SULIT

First Semester Examination
Academic Session 2020/2021
February 2021

EAS661 - Advanced Structural Mechanics

Duration : 2 hours

Please check that this examination paper consists of SEVEN (7) pages of printed material including appendix before you begin the examination.

Instructions : This paper contains FOUR (4) questions. Answer ALL questions.

Each question MUST BE answered on a new page.
(1). (a). (i). Derive the governing differential equation for the linear elastic bar problem shown in Figure 1 where E : elastic modulus, A : crosssectional area, w: uniformly distributed load per unit length. State clearly where the three basic equations in theory of elasticity have been used.
(ii). Using the governing differential equation, derive the expression of axial displacement u and axial stress σ_{x} for the linear elastic bar problem. Both ends of the bars are fixed.

Figure 1
(b). A small thin rectangular plate as shown in Figure 2 is made of aluminium alloy ($\mathrm{E}=75 \mathrm{GPa}$ and $v=0.33$). Stress components $\sigma_{x x}$ and $\sigma_{y y}$ are uniformly distributed as shown in the figure.
(i). determine the magnitude of $\sigma_{y y}$ so that the dimension $\mathrm{b}=20 \mathrm{~mm}$ remains the same under the load
(ii). determine the percentage of change in dimension a
(iii). write down the corresponding state of stress and state of strain of a point within the rectangular plate

Figure 2
(2). (a). Figure 3 shows a spring-block assembly. Determine the force in spring 1 using Principle of Minimum Potential Energy. Given that: $N=$ $5 \mathrm{kN}, \mathrm{b}=100 \mathrm{~mm}, k_{1}=0.5 \mathrm{kN} / \mathrm{mm}, \quad \mathrm{k}_{2}=2.5 \mathrm{kN} / \mathrm{mm}$.

Figure 3
-4-
(b). Figure 4 shows a cantilever beam with length L subjected to a uniformly distributed load of intensity q and a vertical point load Q at point C which is located at a distance of $2 / 3 L$ from the fixed support A. One linear elastic bar with axial rigidity EA and length 0.25 L is attached to the free end B. The following expression for lateral displacement field v has been suggested:

$$
v=\Delta\left(1-\cos \frac{\pi x}{2 L}\right)
$$

where Δ is a constant. Show that the above displacement field is kinematically admissible. Determine the displacement at point C by applying the principle of minimum potential energy. Flexural rigidity of the column is El.

Figure 4
(3). (a). Write the element stiffness matrices and global matrix for the three bars assembly which is loaded with force P, and constrained at the two ends in terms of E, A and L as shown in Figure 5.

Figure 5
(b). Write the element stiffness matrices and global matrix for the two bars assembly which is loaded with force 10P at node 2 as shown in Figure 6. End bars are constrained at end B and free at end A with a gap of Δ at end A. Given the value of $P=60 \mathrm{kN}, E=20 \mathrm{kN} / \mathrm{mm}^{2}, L=200 \mathrm{~mm}$, $A=250 \mathrm{~mm}^{2}$ and $\Delta=1.2 \mathrm{~mm}$, determine:
(i). the displacements at nodes 1, 2 and 3
(ii). the support reaction force at A

Figure 6
(4). (a). Two plates shown in Figure 7 and Figure 8, shall be analysed as a plane strain problem. Both plates are divided into 9 elements. Each node has been labelled accordingly. Calculate the bandwidth, $B=(R+1)$ NDOF for both plates assuming two degrees of freedom at each node.
[5 marks]
(b). By rearranging the node labeling. Determine the minimum value of R.
[5 marks]

Figure 8
(c). Figure 9 shows a frame structures labeled as nodes 1, 2 and 3 are subjected to a nodal force of $P=20 \mathrm{kN}$ at node 2 and uniformly distributed load of $6 \mathrm{kN} / \mathrm{m}$. The frame is fixed at node 1 and 3 . Given the value of $E=207 \mathrm{GPa}, \mathrm{I}=3 \times 10^{-5} \mathrm{~m}^{4}$ and $\mathrm{A}=0.005 \mathrm{~m}^{2}$.
(i). Derive the global stiffness matrix for the frame
(ii). Determine the deflection u_{2}, v_{2}, θ_{2} and u_{3}, v_{3}, θ_{3} in unit metre and rad, respectively
[15 marks]

Figure 9

Given the stiffness of the beam and spring elements in dimensional space:

$$
\begin{aligned}
& k=\frac{E I}{L^{3}}\left[\begin{array}{cccc}
v_{i} & \theta_{i} & v_{j} & \theta_{j} \\
{\left[\begin{array}{cccc}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right] \text { for beam element }} \\
u_{i} & u_{j}
\end{array}\right. \\
& k=\left[\begin{array}{cc}
k & -k \\
-k & k
\end{array}\right] \text { for spring element }
\end{aligned}
$$

