SULIT

Second Semester Examination
Academic Session 2020/2021
July/August 2021

EAF526 - Fire Behaviour

Duration : 2 hours

Please ensure that this examination paper contains SEVEN (7) printed pages before you begin the examination.

Instructions: This paper contains THREE (3) questions. Answer ALL questions.
All questions MUST BE answered on a new page.
-2-
(1). (a). Figure 1 illustrates a fire plume in an atrium. Based on your knowledge on Ideal Plume, Heskestad, and McCaffrey plume models, justify suitable plume model(s) that can accurately predict the temperatures at positions [1] and [2].

Figure 1
(b). An industrial building is to be designed. The building will be equipped with detection devices that will activate when the temperature of the smoke is greater or equal to $45^{\circ} \mathrm{C}$. Assume that a fire will occur at the central point of the building and the devices will be placed at 3 locations (L1, L2, L3) as depicted in Figure 2. By choosing a suitable design height between $9.0 \mathrm{~m} \leq \mathrm{H} \leq 15.0 \mathrm{~m}$,
(i). Outline the strategies to predict the locations of L2 and L3, respectively.
(ii). Predict the locations of L2 and L3 by assuming that $\operatorname{Tmax} 2=0.5$ Tmax1, Tmax3 = 0.25 Tmax1, respectively.
[20 marks]

Data:

i. Fire: $6 \mathrm{~m}^{2}$ diesel oil pool
ii. Ambient temperature ($\mathrm{T}_{\infty}=27^{\circ} \mathrm{C}$)
iii. Use equation of circle for the diameter (if required)
iv. Other data such heat capacity, etc can be assumed (if required)

Figure 2
2). (a). "The temperature of the hot gases during a compartment fire is important to practitioners of fire protection engineering"
-James G. Quintiere, University of Maryland, College Park

Discuss several points why the prediction of the temperatures of hot gases in a compartment fire is important based on the perspective of fire protection engineering
(b). A fire occurs in a room of 5 m wide, 5 m long and 3 m high with 2 openings. The dimensions of the openings are 2 m high and 0.6 m wide $(2.0 \mathrm{~m} \times 0.6 \mathrm{~m})$ and 0.5 m high and 1.5 m wide ($0.5 \mathrm{~m} \times 1.5 \mathrm{~m}$), respectively. Determine the average gas temperature at 10 minutes. Use the following data and information.
i. Ambient temperature of $25^{\circ} \mathrm{C}$
ii. Select any preferred suitable construction material for building
iii. Use a preferred material thickness between $125 \mathrm{~mm}-175 \mathrm{~mm}$
iv. Heat release rate (Figure 3).

Figure 3
[25 marks]
-5-
(3). (a). Figure 4 and Figure 5 show fire incidents occurring at two liquid storage tanks. Differentiate the nature of the two fire incidents.

Figure 4

Figure 5
[5 marks]
-6-
(b). The assessment of radiant heat flux received by a person from any fire incident is very crucial in devising firefighting strategies as well as designing the plant layout. Table 1 depicts various impacts of radiation intensities. You are required to perform a fire risk assessment on a storage tank that contains highly flammable liquid. Assume the fire occurs at the top of the storage tank 5 m above the ground.
(i). Determine the mass burning rate of the flammable liquid.
[5 marks]
(ii). Determine the height of the flame.
[5 marks]
(iii). Determine the radiation heat flux received by a worker standing 20 m from the edge of the storage tank.
[15 marks]

Data:

Diameter of storage tank
30 m
Heat of combustion of the liquid
Heat of vaporization of the liquid
Boiling point of the liquid
Ambient temperature
Heat capacity of liquid
Ambient density
Radiation intensity (η)
$50000 \mathrm{~kJ} / \mathrm{kg}$
$400 \mathrm{~kJ} / \mathrm{kg}$
370 K
298 K
$3.5 \mathrm{~kJ} / \mathrm{kgK}$

Relative humidity
$1.2 \mathrm{~kg} / \mathrm{m}^{3}$
0.4
70%

-7-

Table 1

Radiation Intensity $\left(\mathbf{k W} / \mathbf{m}^{\mathbf{2}}\right)$	Observed Effect
37.5	Sufficient to cause damage to process equipment long exposures (no piloted)
25	Minimum energy required for piloted ignition of wood, melting of plastic tubing
12.5	Pain threshold reached after 8 sec; second degree burns after 20 sec
9.5	Sufficient to cause pain to personnel if unable to reach cover within 20 sec, however blistering of the skin (second degree burns) is likely; 0\% lethality
4	Will cause no discomfort for long exposure
1.6	

