SULIT

February 2021

EAH221 - Fluid Mechanics for Civil Engineers

Duration : 3 hours

Please check that this examination paper consists of TWELVE (12) pages of printed material including appendix before you begin the examination.

Instructions : This paper contains SIX (6) questions. Answer FIVE (5) questions. All questions MUST BE answered on a new page.

1. (a). A manometer is used to measure the pressure between Pipe A and Pipe B as shown in Figure 1. The liquid specific gravity for $S_{1}=1.5, S_{2}=0.8$ and $S_{3}=1.3$. Determine the pressure difference between Pipe A and Pipe B.

Figure 1
(b). The curved face of a dam is shaped according to the equation $y=\frac{x^{2}}{12.5}$ as shown in Figure 2. For a unit width of the dam, determine the magnitude and direction of the resultant water pressure acting on the curved surface of the dam.
[12 marks]

Figure 2
2. (a). A cube of 60 cm side is submerged in a two layer fluid with specific gravity liquid S_{1} and $S_{2}, 0.9$ and 1.2 respectively, as shown in Figure 3. The upper and lower halves of the cube are composed of materials with specific gravity SC_{1} and $\mathrm{SC}_{2}, 0.6$ and 1.4 respectively. Determine the distance of the top of the cube above the fluid interface.

Figure 3
(b). A cylindrical buoy of weight 16.5 kN with diameter 2.4 m and length 2.0 m is floating with its axis vertical in sea water of specific weight $10 \mathrm{kN} / \mathrm{m}^{3}$ as shown in Figure 4. A load of 1.5 kN is placed centrally at the top of the buoy. If the buoy is in stable equilibrium, determine the maximum permissible height h_{1}, of. the centre of gravity of the load above the top of the buoy.

Figure 4
3. (a). A pipe with a diameter of 30 mm carries oil with specific gravity of 0.92 and velocity of $5.5 \mathrm{~m} / \mathrm{s}$. The pipe is fitted to another pipe with the radius of 20 mm . (a) Determine the velocity of the pipe at radius of 20 mm and the mass flowrate of the oil. (b) If the dynamic viscosity of oil is 9.6 x $10^{-2} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$ flow through at the same pipe, what type of flow will occur?
[8 marks]
(b). Assuming frictionless, incompressible, one-dimensional flow of water through the series pipeline shows in Figure 5. The water flow through pipe $A B 60 \mathrm{~mm}$ in diameter and then pass through $B C$ which is 90 mm in diameter. At C the pipe forks into branch pipe $C D$ and branch pipe $C E$. The velocity at pipe $B C$ is $2.5 \mathrm{~m} / \mathrm{s}$ and volume flowrate of branch $C D$ is double than branch CE. Calculate (a) The volume flow rate for pipe AB, $B C, C D$ and CE, (b) The velocity in pipe CE, (c) The diameter of pipe CD.

Figure 5: Series Pipeline
4. (a). As shown in Figure 6, the water flows down the sloping ramp from Point 1 to Point 2 with negligible viscous efffect. Both flow are uniform at velocity at Point 1 is $0.45 \mathrm{~m} / \mathrm{s}$. At upstream depth at Point 1 is 0.25 m and the downstream depth for Point 2 can be determine by using 3 solution derived using Bernoulli dan continuity equation. However, only two solutions are realistic to calculate the value of h_{2} and V_{2}. Determine these values.

Figure 6: Water flows down sloping ramp
(b). The water is flowing through a tapered pipe of diameters 15 cm and 25 cm at point A and Point B as shown in Figure 7. The rate of water flow through the pipe is $35 \mathrm{~L} / \mathrm{s}$. At Point A is 3.6 m above datum and at Point B is 7.5 m above datum. If the pressure at Point B is $86 \mathrm{~N} / \mathrm{cm}^{2}$, determine the pressure at Point B.

Figure 7: Section of pipe
5. (a). The principle of conservation of momentum states that the momentum of fluid in an isolated system is constant. Consider a jet of water travelling in a smooth rectangular vane at a velocity of $22.5 \mathrm{~m} / \mathrm{s}$. The rectangular section is 80 mm wide and 22.5 mm thick. The vane is attached to a rigid foundation at angle shown in Figure 8. Determine the vertical and horizontal components of the force exerted on the vane.

Figure 8
(b). Drag forces are dependent of Reynolds number in order to predict the drag forces experienced by bodies in a fluid. Consider a cylinder 80 mm diameter and 200 mm long placed in a stream of gasoline flowing at 0.5 m / s. The axis of the cylinder is normal to the direction of flow. It is given that the the temperature of gasoline is $20^{\circ} \mathrm{C}$.
(i) Calculate the drag acting on the cylinder.
(ii) Calculate the drag if the cylinder is tilted 45° normal to the direction of the flow.
[10 marks]
6. (a). Broad crested weirs are robust hydraulic structures used to measure discharges in open channels. By applying Bernoulli and Froude equation, determine the expression for flow for a broad-crested weir with very low flow. The coefficient of discharge for broad crested weir is given as 0.65 .
[10 marks]
(b). A tank filled with water is connected to a multifluid manometer as shown in Figure 9. The tank is pressurised by air and is located at an altitude of 1400 m with atmospheric pressure of 83.2 kPa . Determine the air pressure in the tank if $h_{1}=0.15 \mathrm{~m}, h_{2}=0.27 \mathrm{~m}$, and $h_{3}=0.43 \mathrm{~m}$. It is given that the temperature of kerosene, mercury and water is $20^{\circ} \mathrm{C}$, respectively.
[10 marks]
-9-

