaotic cryptographic algorithms. These experimen-
tal evaluations are widely used in the chaos-based cryptographic primitive domains.
Table provides a summary of the five phases of the research steps and Figure

shows an overview of the steps involved in this study .
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Table 1.1: Research Process

Phase

Details

Performing literature Shortcomings of 1D chaotic maps. Comparing of the existing
study chaotification methods. Weaknesses of existing chaotic crypto-
graphic algorithms.

Proposing Proposing novel chaotification method.

Chaotic analysis

Theoretical analysis.

Chaotic performance evaluations.

New experimental investigations.
Comparing to the existing 1D chaotic maps.

Comparing to some recent chaotification methods.

Designing algorithms

Designing new chaotic cryptographic algorithms.
TM-DFSM-based image encryption.

HCS-based image encryption.

DCFSA-based hash function.

HCS-BASD PRNG.BRA-based PRBG.

Evaluating

Designing experiments to analyze security
Measuring complexity computation.

Comparing to other chaotic cryptographic algorithms.

13
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1.8 Outline of the Thesis

The thesis is organized into six chapters. Chapter 1 provides an overview of con-
cepts, problems, methodology, and contributions of the research. Chapter 2 briefly
reviews the closely related literature review, background and presents a description of
the methods, concepts, and tools used in this thesis. Chapter 3 provides steps to build
novel chaotification methods. Chapter 4 studies the chaotic behavior of the proposed
methods under a set of investigations and discusses the chaotic results and the research
outcomes. Chapter 5 provides new chaotic cryptographic algorithms with their eval-
uations and discusses the outcomes. Finally, Chapter 6 provides the conclusion and

focuses on future research works.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

From thousands of years ago, the use of cryptography in protecting sensitive in-
formation in all spheres of life remain unprecedented. The rapid influence of infor-
mation technology and telecommunications in our society implies that strong security
requirement must be developed to fit and address new technological challenges for the
protection of data at the state of rest, in transit or in use during exchange over public
channels. Several cryptographic primitives have been employed in achieving security
such as confidentiality, integrity, authentication, non-repudiation, access control and
digital signature (Ljupco, 2001). The vast majority of cryptosystems are designed to
be highly secure and fast especially when a bulk amount of data such as images, videos
or audio data are being transferred. Traditional cryptography such as DES, AES, etc,
has been developed and widely used for protecting confidential data. On the other
hand, digital chaos has been adopted in designing many cryptographic algorithms.
They are designed and developed alongside traditional cryptography to protect sensi-
tive data against different types of attacks. Hence, chaotic cryptography has gained
a good reputation as one of the most widely researched cryptographic algorithms and

has been extensively used for securing sensitive information (Alvarez and Li, 2006).

Shannon, in his principles of secure systems (Claude, [1949), did not formally use
the word chaos in his theory but he referred to the meaning of chaos through his pro-

posed design of secure cryptosystem which is based on mixing transformation and high

16



sensitivity to any slight change. Therefore, chaos is considered to be the source of en-
tropy, diffusion and confusion in chaos-based cryptographic systems. Based on these
features, in 1989, the first two digital chaotic cryptosystems was proposed (Matthews,
1989; [Toshiki et al., |1991). In the past two decades, a large body of research has pro-
duced several enhanced versions of chaos-based cryptosystems (Belazi et al., 2019;
Ghadirli et al.l 2019; Nepomuceno et al., 2019; Pak and Huang, 2017). However,
some of them are found to be not secure (Feng et al., [2019; Feng and Hel 2018} |Li
et al., 2019; Wang et al., 2018)). Several reasons around vulnerabilities of chaotic ci-
phers are found, most of them indicated that digital chaos has many limitations and
challenges. Therefore, these weaknesses and countermeasures have made the digital

chaos a very interesting area.

This chapter will study information related to chaotic maps which includes chaotic
behaviors, examples of existing chaotic maps, quantifying chaotic tools, chaotic issues
and methods, and chaotic cryptographic applications. In this chapter, the research gap
in the existing chaotification methods will be highlighted, and the new concepts that

will be used in the next chapters will be also described in this chapter.

2.2 Chaos and Properties

The phenomena known as the butterfly effect is one of the most well-known char-
acteristics of chaos theory. Chaos can be considered as a type of nonlinear dynamical
system, which provides a link between determinism and randomness. Formally, chaos
is defined as an “aperiodic long-term behaviour in a deterministic system that exhibits

sensitive dependence on initial conditions” with the chaotic signals exponentially di-
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verging with time evolution (also known as the Lyapunov exponent (LE)). LE is used

as a quantitative measure to identify a chaotic behavior.

