## SULIT

First Semester Examination
Academic Session 2020/2021
February 2021

## EAF526 - Fire Behaviour

Duration : 2 hours

Please check that this examination paper consists of TWELVE (12) pages of printed material including appendix before you begin the examination.

Instructions : This paper contains FOUR (4) questions. Answer ALL questions.

Each question MUST BE answered on a new page.
...2/-
SULIT
(1). (a). Fire and explosion are the two main incidents that cause significant damages to equipment and deaths. To prevent accidents resulting from fire and explosion, engineers should be familiar with their natures, chemistry, and physics.
(i). Differentiate the occurrence of pool, jet, and flash fire.
(ii). Evaluate the effect of pool fire with large diameter on the radiation heat flux. Justify your answer based on the radiation heat flux equation.
[15 marks]
(2). During a fire incident, approximately $28.3 \mathrm{~m}^{3}$ of petrol was spilled and ignited, resulting in a flame from a 2 cm thickness of pool. Based on the following data:

| Boiling temperature, $T_{\mathrm{b}}$ | $: 423 \mathrm{~K}$ |
| :--- | :--- |
| Heat of combustion, $\Delta H_{\mathrm{c}}$ | $: 45000 \mathrm{~kJ} / \mathrm{kg}$ |
| Heat of vaporization, $\Delta H_{\mathrm{v}}$ | $: 370 \mathrm{~kJ} / \mathrm{kg}$ |
| Specific heat capacity, $C_{\mathrm{p}}$ | $: 2.21 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$ |
| Ambient temperature, $T_{\mathrm{a}}$ | $: 298 \mathrm{~K}$ |
| Soot surface emitting power, SEP $\mathrm{s}_{\mathrm{soot}}$ | $: 20 \mathrm{~kW} / \mathrm{m}^{2}$ |
| Wind velocity, $U_{\mathrm{w}}$ | $: 5 \mathrm{~m} / \mathrm{s}$ |
| Density of air, $\rho_{\text {air }}$ | $: 1.21 \mathrm{~kg} / \mathrm{m}^{3}$ |
| Viscosity of air, $\eta_{\text {air }}$ | $: 16.7 \times 10^{-6} \mathrm{Pa.s}$ |
| Saturation water vapor pressure, $P_{w}^{\circ}$ | $: 2320 \mathrm{~Pa}$ |
| Relative humidity | $: 0.7$ |

-3-
(a). Determine the heat flux 20 m from the flame's surface in the direction of the wind.
[15 marks]
(b). Analyse the probability of injury ( $1^{\text {st }}$ and $2^{\text {nd }}$ degree burns) and death at 20 m away from the flame's surface.
[6 marks]
(c). Given the population density is about 1 person per $20 \mathrm{~m}^{2}$ in that area, predict the number of persons with $1^{\text {st }}$ and $2^{\text {nd }}$ degree burns, as well as the number of deaths.
[4 marks]
(3). (a). With the aid of sketches, discuss any THREE (3) stages of enclosure fire development in terms of pressure and flow of the hot and cold gases.
[15 marks]
(b). An atrium will be equipped with the automatic mechanical smoke ventilation that will be started by means of a heat detector at the ceiling. The heat detector will be activated if the temperature rises are in the range of $40-70^{\circ} \mathrm{C}$ above the ambient temperature. Design the range of heights for the atrium such that the heat detector could detect the heat from a $2.5 \mathrm{~m}^{2}$ diesel oil pool fire.
-4-
(4). (a). Fire development in an enclosure greatly depends on both enclosure openings and ventilation flow. By segmenting curve B in Figures Q4(a) and Q4(b) into several important sections, analyse how curve $\mathbf{B}$ in each figure deviates from the hypothetical growth rate curve $\mathbf{A}$.
[10 marks]


Figure Q4(a)


Figure Q4(b)
(b). A room fire produces an energy release rate that increases linearly from zero to 1 MW in 10 minutes and remains constant. The room with 150 mm thick wall has dimensions of 5.5 m by 3.5 m by 3.0 m high. There are two windows 1.0 m by 1.0 m each in the room.
(i). By selecting a preferred material of construction, outline the steps taken to predict the temperature inside the room at a particular time.
(ii). Calculate the gas temperature at time 5 minutes from ignition.
[6 marks]
(iii). Evaluate the possibility of flashover to occur in 10 minutes.
[6 marks]
-6-

