STUDY OF COMPUTED TOMOGRAPHY PERFUSION IN TRAUMATIC CEREBRAL CONTUSION

by

DR. AHMAD HELMY BIN ABDUL KARIM

Dissertation Submitted In Partial Fulfillment Of The Requirement For The Degree Of Master Of Medicine (Radiology)

UNIVERSITI SAINS MALAYSIA

MAY 2009

STUDY OF COMPUTED TOMOGRAPHY PERFUSION IN TRAUMATIC CEREBRAL CONTUSION

by

DR. AHMAD HELMY BIN ABDUL KARIM

Dissertation Submitted In Partial Fulfillment Of The Requirement For The Degree Of Master Of Medicine (Radiology)

UNIVERSITI SAINS MALAYSIA

MAY 2009

SUPERVISOR : DR WIN MAR @ SALMAH JALALUDDIN

CO-SUPERVISOR : DR AB. RAHMAN IZAINI GHANI

ACHIEVEMENT

This paper was presented for oral presentation in the 14th National Conference on Medical and Health Sciences 'transforming research for sustainable health' held in Health Campus, Universiti Sains Malaysia on 21-22 May 2009 My beloved parents, Haji Abdul Karim Abu Bakar Hajjah Laili Hanim Haji Tak

Thanks for your 'doa', loves and continuous moral support

To

ACKNOWLEDGEMENTS

This study was carried out at the Department of Radiology, Hospital Universiti Sains Malaysia (HUSM), Kelantan, during the years 2006-2009. I would like to express my deepest gratitude to the following individuals for the help and support in completing this dissertation project.

I would like to thank ;

- My parents whose 'doa' give me strength throughout my study
- Dr Win Mar @ Salmah Jalaluddin, my supervisor who always encourage and help me whenever I have difficulty
- Associate Professor Dr Mohd Ezane Aziz, Head of Department of Radiology, School of Medical Sciences, Universiti Sains Malaysia
- Professor Dr. Jafri Malin Abdullah, Head of Neuroscience Department for his idea in initiating this dissertation
- Dr Ab. Rahman Izaini Ghani, co-supervisor of this study
- All lecturers of Radiology Department, School of Medical Sciences, Universiti Sains Malaysia : Associate Professor Dr Wan Ahmad Kamil Abdullah, Associate Professor Dr Hj Abdul Kareem, Dr Noreen Norfaraheen Lee Abdullah, Dr Hj Mohd Shafie Abdullah, Dr Rohaizan Yunus, Dr Nik Munirah Nik Mahdi and Dr Juhara Haron for their guidance, comments, critical suggestion and concerns
- Profesor Dr Syed Hatim and Dr Kamarul Imran Musa, Biostatistician of Department of Community Medicine, School of Medical Sciences, Universiti Sains Malaysia

- All fellow colleagues in the same training of M.Med (Radiology) programme where we share the cheers and tears
- Supporting staffs whose help and friendship have enlighten my days during dissertation projects and training period

TABLE OF CONTENTS

Contents		Page
Acknowledgements		iii
List of tables		х
List of figures		xi
Abbreviations		xii
Abstract		
Malay		xiii
English		xvi
Section One : Introduction		
1. Introduction		1
Section Two : Literature Review		
2. Literature review		5
2.1 Incidence		5
2.2 Definitions		7
2.3 Pathophysiology		9
2.4 Conventional CT scan in	n traumatic brain contusion	15