Table 2.1: Chaos theory terms

Term

Definition

Dynamical system

Deterministic

Chaotic system

Initial condition

Control parameter

Trajectory

Phase space
Mixing property

Ergodicity

A dynamical system is a paradigm representing the tempo-
ral evolution of particular mathematical rules from a speci-
fied initial state. The result of a dynamical system is vectors
or time series.

The output point of a dynamic system is unique to the input
point.

Chaos is a nonlinear dynamic system that is composed of
an iterated function, an initial condition, time and a control
parameter to generate a data series.

Initial condition(s) is the initial input value(s) for a chaotic
system. The initial value should be within the domain’s
phase space.

A real number that has the primary role in generating
chaotic behavior.

A series of points generated by the iterative function. The
points start from xqy to x,, where n is the n'" iteration of
system. Trajectory is also known as the orbit of a chaotic
system.

It is the bound of the chaotic points, which limits them be-
tween two values, eg. [0,1].

A small change in an initial condition and control parameter
can cause a considerable change in the chaotic behavior.
Describes the chaotic trajectory in which the trajectory vis-
its all states in the phase space uniformly regardless of
where it is initiated.

The system variable, control parameter and initial condition values of dynamical

systems have a real, infinite phase space. However, when a dynamical system is re-

alized on a computer, all these values are represented by points from a finite space.

Chaotic trajectories that are generated by a nonlinear deterministic dynamical system

is entirely unpredictable at high iterations (Rupak] 2011)). Table[2.1]shows the concep-

tual terms that are often used in the chaos domain to pave a way for easy understanding

for readers.
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A nonlinear dynamical system is considered a chaotic system if it has the following

properties:

* Bounded: The phase space of all possible system variables (states) along the
trajectory should be bounded. This means that the system variables of the tra-
jectory must remain between an upper limit and a lower limit. For example, the

phase space for the logistic map is [0, 1].

* Deterministic: The system must be a deterministic function where an input

uniquely determines an output.

* Aperiodic: A trajectory of a nonlinear dynamical system does not lie in periodic

cycle or a fixed point.

* Sensitivity: Any slight change to initial conditions or/and control parameters
in a nonlinear dynamical system will diverge exponentially and rapidly as time
evolves. If the system has at least one positive LE, then such a system is consid-

ered as unpredictable and chaotic.

In order to study the properties of a nonlinear dynamical systems, the logistic map
is used as an example. The logistic map was designed to model the population growth
over time, in which the system can be represented by simple equation of a second

degree nonlinear dynamical system. The logistic map is defined as:

Xpp1 =1 XX X (1 —xy) 2.1

where r is the control parameter that ranges between [0,4] and x,, is a system variable in
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the range of the phase space [0, 1]. If r is chosen to be between 3.9 to 4, then the logistic
map will produce the chaotic behavior, leading to a trajectory that is unpredictable,

covers the entire phase space, and has random-like behavior.

The first condition of a chaotic map is it must be bounded. The logistic map is
bounded between [0, 1] with a control parameter range of r € [0,4]. The logistic map
is also a deterministic function, whereby its outputs depend on its chaotic point and
control parameter values. In order to verify the logistic map’s trajectory fulfils the
third condition, aperiodicity, the trajectory was simulated using Matlab. As shown
in Figure 2.1] the trajectory of the logistic map moves randomly as time evolves. A

detailed analysis on its aperiodicity can be found in (L1 et al., 2005).
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Figure 2.1: The trajectory of the logistic map

Finally, to demonstrate that the logistic map is sensitive to its initial condition and
control parameter, two logistic trajectories {X;,X>} were generated from two initials
conditions that are extremely close to each other (x,,x;), with control parameter r
being defined as r = 4. The difference in initial conditions is noted as €. Let € be equal
to 1078 and £ = (Jx, —x;|) = 1078, In Figure the two trajectories X; and X, diverge
from each other after 20 iterations. Meanwhile, Figure [2.3] shows the two system

variables |x, — x;| diverging at an exponential rate as time elapses. The diverging
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values start off with a positive slope before turning into a straight line on a log plot.
This indicates that a small change in the initial conditions of the logistic chaotic map

will completely generate a new chaotic trajectory.
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Figure 2.2: Two trajectories of two logistic maps that start from initial points that are
close to each other
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Figure 2.3: Exponential divergence of two trajectories of two logistic maps that start
from initial points that are close to each other

To evaluate the sensitivity of a control parameter, a similar experiment is per-
formed. The two trajectories are generated by using the same initial condition and
but instead, a slight change to the control parameter is introduced. The exponential di-
vergence of system variables is shown in each iteration. To summarise, chaotic systems
are nonlinear deterministic dynamic systems, but not all of these systems are chaotic

systems, as only some of the them have chaotic characteristics.
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Quantifying Chaos
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Figure 2.4: Quantifying chaos

2.3 Quantifying Chaos

To evaluate a nonlinear dynamical system and investigate its chaotic behavior along
its control parameter range and phase space, there is a set of quantifiers that can be
used. They cover different aspects of chaotic behaviors, and have been used in the

domain of chaotic system by different researchers. These metrics are classified as

shown in Figure [2.4]

2.3.1 Behavior Measurement

This section discusses the measures of chaotic behavior over its phase space and
its relationship with control parameters, through the use of iteration function diagram

and bifurcation diagram.