## APPENDIX

| $\mathrm{C}_{\mathrm{p}}$, heat capacity of air | 1.00 | $\mathrm{~kJ} /(\mathrm{kgK})$ |
| :--- | :--- | :--- |
| g, Gravitational constant | 9.81 | $\mathrm{~m} / \mathrm{s}^{2}$ |
| $\mathrm{C}_{\mathrm{d}}$, orifice discharge <br> coefficient | 0.7 |  |

Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)=353 / \mathrm{T}(\mathrm{T}$ in K$)$

| $\underline{\text { IDEAL PLUME }}$ |  |
| :--- | :--- |
| $\mathrm{b}=\frac{6}{5} \alpha Z$ | $\dot{m}_{p}=0.20\left[\frac{\rho_{\infty}^{2} g}{c_{p} T_{\infty}}\right]^{1 / 3} \dot{Q}^{1 / 3} z^{5 / 3}$ |
| $\mathrm{u}=1.94\left[\frac{g}{c_{p} T_{\infty} \rho_{\infty}}\right]^{1 / 3} \dot{Q}^{1 / 3} Z^{-1 / 3}$ | $\Delta T=5.0\left[\frac{T_{\infty}}{g c_{p}^{2} \rho_{\infty}^{2}}\right]^{1 / 3} \dot{Q}^{2 / 3} z^{-5 / 3}$ |

## ZUKOSKI PLUME

$$
\dot{m}_{p}=0.21\left[\frac{\rho_{\infty}^{2} g}{c_{p} T_{\infty}}\right]^{1 / 3} \dot{Q}^{1 / 3} z^{5 / 3} \quad \dot{m}_{p}=0.071 \dot{Q}^{1 / 3} z^{5 / 3}
$$

## HESKESTAD PLUME

| $z_{o}=0.083 \dot{Q}^{2 / 5}-1.02 D$ | $b=0.12\left(\frac{T_{o}}{T_{\infty}}\right)^{1 / 2}\left(z-z_{o}\right)$ |
| :---: | :--- |
| $\mathrm{L}=0.235 \dot{Q}^{2 / 5}-1.02 D$ | $u_{o}=3.4\left(\frac{g}{c_{p} T_{\infty} \rho_{\infty}}\right)^{1 / 3} \dot{Q}_{c}^{1 / 3}\left(z-z_{o}\right)^{-1 / 3}$ |
| $\dot{Q}_{c}=0.6 \dot{Q}$ to $\dot{Q}_{c}=0.8 \dot{Q}$ | $u_{o}=1.0\left(\frac{\dot{Q}_{c}}{z-z_{o}}\right)^{1 / 3}$ |
| $\dot{Q}_{c}=\dot{m}_{p} c_{p} \Delta T$ | $\Delta T_{o}=9.1\left(\frac{T_{\infty}}{g c_{p}^{2} \rho_{\infty}^{2}}\right)^{1 / 3} \dot{Q}_{c}^{2 / 3}\left(z-z_{o}\right)^{-5 / 3}$ |
|  | $\Delta T_{o}=25\left(\frac{\dot{Q}_{c}^{2 / 5}}{z-z_{o}}\right)^{5 / 3}$ |

For $z>L$

$$
\dot{m}_{p}=0.071 \dot{Q}_{c}^{1 / 3}\left(z-z_{o}\right)^{5 / 3}+1.92 \times 10^{-3} \dot{Q}_{c}
$$

## For z < L

$$
\dot{m}_{p}=0.0056 \dot{Q}_{c} \frac{Z}{L}
$$

## McCAFFREY PLUME:

$$
\begin{aligned}
\Delta T_{o} & =\left(\frac{\kappa}{0.9 \sqrt{2 g}}\right)^{2}\left(\frac{z}{\dot{Q}^{2 / 5}}\right)^{2 \eta-1} T_{\infty} \\
u_{o} & =\kappa\left(\frac{z}{\dot{Q}^{2 / 5}}\right)^{\eta} \dot{Q}^{1 / 5}
\end{aligned}
$$

## TABLE 4.1

Constants in McCaffrey's Plume Equations

| Region | $\mathbf{z} / \dot{Q}^{2 / 5}\left[\mathrm{~m} / \mathrm{kW}^{2 / 5}\right]$ | $\eta$ | $\kappa$ |
| :---: | :---: | :---: | :---: |
| Continuous | $<0.08$ | $1 / 2$ | $6.8\left[\mathrm{~m}^{1 / 2 / \mathrm{s}]}\right.$ |
| Intermittent | $0.08-0.2$ | 0 | $1.9\left[\mathrm{~m} /\left(\mathrm{kW}^{1 / 5} \mathrm{~s}\right)\right]$ |
| Plume | $>0.2$ | $-1 / 3$ | $1.1\left[\mathrm{~m}^{4 / 4}\left(\left(\mathrm{~kW}^{1 / 3} \mathrm{~s}\right)\right]\right.$ |

