

Second Semester Examination 2020/2021 Academic Session

July/August 2021

EPM 212 – METROLOGY AND QUALITY CONTROL

Duration : 2 hours

Please check that this examination paper consists of <u>SEVEN</u> (7) pages pages including appendixes before you begin the examination.

Instructions : Answer ALL FOUR (4) questions.

Answer to each question must begin from a new page.

This is an open-book examination.

Please answer all questions. All answers must be handwritten and upon submission please save the file as Online Test2_student's name_matrix no.doc or Online Test2_student's name_matrix no.pdf

Submission via elearning@usm.my

1. [a] Give TWO (2) examples of products where straightness measurement is important.

(2 marks)

- [b] An autocollimator was used to test the straightness of the guideway of a lathe machine as shown in Figure 1[b]. The length *I* of the reflector base is 100 mm. The readings taken at positions of the reflector at *A*, *B*, *C*, *D* and *E* are shown in Table 1[b].
 - (i) Determine the deviation in straightness Δh at each of the positions A to F shown in Figure 1[b] measured from the reference line (correct to three decimal places).

(6 marks)

(ii) Hence, state the straightness error of the guideway, correct to three decimal places.

(2 marks)

Position	Autocollimator reading
	(arc minute)
A	5
В	8
С	-4
D	6
E	-2

2. [a] Figure 2[a] shows the fringe patterns formed on a hard disk substrate when viewed under an optical flat with the aid of sodium light. The figure on the left shows the pattern formed on the surface before lapping, while that on the right shows the pattern after lapping. What can you infer from the two patterns?

Figure 2[a]

(2 marks)

[b] Figure 2[b] shows the fringes observed on a test surface observed under an optical flat with the aid of sodium light ($\lambda = 0.585 \,\mu$ m). Draw the crosssectional profiles along sections A-A and B-B to show the profile of the surface. Hence, determine the height difference between the highest point and lowest point along each section.

IMPORTANT: Select the figure based on your matrix number as in the table below:

Matrix number range	Sub-figure
135977 to 146216	(i)
146223 to 147486	(ii)
147581 to 148802	(iii)
148827 to 149707	(iv)

(8 marks)

- 3. [a] Write a brief answers to the following questions.
 - (i) Define and differentiate Quality Assurance and Quality Control.

(1 mark)

(ii) The inspection on a batch of respiratory masks during a given time period is shown in Table 3[a]. The following defects are noted: Discolouration, loose strap, dents, tears and pin holes. Plot a suitable chart to represent the data and analyse the two types of defects that should receive the most attention. Recommend TWO (2) corrective and TWO (2) preventive activities for the defects.

	Table 3[a]	
Discolouration	Discolouration	Discolouration
Loose Strap	Loose Strap	Loose Strap
Discolouration	Dent	Loose Strap
Discolouration	Loose Strap	Discolouration
Loose Strap	Discolouration	Discolouration
Discolouration	Discolouration	Dent
Discolouration	Dent	Tear
Tear	Pinhole	Discolouration
Dent	Discolouration	Pinhole
Discolouration	Tear	Tear

(4 marks)

[b] A passenger vehicle speeds were recorded as in Table 3[b] during a 15 minute interval on North-South Bound PLUS Highway.

Table 3[b]

Boundaries	Midpoint	Frequency
(<i>km/h</i>)	(Xi)	(fi)
72.6-81.5	77.0	5
81.6-90.5	86.0	19
90.6-99.5	95.0	31
99.6-108.5	104.0	27
108.6-117.5	113.0	14
117.6-126.5	122.0	10

Calculate the $f_i X_i$ and $f_i X_i^2$ for the data given. Determine the average and standard deviation, *s* as given in the formula below. Comment on the results.

$$s = \sqrt{\frac{n\sum_{i=1}^{h} (f_i X_i^2) - \left(\sum_{i=1}^{h} f_i X_i\right)^2}{n(n-1)}}$$

(5 marks)

4. [a] Sketch a diagram showing a comparison of normal (*N*), tightened (*T*) and reduced (*R*) curves.

(2 marks)

[b] Three measurements have been taken by Testers A and B for each of 10 parts number as shown in Table 4[b]. Use Appendix A for references in answering the questions.

Part	Tester A			Tester B		
number	Measureme	ents <i>(mm)</i>		Measurer	nents (mm)
	1	2	3	1	2	3
1	250	249	250	250	248	251
2	252	252	251	251	251	251
3	253	250	250	254	252	251
4	249	251	250	248	250	251
5	248	249	248	248	249	248
6	252	250	250	252	250	250
7	251	251	251	251	250	250
8	252	250	249	253	248	250
9	250	251	250	251	248	249
10	247	246	249	246	247	248

Table 4[b]

(i) Determine the standard deviation, upper control limit (UCL), lower control limit (LCL) and central limit (CL) of the measurement error in the collected data. Plot the graphs to show the UCL, LCL and CL. Comment on the results.