2.3.1(a) Iteration Function Diagram

In order to analyze the dynamic behavior for any of digital chaotic map ( a chaotic
system implemented with finite computing precision), and to describe the relationship

between intputs and outputs along its phase space (attractor), the iteration function
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i+1

Figure 2.5: Iteration function associated to the logistic map

diagram (chaos attractor) has been used in many studies (Arroyo et al., 2008} Liu
and Miao, 2017; [Wu et al., 2014; Zhou et al., 2015). It also describes the complex
geometric shape of the attractor. To plot an iteration function diagram, the input phase
space is divided into a set of points. Two values (x,41,x,) of a chaotic map f are
selected, where x,, 1| = f(x,). The control parameter is constant for all inputs (Zhou
et al),[2015)). Figure [2.5]illustrates the iteration function diagram for the logistic map,
which is classified as a unimodal map. A unimodal map always has a critical point
X in its phase space for each control parameter, and is monotonically increasing for
X < x. while monotonically decreasing for x,, > x. (Arroyo et al.| [2008). In fact, the
iteration function diagram can distinguish the complex patterns from simple patterns in
the phase space, which plays a significant role in the security benefits of chaos-based

cryptography to withstand against statistical attacks (Liu and Miao}, 2017).

2.3.1(b) Bifurcation Diagram

A bifurcation diagram always reveals interesting features of a nonlinear dynamic

systems along a range of control parameter. These features include chaotic, non-
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chaotic, periodic, fixed point, period doubling, blank windows, stable and unstable
orbits (J1 et al., 2018; Martinez and Canton, 2015). As an example, the bifurcation
diagram of logistic map fz (xo,r) with a control parameter r € [0,4] is shown in Fig-
ure 2.6 fr : [0,1] — [0, 1] which exhibits the distribution of system variables x,, for
different parameter settings. Based on Figure a detailed analysis of the logistic

map’s bifurcation diagram is as follows (Arroyo et al., 2008):

e The bifurcation diagram exhibits a stable fixed point equal to O for r € (0,1). It

also exhibits a stable fixed point equal to (r—1)/r for r € (1,3).

* The bifurcation diagram shows the doubling-period cascade region for r € (3,3.57)
which means that there exists periodic attractors of period 2m form =1,2,...,m,

where m is the precision of the finite space used in a hardware implementation.

» For r > 3.57 the logistic map depicts chaotic behavior but with visible periodic
windows. These regions are a mix between periodic and chaotic attractors but

do not reach a strange attractor.

In short, the bifurcation diagram can be useful in studying how system variables
are related to each control parameter, and can provide information about the behav-
ior of chaotic maps with respect to changes to its control parameter. It identifies
the chaotic parameter values for which the system has desired chaotic features, while
also revealing undesired features which are unsuitable for chaotic cryptographic algo-
rithms. Therefore, the bifurcation diagram is a good tool to identify asymptotic points
for choosing best keys in chaos-based cryptography algorithms (Arroyo et al., 2009a;

Shujun et al., 2004).
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Figure 2.6: Bifurcation diagram for r between 0 and 4

2.3.2 Sensitivity Measurement

The butterfly effect is one of the most significant feature of a chaotic system. Its
sensitivity to initial conditions and/or control parameters can provide unpredictable
chaotic behavior, which is desirable in chaos-based cryptography. LE and correlation

tests can be used for sensitivity measurements.

2.3.2(a) Lyapunov Exponent

LE is a quantitative measure to identify if a nonlinear dynamical system has chaotic
behavior (Hua and Zhou, |2018; Jan et al., 2018; |Wang and Wu, 2015). LE represents
the average exponential rate for two trajectories that start from infinitesimally close
points, that may diverge or converge as time elapses (Alan et al., 1985). Two trajecto-
ries start at xo and xg + €, where € is an infinitesimally small distance. If this distance
enlarges exponentially with as time goes on, the value of the LE would be positive,
indicating that the system is chaotic and unstable for a particular region. On the other

hand, a negative LE value indicates that the system is attracted to a fixed point or a
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