## THOMAS PLUME:

$$
\begin{gathered}
\dot{m}_{p}=0.188 P z^{3 / 2} \\
\dot{m}_{p}=0.59 D z^{3 / 2}
\end{gathered}
$$

## CEILING JET:

You and Faeth carried out experiments for this scenario and analyzed the data, resulting in the following approximate expression for the radial flame extension divided by fuel source diameter: ${ }^{9}$

$$
\begin{equation*}
\frac{\mathrm{r}_{\mathrm{f}}}{\mathrm{D}}=0.5\left(\frac{\mathrm{~L}-\mathrm{H}}{\mathrm{D}}\right)^{0.96} \tag{4.40}
\end{equation*}
$$

This is roughly equivalent to saying that the radial flame extension is equal to half the free flame height part that would extend above the ceiling, or $r_{\mathrm{f}}<0.5(L-H)$. Equation (4.40) is intended

Heskestad and Hamada ${ }^{13}$ carried out six experiments for larger energy release rates $(93-760 \mathrm{~kW})$, which gave an average flame extension

$$
\begin{equation*}
r_{f}=0.95(\mathrm{~L}-\mathrm{H}) \tag{4.41}
\end{equation*}
$$

The constant 0.95 was an average of values in the range $0.88-1.05$. Equation (4.41) may provide more realistic estimates than Eq. (4.40) for larger flames, but more experimental evidence is needed.

$$
\begin{array}{rl}
\mathrm{T}_{\max }-\mathrm{T}_{\infty}=\frac{16.9 \dot{\mathrm{Q}} / 3}{\mathrm{H}^{5 / 3}} & \mathrm{r} / \mathrm{H}<0.18 \\
\mathrm{~T}_{\max }-\mathrm{T}_{\infty}=\frac{5.38(\dot{\mathrm{Q}} / \mathrm{r})^{2 / 3}}{\mathrm{H}} & \mathrm{r} / \mathrm{H}>0.18 \\
\mathrm{u}_{\max }=0.96\left(\frac{\dot{\mathrm{Q}}}{\mathrm{H}}\right)^{1 / 3} & \mathrm{r} / \mathrm{H}<0.15 \\
\mathrm{u}_{\max } & =\frac{0.195 \dot{\mathrm{Q}} \dot{\mathrm{Q}}^{1 / 3} \mathrm{H}^{1 / 2}}{\mathrm{r}^{5 / 6}}
\end{array}
$$

-9-

## ENCLOSURE FIRE

## 2 VENTS OPENING

| UPPER | LOWER |
| :---: | :---: |
| $\begin{gathered} \Delta P_{u}=\frac{1}{2} v_{g}^{2} \rho_{g} \\ v_{g}=\sqrt{\frac{2 h_{u}\left(\rho_{a}-\rho_{g}\right) g}{\rho_{g}}} \\ \dot{m}_{g}=C_{d} A_{u} \rho_{g} \sqrt{\frac{2 h_{u}\left(\rho_{a}-\rho_{g}\right) g}{\rho_{g}}} \end{gathered}$ | $\begin{gathered} \Delta P_{1}=\frac{1}{2} v_{a}^{2} \rho_{a} \\ v_{a}=\sqrt{\frac{2 h_{1}\left(\rho_{a}-\rho_{g}\right) g}{\rho_{a}}} \\ \dot{m}_{a}=C_{d} A_{1} \rho_{a} \sqrt{\frac{2 h_{1}\left(\rho_{a}-\rho_{g}\right) g}{\rho_{a}}} \end{gathered}$ |
| Neutral Point |  |
|  | $\begin{aligned} & 2^{2} \frac{\rho_{g}}{\rho_{a}} \\ & \underline{t})^{2} \frac{T_{a}}{T_{g}} \end{aligned}$ |

WELL MIXED (1 OPENING)

| $v_{g}(z)=\sqrt{\frac{2 z\left(\rho_{a}-\rho_{g}\right) g}{\rho_{g}}}$ | $\dot{m}_{g}=\frac{2}{3} C_{d} W \rho_{g} \sqrt{\frac{2\left(\rho_{a}-\rho_{g}\right) g}{\rho_{g}}} \cdot h_{u}^{3 / 2}$ |
| :---: | :---: |
| $v_{a}(z)=\sqrt{\frac{2 z\left(\rho_{a}-\rho_{g}\right) g}{\rho_{a}}}$ | $\dot{m}_{a}=\frac{2}{3} C_{d} W \rho_{a} \sqrt{\frac{2\left(\rho_{a}-\rho_{g}\right) g}{\rho_{a}}} \cdot h_{1}^{3 / 2}$ |
|  | $h_{1}=\frac{H_{o}}{1+\left(\rho_{a} / \rho_{g}\right)^{1 / 3}}$ |
|  |  |

