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KESAN GABUNGAN INTERAKSI BIOTIK YANG BERBEZA DAN

PENYEBARAN KE ATAS SISTEM EKOLOGI BERBILANG SPESIES

ABSTRAK

Salah satu persoalan utama dalam ekologi adalah bagaimana kita memelihara kes-

tabilan komuniti dan mekanisme kewujudan bersama antara spesies dalam komuniti

ekologi yang kompleks. Terdapat arus pemikiran yang mengatakan bahawa hubungan

antara kesalingan, persaingan, pemangsaan dan penyebaran tempatan dapat menyo-

kong kewujudan bersama pelbagai spesies. Dalam tesis ini, kami merumuskan semula

model empat spesies merangkumi sistem interaksi pelbagai spesies (contohnya, spesies

sumber-pesaing- pengeksploit-penyaling) dengan menggabungkan sebutan penyebar-

an ruang untuk memodelkan proses sebaran tempatan. Kami kemudian menggunakan

model ini untuk menilai bagaimana dinamik proses penyebaran, kesalingan dan per-

saingan membentuk mekanisme kewujudan bersama dan kestabilan komuniti dalam

sistem ekologi ini. Hasil dapatan kami menunjukkan bahawa interaksi kesalingan dan

persaingan mempengaruhi kekompleksan dinamik ekologi dalam sistem interaksi pel-

bagai spesies ini dengan adanya proses penyebaran tempatan. Dengan menggunakan

simulasi berangka, kami menunjukkan betapa proses kesalingan yang kuat dapat men-

stabilkan dinamik komuniti pelbagai spesies ini. Melalui analisis dwicabangan, kami

juga mendapati bahawa kesalingan pada dasarnya dapat mengubah gerak balas komu-

niti ekologi ini terhadap peningkatan tekanan persaingan terhadap spesies sumber. Pe-

mahaman ini dapat dilihat dalam penemuan kami melalui kemunculan dinamik yang

menarik serta pelbagai proses dwicabangan (misalnya, dwicabangan subkritikal dan

superkritikal Hopf, transkritikal, nod-pelana, transkritikal-Hopf dan homoklin). Kami

memerhatikan kitaran had stabil bergantian dengan yang tak stabil apabila magnitud
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persaingan berubah. Walaupun keadaan alternatif adalah biasa dalam sistem ekolo-

gi dengan interaksi kesalingan, keadaan ini seringkali stabil, sedangkan, dalam kajian

kami, didapati bahawa keadaan alternatif ini boleh menjadi stabil atau tak stabil jika

dimensi ruang dipertimbangkan melalui penggabungan dengan komponen penyebar-

an. Akibatnya, dinamik jangka panjang tertumpu kepada kewujudan bersama pelbagai

spesies sama ada melalui keadaan mantap yang stabil atau kitaran had dan hal ini ber-

gantung pada komposisi spesies pada awalnya. Juga diperhatikan bahawa kekompleks-

an dinamik ini terhenti berkuat kuasa apabila proses kesalingan menjadi cukup kuat.

Selain itu, fenomena ketidakstabilan biodiversiti melalui kejadian kitaran had dengan

amplitud ayunan yang meningkat telah dilemahkan dengan adanya proses kesaling-

an yang kuat dan penyebaran tempatan. Selanjutnya, hasil kajian kami menunjukkan

bahawa tindak balas fungsian pemangsa mempengaruhi dinamik kewujudan bersama

dalam sistem pelbagai spesies ini. Sebagai contoh, kami memerhatikan bahawa ke-

kuatan pemangsa yang semakin lemah dalam model tindak balas fungsian jenis kedua

menyebabkan ketidakstabilan komuniti apabila kepupusan spesies boleh berlaku, se-

dangkan model tindak balas fungsian jenis pertama dapat menyokong proses kestabilan

komuniti ekologi.
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JOINT EFFECTS OF DISTINCT BIOTIC INTERACTIONS AND