	2.5	CT perfusion in traumatic brain contusion	17
	2.6	Glasgow Outcome Score	21
Sectio	n Thre	e : Aim and Objectives	
3.	Aim a	nd Objectives	24
	3.1	General objective	24
	3.2	Specific objectives	24
	3.3	Hypothesis	25
	3.3	8.1 Null hypothesis	25
Sectio	n Four	; Research Design and Methodology	
4.	Resear	ch design and Methodology	26
	4.1	Patients selections	27
	4.2	Inclusion criterias	27
	4.3	Exclusions criterias	28
	4.4	Technique	28
	4.5	Glasgow Outcome Score	29
	4.6	Methodology Flow Chart	30
	4.7	Data collections	31
	4.7	1.1 Demographic	31
	4.7	2.2 Patient's vital sign and haematological marker	31
	4.7	.3 Type of treatment	32
	4.7	.4 Glasgow Coma Scale	32
	4.7	.5 Glasgow Outcome score	32
	4.8	Conventional non-enhanced CT scan analysis	32

•

		4.8.1	Diagnosis	33
		4.8.2	Site of contusion	33
		4.8.3	Distance between contusion margin with the nearest skull bone	; 33
	4.9	Cl	r perfusion reconstruction and analysis	33
		4.9.1	CT perfusion reconstruction	34
		4.9.2	CT perfusion analysis	37
	4.1	0 Sta	atistical analysis	38
Section	a Fi	ve : Re	sults	
	5.	Re	sult	39
	5.1	De	escriptive	39
		5.1.1	Sample size	39
		5.1.2	Age	40
		5.1.3	Gender	41
		5.1.4	Ethnic	42
		5.1.5	Glasgow Coma Scale	42
		5.1.6	Haemoglobin level	43
		5.1.7	Size of contusion	44
		5.1.8	Distance of contusion from nearest skull vault	45
		5.1.9	Size of pericontusional hypodensity area in each	
			region of interest (ROI)	46
		5.1.10	Perfusion status of pericontusional hypodensity area in each	
			region of interest (ROI)	47
		5.1.11	Value of CBV, CBF and MTT of pericontusional hypodensity a	irea

				in each region of interest (ROI)	48
		5.1.	12	Glasgow Outcome Score (GOS)	48
	5.2	ł	Sta	tistical analysis	49
		5.2.	1	Size of contusion and size of pericontusional hypodensity area	
				in each ROI 3, ROI 4, ROI 5 and ROI 6	49
		5.2.	2	Correlation among size of pericontusional hypodensity area	
				of each ROI	50
		5.2.	3	Correlation among perfusion of pericontusional hypodensity	
				area of each ROI	51
		5.2.	4	Distance of contusion from nearest skull vault and	
				perfusion of pericontusional hypodensity area in each ROI	52
		5.2.	5	Size of pericontusional hypodensity area in each ROI with	
				its perfusion	53
Section Six : Discussion					
	6.]	Dis	cussion	54
	6.1	(Ger	neral overview	54
	6.2	:	San	nple size	56
	6.3]	Der	mographic features	58
		6.3.	1	Gender	58
		6.3.2	2	Age	58
		6.3.	3	Ethnics	59
	6.4	:	Siz	e of contusion	59
	6.5	:	Siz	e of pericontusional hypodensity area in each ROI	60

	6.6	Perfusion status of each ROI	61	
	6.7	Clinical outcome with Glasgow Outcome Score (GOS)	66	
Sectio	n Sevei	n : Summary and Conclusion		
	7.	Summary and Conclusion	68	
Sectio	Section Eight : Limitation and Suggestion			
	8.	Limitation and Suggestion	70	
Section Nine : References				
	9.	References	72	
Section Ten : Appendices				
	10.	Appendices		
	10.1	Certificate of Approval by Research Ethics Committee (Human)	78	
	10.2	Short-term Grant (304/PPSP/6131572)	79	
	10.3	Consent	80	
	10.4	Patient's proforma	92	