STRATIFIED (1 OPENING)

| For height $\mathrm{H}_{\mathrm{N}}$ to $\mathrm{H}_{0}$ |  |
| :---: | :---: |
| $\mathrm{v}(\mathrm{z})=\sqrt{\frac{2 z\left(\rho_{a}-\rho_{g}\right) g}{\rho_{g}}}$ | $\dot{m}_{g}=\frac{2}{3} C_{d} W \rho_{g} \sqrt{\frac{2\left(\rho_{a}-\rho_{g}\right) g}{\rho_{g}}} \cdot\left(H_{o}-H_{N}\right)^{3 / 2}$ |
| For height $\mathrm{H}_{\mathrm{D}}$ to $\mathrm{H}_{N}$ |  |
| $v_{a 2}=\sqrt{\frac{2\left(H_{N}-H_{D}\right)\left(\rho_{a}-\rho_{g}\right) g}{\rho_{a}}}$ | $\dot{m}_{a 2}=C_{d} W H_{D} \rho_{a} \sqrt{\frac{2\left(H_{N}-H_{D}\right)\left(\rho_{a}-\rho_{g}\right) g}{\rho_{a}}}$ |
| For height 0 to $\mathrm{H}_{\mathrm{D}}$ |  |
| $v_{a 2}=\sqrt{\frac{2\left(H_{N}-H_{D}\right)\left(\rho_{a}-\rho_{g}\right) g}{\rho_{a}}}$ | $\dot{m}_{a 2}=C_{d} W H_{D} \rho_{a} \sqrt{\frac{2\left(H_{N}-H_{D}\right)\left(\rho_{a}-\rho_{g}\right) g}{\rho_{a}}}$ |
| Total mass flow rate in through the vent |  |
| $\dot{m}_{a}=\frac{2}{3} C_{d} W \rho_{a} \sqrt{\frac{2\left(\rho_{a}-\rho_{g}\right) g}{\rho_{a}}} \cdot\left(H_{N}-H_{D}\right)^{1 / 2}\left(H_{N}+\frac{1}{2} H_{D}\right)$ |  |

## CEILING VENT

| Ceilng Vent | Lower vent |
| :---: | :---: |
| $v_{c}=\sqrt{\frac{2\left(H-H_{N}\right)\left(\rho_{a}-\rho_{g}\right) g}{\rho_{g}}}$ | $v_{1}=\sqrt{\frac{2\left(H_{N}-H_{D}\right)\left(\rho_{a}-\rho_{g}\right) g}{\rho_{a}}}$ |
| $\dot{m}_{c}=C_{d} A_{c} \rho_{g} \sqrt{\frac{2\left(H-H_{N}\right)\left(\rho_{a}-\rho_{g}\right) g}{\rho_{g}}}$ | $\dot{m}_{1}=C_{d} A_{1} \rho_{a} \sqrt{\frac{2\left(H_{N}-H_{D}\right)\left(\rho_{a}-\rho_{g}\right) g}{\rho_{a}}}$ |
|  |  |
| $H_{N}=\frac{A_{1}^{2} \rho_{a} H_{D}+A_{c}^{2} \rho_{g} H}{A_{1}^{2} \rho_{a}+A_{c}^{2} \rho_{g}}$ |  |

## TEMPERATURE:

## PRE-FLASHOVER

$$
\begin{equation*}
\Delta \mathrm{T}=6.85\left(\frac{\dot{\mathrm{Q}}^{2}}{\mathrm{~A}_{\mathrm{o}} \sqrt{\mathrm{H}_{\mathrm{o}}} \mathrm{~h}_{\mathrm{k}} \mathrm{~A}_{\mathrm{T}}}\right)^{1 / 3} \tag{6.11}
\end{equation*}
$$

The time at which the conduction can be considered to be approaching stationary heat conduction is termed the thermal penetration time, $t_{p}$. This time can be given as

$$
\begin{equation*}
t_{p}=\frac{\delta^{2}}{4 \alpha} \tag{6.14}
\end{equation*}
$$