DISPERSAL ON A MULTI-SPECIES ECOLOGICAL SYSTEM

ABSTRACT

One of the central questions in ecology is how do we maintain community sta-

bility and species coexistence mechanisms in a complex ecological community. It is

thought that the interplay between mutualism, competition, predation and local dis-

persal support multi-species coexistence. In this thesis, we re-formulate a four-species

multiple interactions type (e.g., resource-competitor-exploiter-mutualist) system by in-

corporating a spatial diffusion term to model local dispersal process. We then employ

this model to assess how the dynamics of dispersal, mutualism and competition shape

species coexistence and community stability in this ecological system. Our findings

show that the interplay of mutualism and competition affects the complexity of eco-

logical dynamics in this multiple interactions type system with local dispersal. Using

numerical simulation, we demonstrate how strong mutualism could stabilize the dy-

namics of this multi-species community. Employing bifurcation analysis, we also dis-

cover that mutualism essentially modifies this ecological community’s response to in-

creasing competitive pressure on the resource species. These insights are evident in our

findings through the emergence of intriguing dynamics and various bifurcations (e.g.,

subcritical and supercritical Hopfs, transcritical, saddle-node, transcritical-Hopf and

homoclinic bifurcations). We observe that stable limit cycles alternate with unstable

ones as competitive pressure varies. While alternative states are common in different

ecological systems with mutualistic interactions, they are often stable, whereas, in our

studies, we realize that there can be alternative stable or unstable states if the spatial

dimension is considered through the incorporation of the diffusion component. Con-
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sequently, the long-term dynamics converge to multi-species coexistence outcomes

either via a stable steady state or a limit cycle depending on species’ initial abun-

dances. It is also observed that this complexity stops when mutualism becomes strong

enough. Additionally, the destabilization of species biodiversity phenomenon through

the occurrence of limit cycles increasing in the amplitude of oscillations is weakened in

the presence of strong mutualistic strength and local dispersal. Furthermore, our result

shows that the predator functional response influences the coexistence dynamics of this

multi-species system. For instance, we observe that weak predation strength in Type

II functional response model destabilises the community as extinction occur, whereas

the Type I functional response model can support the stabilisation of the ecological

community.
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CHAPTER 1

ECOLOGICAL BACKGROUND AND PROBLEM DESCRIPTION

1.1 Introduction

An ecosystem comprises species of different kinds that interact through diverse

types of interspecific interactions, e.g., competition, prey-predator interaction, and mu-

tualism. Multi-species interactions are in diverse forms, and ecologists often face the

question of what allows multiple species to coexist and persist in a complex ecolog-

ical system. Based on previous findings, it has been shown that interspecific interac-

tions determine population dynamics and coexistence mechanisms of multiple species

(Huisman and Weissing, 1999; Kondoh, 2003; MacArthur, 1970). Several studies also

demonstrate the comparative roles of diverse interaction types, and it is found that

the stability for prey-predator systems can be affected by the strength of interactions

between these interacting species (Allesina and Tang, 2012; May, 1972). It should

be noted that the combined effects of diverse interactions type (Mitani and Mougi,

2017) and species dispersal process (Mohd et al., 2017; Mohd, 2016) on multi-species

communities as well as the problem of how these different forces of species interac-

tion affect community dynamics (Fontaine et al., 2011; Kar, 2004; Křivan and Eisner,

2006) have not been well-explored, and that is the main focus of this thesis.

Different species coexist in an ecological system, which is referred to as a com-

munity, and often species interactions affect each other directly or indirectly within

the natural ecosystems (Agrawal et al., 2007; Brooker et al., 2009; Ricklefs, 2008).

Several studies on simple ecological communities have tried to incorporate different
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interaction modules into multi-species community ecosystem (Kondoh, 2008; Mougi,

2016; Mougi and Kondoh, 2012) and show that mixed interaction types are more re-

alistic in modelling natural ecosystems. Some studies suggested that there has being

a synergistic relationship between interaction types and species diversity in ecologi-

cal communities (Kondoh and Mougi, 2015; Mougi, 2016; Mougi and Kondoh, 2012).

Seymour and Altermatt (2014) reports that species interactions in multi-species com-

munities influence the system coexistence dynamics as time progresses. Also, Field

et al. (2009); Pearson and Dawson (2003); Wisz et al. (2013) report that multiple in-

teractions shape the distribution of species in the ecosystem. The effects of diverse

interactions in multi-species systems can influence the community structures across

various trophic levels in the ecosystems (Estes et al., 2011; Hagen et al., 2012; Zar-

netske et al., 2012).

The dynamics of multiple interactions in ecological communities influence species

coexistence and diversity (Fordham et al., 2013; Gilman et al., 2010; Jetz et al., 2009;

Kissling et al., 2012; Lurgi et al., 2012; McInnes et al., 2013; Sandom et al., 2013;

Tylianakis et al., 2008; Wisz et al., 2013). These interactions in the ecological systems

determine the properties and structures of such ecological assemblies (Estes et al.,

2011; Hagen et al., 2012; Zarnetske et al., 2012). Consequently, the interactions in

ecological systems between single and multiple species are rather challenging to study

and analyse as they mostly depend on the context and strength of interactions in the

ecosystem (Brooker et al., 2009; Harrison and Cornell, 2008; Ricklefs, 2008). Further-

more, several kinds of interactions exist among species throughout the ecosystem, and

these interactions sustain the ecosystem functioning (Seymour and Altermatt, 2014).

