

First Semester Examination 2020/2021 Academic Session

February 2021

EAS451 – Timber and Masonry Engineering

Duration : 1 hour

Please check that this examination paper consists of **FOUR (4)** pages of printed material before you begin the examination.

Instructions : This paper contains TWO (2) questions. Answer ALL questions.

All questions **MUST BE** answered on a new page.

...2/-

<u>SULIT</u>

- A suspended timber floor system in a domestic building is supported by series of joists on timber wall plates of loadbearing brickwork as shown in the Figure 1 and Figure 2. Using the given data
 - (a). Determine a suitable section size for the tongue and groove floorboards

[15 marks]

(b). Determine a suitable section size for the main joist

[30 marks]

(c). Assuming one end of the joist to be notched and supported by a wall plate as shown in Fig. 1.0 (ii), verify the shear capacity of the joist.

[5 marks]

Design data:

Centres of timber joist	450 mm		
Bearing length	100 mm		
Span of joist	5.2 m		
Thickness of floor boarding	16 mm		
Timber Grade, Density	SG6, Standard, 550 kg/m ³		
Condition	Dry Timber		
Imposed load on floor	4.0 kN/m ²		
Self-weight of floor board	0.1 kN/m ²		

Assume long-term load.

...3/-

-3-

Tongue and groove flooring

Figure 2 A suspended timber floor system

 a) Design the masonry wall of a single storey bungalow house as shown in Figure 2 when subjected to lateral loading, k (wind pressure). The wind pressure on the wall is 110 N/m², the concrete block thickness is 140 mm and three sides are simply supported.

[25 marks]

....4/-

<u>SULIT</u>

Figure 2

b) Table 1 shows three types of masonry unit. Determine the maximum height of a building wall and the vertical load resistance for each type of unit. Assume height (h) is equal to effective height (h_{ef}) and thickness (t) is equal to effective thickness (t_{ef}).

Table 1

	Solid fired	Hollow concrete	Solid concrete
	clay bricks	blocks	blocks
Size (length x width x	205 mm x	390 mm x 190 mm	390 mm x 140 mm
height)	102.5 mm x	x 190 mm	x 90 mm
	65 mm		
Mortar designation	ii	iii	iv
Eccentricity	0.2t	0.3t	0.05t
Wind load (N/m ²)	110	100	90
Compressive strength			
of unit (N/mm ²)	13	34	27

[24 marks]

(c). Specify **ONE (1)** factor affecting the vertical load resistance in designing a wall.

[1 marks]

-00000000-