Figure 9

APPENDIX

Table 1 - Properties of Water

TABLE A. 1 SI units [101 kPa (abs)]

Temperature (${ }^{\circ} \mathrm{C}$)	Specific Weight γ $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	Density $\stackrel{\rho}{\left(\mathrm{kg} / \mathrm{m}^{3}\right)}$	Dynamic Viscosity $\underset{(\mathrm{Pa} \cdot \mathrm{~s})}{\boldsymbol{\eta}}$	Kinematic Viscosity $\stackrel{\nu}{\left(\mathrm{m}^{2} / \mathrm{s}\right)}$
0	9.81	1000	1.75×10^{-3}	1.75×10^{-6}
5	9.81	1000	1.52×10^{-3}	1.52×10^{-6}
10	9.81	1000	1.30×10^{-3}	1.30×10^{-5}
15	9.81	1000	1.15×10^{-3}	1.15×10^{-5}
20	9.79	998	1.02×10^{-3}	1.02×10^{-5}
25	9.78	997	8.91×10^{-4}	8.94×10^{-7}
30	9.77	996	8.00×10^{-4}	8.03×10^{-7}
35	9.75	994	7.18×10^{-4}	7.22×10^{-7}
40	9.73	992	6.51×10^{-4}	6.56×10^{-7}
45	9.71	990	5.94×10^{-4}	6.00×10^{-7}
50	9.69	988	5.41×10^{-4}	5.48×10^{-7}
55	9.67	986	4.98×10^{-4}	5.05×10^{-7}
60	9.65	984	4.60×10^{-4}	4.67×10^{-7}
65	9.62	981	4.31×10^{-4}	4.39×10^{-7}
70	9.59	978	4.02×10^{-4}	4.11×10^{-7}
75	9.56	975	3.73×10^{-4}	3.83×10^{-7}
80	9.53	971	3.50×10^{-4}	3.60×10^{-7}
85	9.50	968	3.30×10^{-4}	3.41×10^{-7}
90	9.47	965	3.11×10^{-4}	3.22×10^{-7}
95	9.44	962	2.92×10^{-4}	3.04×10^{-7}
100	9.40	958	2.82×10^{-4}	2.94×10^{-7}

Table 2 - Physical Properties of Fluids

Physical Properties of Liquids at Standard Atmospheric Pressure 101.3 kPa , and $20^{\circ} \mathrm{C}$

Liquid	Density $\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	Dynamic Viscosity $\mu\left(\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}\right)$	Kinematic Viscosity $\nu\left(\mathrm{m}^{2} / \mathrm{s}\right)$	Surface Tension $\sigma(\mathrm{N} / \mathrm{m})$
Ethyl alcohol	789	$1.19\left(10^{-3}\right)$	$1.51\left(10^{-6}\right)$	0.0229
Gasoline	726	$0.317\left(10^{-3}\right)$	$0.437\left(10^{-6}\right)$	0.0221
Carbon tetrachloride	1590	$0.958\left(10^{-3}\right)$	$0.603\left(10^{-6}\right)$	0.0269
Kerosene	814	$1.92\left(10^{-3}\right)$	$2.36\left(10^{-6}\right)$	0.0293
Glycerin	1260	1.50	$1.19\left(10^{-3}\right)$	0.0633
Mercury	13550	$1.58\left(10^{-3}\right)$	$0.177\left(10^{-6}\right)$	0.466
Crude oil	880	$30.2\left(10^{-3}\right)$	$0.0344\left(10^{-3}\right)$	

Physical Properties of Gases at Standard Atmospheric Pressure 101.3 kPa

Gas	Density $\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	Dynamic Viscosity $\mu\left(\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}\right)$	Kinematic Viscosity $\nu\left(\mathrm{m}^{2} / \mathrm{s}\right)$	Gas Constant $\mathrm{R}(\mathrm{J} /[\mathrm{kg} \cdot \mathrm{K}])$	Specific Heat Ratio $k=c_{p} / c_{v}$
Air $\left(15^{\circ} \mathrm{C}\right)$	1.23	$17.9\left(10^{-6}\right)$	$14.6\left(10^{-6}\right)$	286.9	1.40
Oxygen $\left(20^{\circ} \mathrm{C}\right)$	1.33	$20.4\left(10^{-6}\right)$	$15.2\left(10^{-6}\right)$	259.8	1.40
Nitrogen $\left(20^{\circ} \mathrm{C}\right)$	1.16	$17.5\left(10^{-6}\right)$	$15.1\left(10^{-6}\right)$	296.8	1.40
Hydrogen $\left(20^{\circ} \mathrm{C}\right)$	0.0835	$8.74\left(10^{-6}\right)$	$106\left(10^{-6}\right)$	4124	1.41
Helium $\left(20^{\circ} \mathrm{C}\right)$	0.169	$19.2\left(10^{-6}\right)$	$114\left(10^{-6}\right)$	2077	1.66
Carbon dioxide $\left(20^{\circ} \mathrm{C}\right)$	1.84	$14.9\left(10^{-6}\right)$	$8.09\left(10^{-6}\right)$	188.9	1.30
Methane $\left(20^{\circ} \mathrm{C}\right)$ (natural gas)	0.665	$11.2\left(10^{-6}\right)$	$16.8\left(10^{-6}\right)$	518.3	1.31

(a) C_{D} vs. N_{R} for lower values of N_{R}

(b) C_{D} vs. N_{R} for higher values of N_{R}

Figure 1 - Drag coefficients for spheres and cylinders