Relying on these interactions when formulating models of species interactions allows
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ecologists to predict occurrences that exist in nature (Fordham et al., 2013; Gilman

et al., 2010; Lurgi et al., 2012).

The interactions in ecological communities can be described as inter-specific or

intra-specific (Imperio et al., 2012; Powers and McKee, 1994). Inter-specific inter-

actions occur among species of different kinds in an ecological community, while

intra-specific interactions occur between species of the same kinds (Imperio et al.,

2012; Powers and McKee, 1994). Moreover, since species live within the ecological

community, these interactions can influence their coexistence and community stability

(Fukami, 2010). The interactions that would be discussed in this thesis are competi-

tion, prey-predator interaction, and mutualism. These three interactions are the most

studied and form the basis of the complex relationships in natural ecosystems. There is

a scarcity of work on the combined influences of these multiple interactions and local

dispersal. In the following sections, these interactions will be discussed in detail.

1.2 Background of Study

Competition is the prevalent interaction among species that compete for the same

kind of resources for survival, and these interactions between species often lead to

changes in the fitness of species in an ecosystem (Holomuzki et al., 2010). The conse-

quence of competition in the ecological communities negatively affects weaker species

as they are required to compete with stronger species for the same limited resources

(Wootton, 1994). The types of competition reported in the literature are interference

competition and exploitation competition (Delong and Vasseur, 2013). Exploitation

competition is the kind of interaction that occurs indirectly between species, while
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interference competition is the interactions that exist directly between species in the

same ecological system (Holomuzki et al., 2010). Moreover, the consequences of

competition often lead to the elimination of inferior species by the superior species,

and the process has been called the principle of competitive exclusion (Hardin, 1960).

The Lotka-Volterra model (Lotka, 1925; Volterra, 1926) is a well-known two-species

system for studying the consequences of competition among interacting species. This

system is used to study the relationship between the competitive strength and carrying

capacity of species and the resultant effects in reducing each other population densities.

The possible outcomes from this competition model are: (1) species 1 competitively

eliminates species 2; (2) species 2 competitively excludes species 1; (3) coexistence of

species occurs; (4) alternative stable state communities that depend on initial densities.

Several studies have reported that species coexistence is possible if the inter-specific

competition is weaker than the intra-specific competition (Armstrong and McGehee,

1980; del Río et al., 2019). In general, interference competition is also being classified

as an antagonistic interaction (Czárán et al., 2002). This interaction occurs when the

gain of one species inflicts harm on another species. Antagonistic interactions can also

take the form of predation or parasitism (Hembry and Weber, 2020; Laidemitt et al.,

2019; Nuismer and Thompson, 2006; Schulz et al., 2019).

Predation occurs when one species (i.e., predator) captures and feeds on another

species (i.e., prey) (Sih, 1994). Some examples of predation in the ecological commu-

nities are between animals and plants; for instance, different experimental studies have

reported that some protozoans feed on bacteria and protozoans, while some plants feed

on insects (i.e., pitcher plant) (Kneitel and Miller, 2002). Predation usually occurs be-

tween different species (i.e., inter-specific); however, it can occur between species of
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the same kind (i.e., intra-specific) (Mishra et al., 2020; Nakazawa, 2020). The prey-

predator interactions sometimes exhibit traits that are called "evolutionary arms race"

(Ellison et al., 1996). Some of the typical traits exhibited by predators are sharp claws

and teeth, poison or stingers, agile and quick body, camouflage colouration, aural or

visual brilliance. Simultaneously, some examples of the prey traits are physiological,

mechanical, and chemical defenses to scare the predators (Ellison et al., 1996).

Another kind of species interactions is the mutualism. A mutualistic relationship is

a win-win kind of interaction where interacting species benefits from the relationship

between each other (Keeler, 1982). Mutualism in multi-species interactions can be

divided into two categories, namely facultative (i.e., species that can survive on their

own when separated from their mutualistic partner) or obligate mutualism (i.e., species

that cannot survive without a relationship with their mutualistic partner) (Ellison et al.,

1996). For example, some fungi and leafcutter ants enjoy an obligate mutualistic re-

lationship. The ant larva feeds on fungi, and the fungi cannot survive without the ant.

