SULIT

July/August 2021

EAS458 - Pre-Stressed Concrete Design

Duration : 1 hour

Please ensure that this examination paper contains FIVE (5) printed pages including appendix before you begin the examination.

Instructions: This paper contains THREE (3) questions. Answer TWO (2) questions.

All questions MUST BE answered on a new page.

1. A simply supported post-tensioned prestressed beam of a rectangular section 300 mm wide is to be designed for a permanent load of $2.5 \mathrm{kN} / \mathrm{m}$ (excluding self-weight) and a variable load of $5.5 \mathrm{kN} / \mathrm{m}$ which is uniformly distributed on a span of 10 m . The member is to be designed with a concrete strength class C50/60. The equations for inequalities are given in the Appendix.
(a). Taking the density of pre-stressed concrete to be $25 \mathrm{kN} / \mathrm{m}^{3}$ and the characteristic compressive strength of the concrete at transfer is 33 MPa, determine the minimum depth of the beam if the losses are 20%.
(b). If the economic value of pre-stressing force is to be designed for this section, determine the range of eccentricities at the mid-span for the cable zone limit.
[32 marks]
2. Figure 1 shows the cross-section of a $400 \mathrm{~mm} \times 850 \mathrm{~mm}$ post-tensioned beam at the mid-span and the corresponding double tendon. Each tendon consists of prestressing strand with area, $A_{p s}=1056 \mathrm{~mm}^{2}$ and characteristic tensile strength, $f_{p k}=1770 \mathrm{~N} / \mathrm{mm}^{2}$. If the initial pre-stress applied to each tendon is $1000 \mathrm{~N} / \mathrm{mm}^{2}$ and 30% losses are anticipated, determine the ultimate moment of resistance for the section. Take $f_{c k}=40 \mathrm{~N} / \mathrm{mm}^{2}, E_{p}=205 \mathrm{kN} / \mathrm{mm}^{2}, \gamma_{\mathrm{m}}=1.15$ and $\gamma_{p}=0.9$. Verify that $x=349 \mathrm{~mm}$ can be used as the depth of the neutral axis.
[40 marks]

Figure 1
(b). In the case where the ultimate moment of resistance $\left(M_{R d}\right)$ is found to be slightly lower than the design moment ($M_{E d}$), propose with justification TWO (2) economical methods that can be adopted in order to increase $M_{\text {Rd }}$.
3. Figure 2 shows the end and side elevations of anchorage zone of a flexural member with the given dimensions. The size of the square bearing plate is 315 mm with a duct diameter of 106 mm . Given the strength of concrete at transfer is 35 MPa and jacking force is 3000 kN . Assuming the design load is 1.15 Pj and $\varnothing=0.6$, determine
(a). the design strength by considering bearing is taken as 50% greater than the value obtained in the equation below.

$$
F_{b}=\emptyset \times 0.85 f_{c i}^{\prime} \sqrt{\frac{A_{2}}{A_{1}}} \quad\left(\leq \emptyset \times 1.7 f_{c i}^{\prime}\right)
$$

[15 marks]
(b). the amount of vertical transverse reinforcement by assuming $\sigma_{s}=150$ MPa .
[18 marks]
(c). the amount of horizontal transverse reinforcement.
[17 marks]

All dimensions in mm
Figure 2

APPENDIX

Governing inequalities:

At transfer:

$\frac{P_{\mathrm{m} 0}}{A_{\mathrm{c}}}-\frac{P_{\mathrm{m} 0} e}{Z_{\mathrm{t}}}+\frac{M_{0}}{Z_{\mathrm{t}}} \geq f_{\mathrm{ct}, 0}---$ top fibre
$\frac{P_{\mathrm{m} 0}}{A_{\mathrm{c}}}+\frac{P_{\mathrm{m} 0} e}{Z_{\mathrm{b}}}-\frac{M_{0}}{Z_{\mathrm{b}}} \leq f_{\mathrm{cc}, 0}---$ bottom fibre

At service:

$\frac{P_{\mathrm{m}, \mathrm{t}}}{A_{\mathrm{c}}}-\frac{P_{\mathrm{m}, \mathrm{t}} e}{Z_{\mathrm{t}}}+\frac{M_{\mathrm{T}}}{Z_{\mathrm{t}}} \leq f_{\mathrm{cc}, \mathrm{t}}---$ top fibre
$\frac{P_{\mathrm{m}, \mathrm{t}}}{A_{\mathrm{c}}}+\frac{P_{\mathrm{m}, \mathrm{t}} e}{Z_{\mathrm{b}}}-\frac{M_{\mathrm{T}}}{Z_{\mathrm{b}}} \geq f_{\mathrm{ct}, \mathrm{t}}---$ bottom fibre

Minimum section moduli:

$$
\begin{aligned}
& \left(M_{T}-\Omega M_{0}\right) \leq\left(f_{c c, t}-\Omega f_{c t, 0}\right) Z_{t} \\
& \left(M_{T}-\Omega M_{0}\right) \leq\left(\Omega f_{c c, 0}-f_{c t, t}\right) Z_{b}
\end{aligned}
$$

Losses:

The remaining force after elastic shortening, $P^{\prime}($ pretensioned $)=\frac{P_{m 0}}{1+m \frac{A_{\mathrm{p}}}{A_{\mathrm{c}}}\left(1+\frac{e^{2} A_{\mathrm{c}}}{I}\right)}$
Loss of prestressing force due to creep $=E_{\mathrm{p}} P^{\prime} \frac{A_{\mathrm{p}}}{A_{\mathrm{c}}}\left(1+\frac{e^{2} A_{\mathrm{c}}}{I}\right)\left(\frac{\varphi\left(\infty, t_{0}\right)}{1.05 E_{\mathrm{cm}, 0}}\right)$
Loss in prestressing force due to shrinkage $=\varepsilon_{\mathrm{cs}} E_{\mathrm{p}} A_{\mathrm{p}}$

