

Second Semester Examination 2020/2021 Academic Session

July/August 2021

EMM242 - Dynamics

Please check that this examination paper consists of **FOUR** (4) before you begin the examination.

Special instruction as follows:

- a. This is an open book examination (useful equations can be found from EMM242 lecture notes.)
- b. Using wildcard data generated from EMM242 e-learning pages for Question 3.
- c. Examination duration is shown in Table 1.

Table 1: Examination duration

The examination duration is 2 hours and 15 minutes and the time to upload the answers to elearning is 15 mins for each numeral numbered question. Each question will be given in a serial time block. Total examination time is 2 hours and 45 minutes. Breakdown of time allocation for each question is as follows:

Question No. 1 – First block of 45 minutes (answering) dan 15 minutes (upload), Question No. 2 – Second block of 45 minutes (answering) dan 15 minutes (upload), Question No. 3 – Third block of 45 minutes (answering) dan 15 minutes (upload),

All answers must be uploaded using pdf format to the appropriate submission button on e-learning.

Instructions: Answer **ALL** questions.

Answer to each question must begin on a new blank/lined A4 paper.

1. Figure 1 shows a slider-crank mechanism. Assuming that the engine is running at constant speed of 3600 rpm and the dimensions are OA=40 mm AB=120 mm, calculate the following when the angle BOA = 90 degrees

(i) The angular velocity of the connecting rod AB (20 marks)

(ii) The linear velocity of the piston B (20 marks)

(iii) The angular acceleration of the connecting rod AB (20 marks)

(iv) The acceleration of the piston B (40 marks)

Figure 1

- 2. [a] Figure 2 [a] shows a m^* kg object with radius of gyration, $\rho_G^* = k$ m, about its center of gravity, G is pinned at point O and is subjected to the couple moment, M_c^* Nm. If at this instant, it has angular velocity of ω^* rad/s:
 - (i) Draw the free body diagram and the kinetic diagram of the object.
 - (ii) Determine the support reaction at point O.

Figure 2 [a]

*The constants: r, m, ρ_G , M_c and ω will be provided using a wildcard function on EMM242 e-learning webpage related to Q2[a].

(50 marks)

- [b] Consider the spring-pendulum system in Figure 3 [b] below. The pendulum is supported by a linear spring of constant, k^* and unstretched length, r_u . Neglect friction at the pivot O, the mass of the spring, and air resistance. Treat the pendulum bob as a particle of mass, m^* and use polar coordinates. The gravity is acting downward.
 - (i) Draw the free body diagram and the kinetic diagram of the pendulum bob.
 - (ii) Derive the equations of motion for the pendulum bob.

Figure 3 [b]

(50 marks)

^{*} The constants: k, r_u , m and θ will be provided using a wildcard function on EMM242 e-learning webpage related to Q2[b].

- 3. [a] Figure 3 (a) shows the operation of two tugboats which exerting a constant force F on the ship. These forces are always directed perpendicular to the ship's centreline. The ship has a mass m and a radius of gyration about its center of mass of ρ . The ship is originally at rest. Based on principle of work and energy and neglect the effect of drag,
 - i. explain the movement of the ship due to the operation of the tugboats with the equal force F for each tugboat, and
 - ii. explain the effect of unequal force from each tugboat.

Figure 3 (a)

(40 marks)

[b] Figure 3(b) shows rod AB, with (2+Y) kg mass where Y is the last digit of student's matric number. The rod AB hangs in the vertical position. A block with 1 kg mass, sliding on a smooth horizontal surface with a velocity of 3.6 m/s, strikes the rod at its end B. Determine the velocity of the block immediately after the collision. The coefficient of restitution between the block and the rod at B is e = 0.8.

(60 marks)