An example of a facultative relationship exists between plant roots and mycorrhizal

fungi. A study reported that most vascular plants and mycorrhizal fungi enjoy fac-

ultative mutualistic relationship (Kaaya et al., 2011). Martignoni et al. (2020a) and

Martignoni et al. (2020b) reported that mutualistic interactions support the coexistence

mechanisms of multi-species. Prior et al. (2020) also show that mutualistic interactions

play a functional role in species fitness (i.e., "ability to survive and reproduce in the en-

vironment") and persistence. Also, Stone (2020) reported that mutualistic interactions

enhance species population densities and community stability.

Apart from the interaction between each other, species also disperse across a ge-
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ographical region. The term dispersal is defined as species movement from one eco-

logical community or location to another (Duarte and Mali, 2019). The dynamics of

dispersal shape species distribution (Dexter et al., 2017; Evans et al., 2020). Ecological

models contribute to the study and understanding of the advancement of dispersal in

mathematical ecology. Transfer, settlement, and emigration have been reported as the

ecological features of dispersal (Lidicker and Stenseth, 1992). Mohd et al. (2017) re-

ported that the effect of abiotic and biotic factors combined with dispersal can influence

species ranges and that coexistence of multiple species is possible due to the interplay

of species interactions and dispersal. The dispersal dynamics in multiple interactions

type system affect species distribution, community structure, and stability (Baguette

et al., 2013; McPeek, 2014). Moderate dispersal strength in multiple interactions type

system enhances the movement of species and this, in turn, helps maintain the endan-

gered communities (Pulliam, 1988). In another study, dispersal has been reported to

alter environmental factors impacts on multiple interactions type communities (Brown

et al., 2011; Winegardner et al., 2012). The strength of dispersal in multiple interac-

tions type system also affects the relationship between different ecological communi-

ties (Brown and Swan, 2010; Ng et al., 2009; Winegardner et al., 2012). In general,

dispersal in an ecological system is divided into two: local dispersal (i.e., between ad-

jacent spatial locations) and non-local dispersal (i.e., between larger spatial locations).

In this thesis, we will focus our analysis using a local dispersal model to gain insight

on the coexistence dynamics of distinct interactions between small adjacent spatial lo-

cations; for non-local dispersal mechanisms, interested readers are referred to Mohd

et al. (2018) for further reading.
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1.3 Motivating Biological Examples

Multiple species interactions (e.g., mutualist-resource-competitor-exploiter inter-

actions) type models are known to exhibit oscillatory behaviour due to their complexity

(Mitani and Mougi, 2017; Mougi and Kondoh, 2012). This large-amplitude oscillation

often de-stabilises multi-species communities and increases species chances to go ex-

tinct (Mitani and Mougi, 2017; Mougi and Kondoh, 2012). Thus, the vital question is

how to maintain the stabilisation of communities and species coexistence in multiple

interactions type systems. One possible way to do this is to use multiple interactions

type modelling framework and the incorporation of spatial diffusion mechanism into

such a system to model the effects of local dispersal on multiple species interactions.

This notion is in parallel with the ecological studies in Mitani and Mougi (2017) and

Mohd et al. (2017); Mohd (2016), Mohd et al. (2018); using the modelling approaches,

we seek to gain valuable insights into the dynamics of distinct interactions type system

with local dispersal and some ecological implications related to these issues.

The maintenance of species coexistence and community stability has attracted

much attention in ecology in recent times (Knowlton and Rohwer, 2003; Kondoh,

2008; Kondoh and Mougi, 2015; Mougi and Kondoh, 2012). Several theoretical stud-

ies have hypothesised that complex ecological communities (i.e., multiple interactions

type system) are structurally unstable, and this is despite the positive evidence of

species coexistence in nature (Gardner and Ashby, 1970; May, 1972; Pimm and Law-

ton, 1978). This paradoxical viewpoint has motivated ecologists to investigate what

mechanisms maintain multi-species coexistence in ecological systems (Bascompte et al.,

2006; Brose et al., 2006; Neutel et al., 2002). Some studies have traced this lack of con-
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sistency to some unrealistic assumptions (i.e., complex ecosystem leads to ecosystem

stability) made to prior ecological models (Lawlor, 1978; Pimm, 1979). However, lit-

tle attention has been given to multiple interactions type system (Fontaine et al., 2011;

Pocock et al., 2012). Recent studies on the complex ecological systems have demon-

strated that species interaction strength are the determinants of community composi-

tions (Emmerson and Raffaelli, 2004; Neutel et al., 2002). Also, some studies on the

stability of complex systems have compared the coexistence and stability dynamics

of several communities having multiple interactions (Allesina and Tang, 2012; Hen-

der et al., 2007). The results from these studies shed some light on how antagonistic

interactions shape the stability of competitive and mutualistic interactions type sys-

tem, and that community destabilisation is associated with these complex ecological

interactions (Allesina and Tang, 2012).