LIST OF TABLES

Table	Title	Page
Table 2-1	Summary of perfusion parameters in ischaemic injury	21
Table 2-2	Glasgow Outcome Score	23
Table 5-1	Size of pericontusional hypodensity area in ROI 3,	
	ROI 4, ROI 5 and ROI 6	46
Table 5-2	Perfusion findings of pericontusional hypodensity area in	
	each ROI 3, ROI 4, ROI 5 and ROI 6	47
Table 5-3	Mean value and its standard deviation (SD) of CBV, CBF	
	and MTT of pericontusional hypodensity in each ROI	48
Table 5-4	Correlation between size of contusion and size of pericontusion	nal
	hypodensity area in each ROI 3, ROI 4, ROI 5 and ROI 6	49
Table 5-5	Correlation among size of pericontusional hypodensity area	
	of each ROI 3, ROI 4, ROI 5 and ROI 6	50
Table 5-6	Correlation among perfusion of pericontusional hypodensity	
	area of ROI 4 and ROI 5	51
Table 5-7	Correlation between distance of contusion from nearest skull va	ult
	and perfusion of pericontusional hypodensity area in each ROI	52
Table 5-8	Correlation between size of pericontusional hypodensity area of	ROI 4
	and perfusion of pericontusional hypodensity area of ROI 3	53

LIST OF FIGURES

Figure	Title	
Figure 4-1	Diagrammatic presentation of contusion and pericontusional	
	hypodensity area	36
Figure 4-2	Diagrammatic presentation of pericontusional hypodensity area	
	in each ROI	36
Figure 4-3	ROI 1, 2, 3, 4, 5 and 6 on real subject	37
Figure 5-1	Histogram of subject's age in years	40
Figure 5-2	Pie chart of subject's gender distribution	41
Figure 5-3	Bar chart of subjects' Glasgow Coma Scale distribution	42
Figure 5-4	Histogram of haemoglobin level	43
Figure 5-5	Histogram of size of contusion	44
Figure 5-6	Histogram of distance of contusion from nearest skull vault	45

ABBREVIATIONS

CBF	Cerebral Blood Flow
CBV	Cerebral Blood Volume
СТ	Computed Tomography
СТР	Computed Tomography Perfusion
GE	General Electric company
GCS	Glasgow Coma Scale
GOS	Glasgow Outcome Score
HU	Hounsfield Unit
HUSM	Hospital Universiti sains Malaysia
MRI	Magnetic Resonance Imaging
MTT	Mean Transit Time
NECT	Non-enhanced Computed Tomography
PET	Positron Emission Tomography
SPECT	Single Positron Emission Computed Tomography
ROI	Region Of Interest

ABSTRAK

TAJUK

Kajian imbasan perfusi tomografi berkomputer terhadap traumatik kontusi cerebrum otak akibat kecederaan otak.

PENGENALAN

Kecederaan kepala merupakan penyebab utama yang ke-lima kematian di dalam hospital Kementerian Kesihatan Malaysia (KKM) dengan kadar 6.07% (Statistik KKM, 2004). Imbasan tomografi berkomputer tanpa menggunakan kontras (NECT) adalah alat yang sensitif dalam pengimejan diagnostik pesakit yang mengalami kecederaan kepala dan prevalen kontusi otak sebanyak 15.0% di perolehi daripada imbasan awal (Wintermark et al., 2004).

Kawasan hipodensiti di sekeliling kontusi cerebrum otak menunjukkan pembengkakan tisu otak atau edema dan sebarang gangguan perfusi otak tidak dapat di kaji dengan menggunakan NECT. Imbasan perfusi tomografi berkomputer (CTP) dapat memberikan maklumat mengenai perfusi otak di kawasan hipodensiti berkenaan berdasarkan analisa parameter CTP. Perfusi otak yang tidak normal akan memburukkan keadaan pesakit dan analisa awal terhadap perfusi otak dapat membantu perawatan pesakit seterusnya meningkatkan tahap kesembuhan pesakit.

OBJEKTIF

Kajian ini bertujuan untuk menentukan tahap perfusi otak di kawasan sekeliling kontusi cerebrum otak dan kaitannya dengan tahap kesembuhan pesakit.

BAHAN DAN PESAKIT

Dari Julai 2007 sehingga November 2008, seramai 10 pesakit telah dianalisa apabila semua criteria penyertaan di penuhi.