$h_{\mathrm{k}}$ as defined by McCaffrey and colleagues: McCaffrey and colleagues analyzed the surface materials used in the experiments, which Eq. (6.10) is based on, and defined $h_{\mathrm{k}}$ in the following manner: ${ }^{1}$

$$
\begin{array}{ll}
\text { For } \mathrm{t}<\mathrm{t}_{\mathrm{p}} & \mathrm{~h}_{\mathrm{k}}=\sqrt{\frac{\mathrm{kpc}}{\mathrm{t}}} \\
\text { and for } \mathrm{t} \geq \mathrm{t}_{\mathrm{p}} & \mathrm{~h}_{\mathrm{k}}=\frac{\mathrm{k}}{\delta} \tag{6.16}
\end{array}
$$

## TABLE 3.6 <br> Energy Release Rate Data

Description Growth Rate floor area

| Fire retarded treated mattress (including normal bedding) | S | 17 |
| :---: | :---: | :---: |
| Lightweight type C upholstered furniture ${ }^{\text {b }}$ | M | 170 |
| Moderate-weight type C upholstered furniture ${ }^{\text {b }}$ | S | $400^{\circ}$ |
| Mail bags (full) stored 5 ft high | F | 400 |
| Cotton/polyester innerspring mattress (including bedding) | M | $565^{\text {a }}$ |
| Lightweight type B upholstered furniture ${ }^{\text {b }}$ | M | $680^{\circ}$ |
| Medium-weight type C upholstered furniture ${ }^{\text {b }}$ | S | 680 |
| Methyl alcohol pool fire | UF | 740 |
| Heavyweight type C upholstered furniture ${ }^{\text {b }}$ | S | $795^{\circ}$ |
| Polyurethane innerspring mattress (including bedding) | F | $910^{\circ}$ |
| Moderate-weight type B upholstered furniture ${ }^{\text {b }}$ | M | $1020^{\circ}$ |
| Wooden pallets $11 / 2$ feet high | M | 1420 |
| Medium-weight type B upholstered furniture ${ }^{\text {b }}$ | M | $1645^{\text {a }}$ |
| Lightweight type A upholstered furniture ${ }^{\text {b }}$ | F | $1700^{\circ}$ |
| Empty cartons 15 ft high | F | 1700 |
| Diesel oil pool fire (>about 3 ft dia .) | F | 1985 |

## TABLE 6.1 <br> Typical Values of Thermal Properties for Some Common Materials

| Material | $\boldsymbol{k}(\mathbf{W} / \mathbf{m} \cdot \mathbf{K})$ | $\boldsymbol{c}(\mathbf{J} / \mathbf{k g} \cdot \mathbf{K})$ | $\rho\left(\mathbf{k g} / \mathbf{m}^{\mathbf{3}}\right)$ | $\boldsymbol{k} \rho \boldsymbol{c}\left(\mathbf{W}^{\mathbf{2}} \mathbf{s} / \mathbf{m}^{4} \mathbf{K}^{\mathbf{2}}\right)$ | $\alpha\left(\mathbf{m}^{2} / \mathbf{s}\right)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Aluminium | 218 | 890 | 2700 | $5.2 \cdot 10^{8}$ | $9.1 \cdot 10^{-5}$ |
| Copper | 395 | 385 | 8920 | $1.4 \cdot 10^{9}$ | $1.2 \cdot 10^{-4}$ |
| Steel (mild) | 45 | 460 | 7820 | $1.6 \cdot 10^{8}$ | $1.3 \cdot 10^{-5}$ |
| Brick (common) | 0.69 | 840 | 1600 | $9.3 \cdot 10^{5}$ | $5.2 \cdot 10^{-7}$ |
| Concrete | $0.8-1.4$ | 880 | $1900-2300$ | $2 \cdot 10^{6}$ | $5.7 \cdot 10^{-7}$ |
| Lightweight concrete | 0.15 | 1000 | 500 | $7.5 \cdot 10^{4}$ | $3.0 \cdot 10^{-7}$ |
| Glass (plate) | 0.8 | 840 | 2600 | $1.8 \cdot 10^{6}$ | $3.7 \cdot 10^{-7}$ |
| Cork plates | 0.08 | 1000 | 500 | $4.0 \cdot 10^{4}$ | $1.6 \cdot 10^{-7}$ |
| Fiber insulating board | 0.041 | 2090 | 229 | $2.0 \cdot 10^{4}$ | $8.6 \cdot 10^{-8}$ |
| Gypsum plaster | 0.48 | 840 | 1440 | $5.8 \cdot 10^{5}$ | $4.1 \cdot 10^{-7}$ |
| Mineral wool, plates | 0.041 | 800 | 100 | $3.3 \cdot 10^{3}$ | $5.1 \cdot 10^{-7}$ |

