

First Semester Examination 2020/2021 Academic Session

February 2021

EAS457 – Structural Steel Design

Duration : 1 hours

Please check that this examination paper consists of **FOUR (4)** pages of printed material before you begin the examination.

Instructions : This paper contains TWO (2) questions. Answer ALL questions.

All questions **MUST BE** answered on a new page.

....2/-

<u>SULIT</u>

(a). A member of the web chord is subjected to a compression load of 1500 kN. As an engineer, you are required to check the suitability of a 244.5 x 8 CHS section in resisting the load. Assume the member is classified under Class 1 section and the steel is Fe 430 (S275).

[24 marks]

(b). A tension member consists of a $150 \times 90 \times 10$ single unequal angle whose ends are connected to gusset plates through the larger leg by a single row of four 22 mm bolts in 24 mm holes at 60 mm centres. Check the tension member for a design tension force of N_{t,Ed} = 300 kN. Assume the steel grade is S275 and a member is in Class 1 section.

[26 marks]

2. The following **Figure 1** will be referred throughout **Question 2**.

...4/-<u>SULIT</u>

(a). Consider a single symmetric portal frame with pinned bases as in Figure
1. From the initial analysis, the reactions are as tabulated in Table 1 below. Check the significance of the initial sway imperfection. If the initial sway imperfection is significant, determine the equivalent horizontal forces (EHF).

[18 marks]

	Left column (kN)		Right o	column N)	Axial force in rafter (kN)		
	H _{Ed}	V _{Ed}	H _{Ed}	V _{Ed}	N _{Ed}		
Reactions	74	241	-74	241	97		

Т	้ล	h	le	1
I.	a	D	e	

(b). Evaluate the sensitivity of the following rafter section to the effects of deformed geometry (2nd order effects). All the design information and data are shown in **Table 2** and **Figure 1**.

[16 marks]

Table 2

Rafter section size: $533 \times 210 \times 101$ UKB S355								
Section properties:								
h	:	536.7 mm	d	:	476.5 mm	Iz	:	2,690 cm4
b	:	210 mm	А	:	129 cm ²	Ι _T	:	101 cm ⁴
t _w	:	10.8 mm	W _{el,y}	:	2,290 cm ³	Iw	:	1.810 dm ⁶
t _f	:	17.4 mm	W _{pl,y}	:	2,610 cm ³	i _y	:	219 mm
r	:	12.7 mm	I _y	:	61,500 cm ⁴	iz	:	45.7 mm
h_w	:	501.9 mm	Ē	:	210 GPa			

Given the displacement at the top of the columns under a notional horizontal force (NHF) = 7.2 mm

(c). By assuming the rafter in Figure 1 is in Class 1 section, check the crosssectional resistance of the rafter for *bending moment* and *shear*. Use rafter size in Question 2 (b).

[16 marks]

-00000000-