Semua pesakit terlibat dalam kemalangan jalan raya dan mengalami kecederaan kepala.

Imbasan NECT di jalankan untuk memastikan diagnosis kontusi otak kemudian CTP dilakukan. Data di analisa di kaunter kerja imbasan tomografi berkomputer atau 'CT workstation'. Saiz dan jarak kontusi dari tempurung kepala yang berdekatan akan di ukur berdasarkan imbasan NECT. Kawasan hipodensiti di sekeliling kontusi di bahagi kepada 4 bahagian berdasarkan jarak dari tempurung kepala. Kawasan yang di kaji berdasarkan hipodensiti dan peta warna CTP. Setiap parameter perfusi dihasilkan oleh perisisan dan dianalisa samada kawasan tersebut mempunyai perfusi normal, kurang perfusi atau 'ischaemia' dan tiada perfusi atau 'infarct'. GOS akan di nilai pada minggu ke-enam selepas kecederaan kepala.

KEPUTUSAN

Perhubungan Spearman yang ketara pada tahap 0.05 (2-tailed) di antara jarak kontusi dari tempurung kepala dan status perfusi otak di dalam kawasan hipodensiti; status perfusi otak di kalangan kawasan hipodensiti; saiz kawasan hipodensiti dan status perfusi di dalam kawasan hipodensiti yang berdekatan; saiz kontusi dan saiz kawasan hipodensiti; dan saiz sesama kawasan hipodensiti.

KESIMPULAN

,

CTP adalah kaedah yang cepat, berguna dan bersesuaian untuk menilai tahap perfusi otak di dalam kawasan hipodensiti di sekeliling kontusi serebrum otak. Ketiadaan hubungan di antara status perfusi otak dan tahap kesembuhan berkemungkinan disebabkan oleh jumlah pesakit yang sedikit. Kurang perfusi di dapati dalam setiap kawasan hipodensiti dan ini menunjukkan kepentingan CTP dalam merawat pesakit yang mengalami kecederaan kontusi otak.

ABSTRACT

TOPICS

Study of computed tomography perfusion (CTP) in traumatic cerebral contusion.

INTRODUCTION

Head injury is listed as the 5th principle cause of death in Ministry of Health (MOH) hospitals with percentage of 6.07% (Health Statistics MOH, 2004). The prevalence rate of cerebral contusion was recorded as 15.0% (Wintermark *et al.*, 2004). Non-enhanced CT (NECT) brain is a sensitive primary diagnostic tool in the evaluation of patients with head injury.

On NECT brain, pericontusional hypodensity area represents oedema. However, its perfusion disturbance could not be determined from plain CT scan. CTP provides information regarding ischaemic injuries related to the trauma and able to determine any evidence of pericontusional ischaemia. Reduction of perfusion can lead to unfavourable outcome.

OBJECTIVE

This study aims to determine perfusion status of pericontusional hypodensity area and correlation with clinical outcome.

MATERIAL AND METHOD

Ten patients involved in motor vehicle accidents (MVA) fulfilled the inclusion and exclusion criterias and hence enrolled in this study from July 2007 to November 2008.. NECT scan of the brain was done on admission to confirm presence of contusion and followed by CTP. The data were analyzed at the CT workstation. Pericontusion areas were divided into four sections in relation to distance from the skull. Distance and size of contusion were measured from NECT scan. The region of interest were drawn based on hypodensity and CTP colour map. Each parameters of perfusion were produced by the perfusion software and were analyzed. CTP results were categorized as normal, ischaemia or infarct. Clinical outcome was evaluated using GOS after 6 weeks post trauma.

RESULT

Significant statistical Spearman correlation at the 0.5 level (2-tailed) found between the distance of the contusion from the nearest skull vault and the perfusion status in the pericontusional hypodensity area of that distance; perfusion status among pericontusinal hypodensity area; size of pericontusional hypodensity area with perfusion status of adjacent pericontusional hypodensity area; size of contusion and size of pericontusional hypodensity among each ROI.