(6 marks)

(ii) If the specification are at 250 ± 10 , comment on the gauge specification?

(2 marks)

-000000-

Appendix A Appendik A

Table 11. Factors Used when Constructing Control Charts.									
NUMBER OF	CHART FOR AVERAGES			C	CHART FOR STANDARD DEVIATIONS				
OBSERVATIONS	FACTORS FOR CONTROL		FACTORS FOR FACTORS FOR CONTROL				OL		
IN SAMPLE	LIMITS			CENTRAL LINE			LIMITS		
n	A	A_{l}	A_2	C_2	$1/C_2$	B_1	B_2	B_3	B_4
2	2.121	3.760	1.880	.5642	1.7725	0	1.843	0	3.267
3	1.732	2.394	1.023	.7236	1.3820	0	1.858	0	2.568
4	1.501	1.880	.729	.7979	1.2533	0	1.808	0	2.266
5	1.342	1.596	.577	.8407	1.1894	0	1.756	0	2.089
6	1.225	1.410	.483	.8686	1.1512	.026	1.711	.030	1.970
7	1.134	1.277	.419	.8882	1.1259	.105	1.672	.118	1.882
8	1.061	1.175	.373	.9027	1.1078	.167	1.638	.185	1.815
9	1.000	1.094	.337	.9139	1.0942	.219	1.609	.239	1.761
10	.949	1.028	.308	.9227	1.0837	.262	1.584	.284	1.716
11	.905	.973	.285	.9300	1.0753	.299	1.561	.321	1.679
12	.866	.925	.266	.9359	1.0684	.331	1.541	.354	1.646
13	.832	.884	.249	.9410	1.0627	.359	1.523	.382	1.618
14	.802	.848	.235	.9453	1.0579	.384	1.507	.406	1.594
15	.775	.816	.223	.9490	1.0537	.406	1.492	.428	1.572
16	.750	.788	.212	.9523	1.0501	.427	1.478	.448	1.552
17	.728	.762	.203	.9551	1.0470	.445	1.465	.466	1.534
18	.707	.738	.194	.9576	1.0442	.461	1.454	.482	1.518
19	.688	.717	.187	.9599	1.0418	.477	1.443	.497	1.503
20	.671	.697	.180	.9619	1.0396	.491	1.433	.510	1.490
21	.655	.679	.173	.9638	1.0376	.504	1.424	.523	1.477
22	.640	.662	.167	.9655	1.0358	.516	1.415	.534	1.466
23	.626	.647	.162	.9670	1.0342	.527	1.407	.545	1.455
24	.612	.632	.157	.9684	1.0327	.538	1.399	.555	1.445
25	.600	.619	.153	.9696	1.0313	.548	1.392	.565	1.435
Over 25	3	3				a	b	a	b
	\sqrt{n}	\sqrt{n}							
$a = 1 = \frac{3}{b = 1}$	3						(20)	tinuad	

$$a = 1 - \frac{3}{\sqrt{2n}}, b = 1 + \frac{3}{\sqrt{2n}}.$$

(continued)

Continued.							
NUMBER OF	CHART ROR RANGES						
OBSERVATIONS	FACTOR	S FOR					
IN SAMPLE	CENTRA	L LINE	FACTORS FOR CONTROL LIMITS				
n	d_2	$1/d_2$	d_3	D_l	D_2	D_3	D_4
2	1.128	.8865	.853	0	3.686	0	3.276
3	1.693	.5907	.888	0	4.358	0	2.575
4	2.059	.4857	.880	0	4.698	0	2.282
5	2.326	.4299	.864	0	4.918	0	2.115
6	2.534	.3946	.848	0	5.078	0	2.004
7	2.704	.3698	.833	.205	5.203	.076	1.924
8	2.847	.3512	.820	.387	5.307	.136	1.864
9	2.970	.3367	.808	.546	5.394	.184	1.816
10	3.078	.3249	.797	.687	5.469	.223	1.777
11	3.173	.3152	.787	812	5.534	.256	1.744
12	3.258	.3069	.778	.924	5.592	.284	1.719
13	3.336	.2998	.770	1.026	5.646	.308	1.692
14	3.407	.2935	.762	1.121	5.693	.329	1.671
15	3.472	.2880	.755	1.207	5.737	.348	1.652
16	3.532	.2831	.749	1.285	5.779	.364	1.636
17	3.588	.2787	.743	1.359	5.817	.379	1.621
18	3.640	.2747	.738	1.426	5.854	.392	1.608
19	3.689	.2711	.733	1.490	5.888	.404	1.596
20	3.735	.2677	.729	1.548	5.922	.414	1.586
21	3.778	.2647	.724	1.606	5.950	.425	1.575
22	3.819	.2618	.720	1.659	5.979	.434	1.566
23	3.858	.2592	.716	1.710	6.006	.443	1.557
24	3.895	.2567	.712	1.759	6.031	.452	1.548
25	3.931	2544	.709	1.804	6.058	459	1.541