SULIT

First Semester Examination 2020/2021 Academic Session

February 2021

EAS151 - Statics and Dynamics

Duration : 2 hours

Please check that this examination paper consists of EIGHT (8) pages of printed material before you begin the examination.

Instructions: This paper contains FIVE (5) questions. Answer THREE (3) questions in PART A and ONE (1) question in PART B.

All questions MUST BE answered on a new page.

PART A

Answer THREE (3) questions in PART A

1. (a). The 200 N force shown in Figure 1 is to be resolved into components along lines $a-a$ ' and $b-b$ '. Knowing that the component along $a-a$ ' is to be 150 N , determine the angle α and the corresponding value of the component along b-b' by using:
(i). Graphical method
(ii). Trigonometry solution

Figure 1
(b). A container of weight W is supported from ring A as shown in Figure 2. Cable BAC passes through the ring and is attached to fixed supports at B and C. Two forces $\mathbf{P}=\mathbf{P}_{\boldsymbol{i}}$ and $\mathbf{Q}=\mathbf{Q}_{k}$ are applied to the ring to maintain the container in the position shown. Knowing that $\mathrm{W}=1200 \mathrm{~N}$, determine P and Q. The tension is the same for cable BAC.

Figure 2
2. (a). The antenna tower is held in place by three cables at B, C and D as shown in Figure 3. The forces of these cables acting on the antenna are given as $\mathrm{F}_{\mathrm{B}}=520 \mathrm{kN}, \mathrm{F}_{\mathrm{c}}=680 \mathrm{kN}$ and $\mathrm{F}_{\mathrm{d}}=560 \mathrm{kN}$. Determine the magnitude and coordinate direction angles of the resultant moment acting about O .
[20 marks]

Figure 3
(b). Two traffic lights are hanging from a horizontal pole as shown in Figure 4. The total mass of both traffic lights is 18.2 kg and the total length of horizontal pole from \boldsymbol{O} is 3 m . Assume the mass of both traffic lights is the same. Calculate the equivalent single resultant force replacing these traffic lights which acts at a distance d from \boldsymbol{O}. The support must provide the same resistance to translation and rotation in order to keep the member in the horizontal position.
[5 marks]

Figure 4
3. (a). A simply supported beam as shown in Figure 5 is loaded by two concentrated loads of 4 kN and F at B and D , respectively, and a UDL of $5 \mathrm{kN} / \mathrm{m}$ from B to C. A couple moment of 10 kNm is acting at B. Determine the magnitude of force F and its placement \boldsymbol{d} on the beam so that the loading system is equivalent to a resultant force of 3.2 kN acting vertically upward at A and a counter-clockwise couple moment of 6.4 kNm at A .

Figure 5
(b). A single overhanging beam is supported by a pin at A and roller at D as shown in Figure 6. The beam is loaded by a combination of the following loads. A uniformly distributed load of $12 \mathrm{kN} / \mathrm{m}$ and $8 \mathrm{kN} / \mathrm{m}$ along span $C D$ and DE, respectively. A trapezium load with minimum and maximum of $6 \mathrm{kN} / \mathrm{m}$ and $12 \mathrm{kN} / \mathrm{m}$ along span BC . A concentrated load of 15 kN at C.
(i). Sketch the free-body diagram of the beam
(ii). Determine the reaction forces at supports A and D of the beam.
[10 marks]

Figure 6
4. (a). By referring to Figure 7, determine the centroid of the shaded area.

Figure 7
(b). From Figure 7, determine the second moment of area of the shaded area about the y-axis.

PART B - COMPULSORY QUESTION

5. (a). A particle starts from rest with an acceleration of $10 \mathrm{~m} / \mathrm{s}^{2}$. The acceleration then decreases linearly with time to zero in 10 seconds. After that, the particle continues to move at a constant speed. Determine whether the particle is able to cover a distance of 650 m from the start after 15 seconds.
(b). Figure 8 shows a projectile being launched with a speed $\mathrm{v}_{0}=25 \mathrm{~m} / \mathrm{s}$ from the floor of a 5.75 m high tunnel. If it is given that the launch angle $\theta=20^{\circ}$,
(i). Determine the clearance between the ceiling of the tunnel and highest position of the projectile.
(ii). Determine the distance from A of the landing position of projectile on the floor of the tunnel.

Figure 8
(c). A 20 kg cylinder is latched in place with the $85 \mathrm{kN} / \mathrm{m}$ spring compressed by 30 mm as shown in Figure 9. The cylinder that is not attached to the spring is released suddenly from its latched position. Determine:
(i). the maximum height reached by the cylinder
(ii). the velocity of the cylinder when the spring has moved up by 10 mm from its initial position.

Figure 9