CONCLUSION

CTP is a useful, fast and appropriate method in evaluating perfusion of pericontusional hypodensity area. However no correlation found between perfusion and clinical outcome in this study due to small sample size. Ischaemia was present in all pericontusional hypodensity area. This suggests importance of doing CTP in managing the traumatic contusion patient.

1. INTRODUCTION

Injury to the brain is the leading factor in mortality and morbidity of traumatic brain injury (TBI). The devastating personal, social, and financial consequences of traumatic brain injury are compounded by the fact that most people with TBI are young and previously healthy.

With a current management of traumatic brain injury which includes advancement in brain imaging, these individuals are surviving injuries that would previously have been fatal (Klimczak *et al.*, 1997).

Because brain function is exceedingly complex, brain injury and recovery are also complex (Rao & Lyketsos, 2002). Therefore imaging for diagnosis and clinical implication is extremely important for these group of patients.

Although it is desirable to have cranial computed tomography (CT) scan for all patients with TBI, it is not available everywhere. Performing CT scan not just involve only medical and legal issues but also cost. To make things even more complex, an early CT scan does not identify who will develop neurological deficits even after minor head injury. Therefore, some authors advise CT scan only for subsets of patients considered at higher risk for developing intracranial lesions.

Over recent years, CT scanner has became available nearly worldwide in emergency departments, and its importance to manage patients with traumatic brain injury has been extensively reported. Although there is no settlement regarding which patients should be scanned, authors agree that an abnormal result has a major impact on patient management (Nagy KK *et al.*, 1996).

Computed tomography (CT) is a sensitive diagnostic tool in the evaluation of acute head injury as it can detect intracranial lesion which might need intervention. Unfortunately, the prognostic value of the patient based on the conventional CT has limited value.

Structurally, cerebral contusions are characterized by an area of haemorrhagic necrosis which is surrounded by perilesional hypodensity area in plain CT scan of brain. This contusions have a tendency to enlarge over the time and becoming significant spaceoccupying lesion which exerting mass effect to surrounding brain parenchyma. This mass effect will lead to increase intracranial pressure with subsequent clinical deterioration or worsening neurological condition.

Survey by TBI European Brain Injury Consortium in 729 patients with TBI found that cerebral contusions alone (44%) or in association with subdural hematoma (29%) were the most frequent causes for delayed surgical intervention (Compagnone *et al.*, 2005).

In addition, ultrastructural studies have provided the evidence of progressive neuronal damage leading to growing area of necrosis, enhancing the role played by cerebral contusions as a vector of secondary brain damage (Katayama *et al.*, 1990).

Therefore, cerebral contusion can become a major therapeutic challenge as it has a potential to become growing mass mixed with presumably viable tissue, which may be of critical functional importance whenever surgical removal of the lesion is contemplated in neurologically eloquent areas (Soustiel *et al.*, 2007).

Hyperdense area in the contusions which representing haemorrhagic necrosis can be safely evacuated but the effect of surrounding hypodensity area is still a controversy as it can represent area of oedema without alteration of surrounding blood perfusion or presence of any element of perfusion disturbance.

Several studies on ischaemic stroke revealed hypodensity area in plain CT scan of brain has regional alteration of the perfusion.

Computed tomography perfusion (CTP) has been shown to be useful in acute stroke and other cerebrovascular disorders as it can detect infarct and penumbra (ischaemic) area. If ischemia is detected by CTP, perfusion can be improved by increasing the systemic blood pressure. Therefore, the purpose of this study was to evaluate the pericontusional hypodensity area regarding the perfusion whether the hypodensity reflects oedema with or without perfusion disturbance. At the same time, patient's clinical outcome was assessed to evaluate whether alteration in perfusion in pericontusional hypodensity area is attributable to patient's outcome.