In a similar study, Mougi and Kondoh (2014c) have illustrated that diversity in

the interaction type system promotes species coexistence and community stability. In

this study, it is further observed that antagonistic interaction plays an essential role in

the stability of multiple interactions type system (Mougi and Kondoh, 2014c). This

study also illustrates that systems with either mutualism, competition, or antagonism

exhibit different population dynamics and stability properties compared to a multiple

interactions type system (Mougi and Kondoh, 2014c). The stability of the system

follows the order of antagonistic, competitive, and mutualistic interaction. Similarly,

the combination of interactions (i.e., two- or three-species interactions) type promotes

species coexistence and community stability in the complex ecological system (Mougi

and Kondoh, 2014c). Furthermore, the stable coexistence region is broader as the

ecological system complexity increased, and vice versa (Mougi and Kondoh, 2014c).

8



1.4 Problem Statement

The dynamics of three-species models (i.e., mutualist, resource, and exploiter) have

contributed significantly to understanding multiple interactions type system (Mougi

and Kondoh, 2014b). The community dynamics observed in this three-species ecolog-

ical system (Mougi and Kondoh, 2014b) motivated a further study by incorporating

another interaction (i.e., competition), making the system more complex and yet real-

istic (Mitani and Mougi, 2017), as a result of increasing interactions. The result from

this multiple interactions type system (i.e., mutualist-resource-exploiter-competitor)

shows the emergence of population cycle, despite using simple ordinary differential

equations and spatial dispersal phenomenon is neglected. The findings illustrated in

the study of Mitani and Mougi (2017) also contradict certain real-life phenomena as

multiple species can be seen to coexist in nature. To address these problems and inves-

tigate the joint effects of dispersal on multiple interactions type model, we formulate

a partial differential equation (PDE) model. We have the following open questions

arising from this study:

1. Under what conditions coexistence of species can occur in the multiple interactions

type system with the incorporation of local dispersal process?

2. What effects do mutualistic strength and the intrinsic growth rate of competitor

species have on the stabilization of community and species coexistence outcomes?

3. What effects does the interplay between local dispersal and competition have on

the general dynamics of this ecological system?

4. What effects do change in predator functional response (i.e., Type I & II) have on

the bifurcation dynamics in this multiple interactions type system?
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Motivated by these knowledge gaps, we hypothesized the following: (1) species

coexistence is possible in this multiple interactions type system for some threshold

values of parameters, (2) the combined influences of mutualism and competition with

local dispersal may enhance the overall species coexistence outcomes and community

stability in this multiple interactions type system; and (3) predator functional response

affects the species coexistence and community stability in this multiple interactions

type system. In the following section, we discuss the aim and objectives of this thesis.

1.5 Aim and Objectives

This thesis aims to demonstrate how mathematical techniques can be employed to

better understand the dynamical behaviour of multiple interactions type system with

local dispersal. We achieve these aims by incorporating local dispersal and distinct

biotic interactions (i.e., predation-mutualism-competition-resource) in the modelling

frameworks. The main objectives of this thesis are listed as follows:

1. to extend the mathematical model of multiple interactions type system by incorpo-

rating a local dispersal mechanism and distinct functional responses.

2. to analyze the effects of mutualism, competition, and other biotic factors on multi-

species coexistence and community stability using an ODE model.

3. to determine the effects of local dispersal and other biotic factors on the multiple

species ecological systems using a PDE model.

1.6 Scope of Study

In the natural ecosystem, there are different kind of species interactions, however,

we are going to focus on four main interactions e.g., predation, mutualism, exploita-
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tion, and competition. This is because these are the most pronounced species interac-

tions that can affect community stability and coexistence of species in nature. We also

model the effect of local dispersal using simple diffusion equation though dispersal

can also be represented using non-local dispersal processes. We make this assump-

tion in modelling dispersal because it is a major driver of species dynamics, resilience

and composition. The model formulation is concentrated in 1-dimensional (1D) space

habitats as opposed to 2-dimensional (2D) habitats for the ease of interpretation and

simplicity of modelling results. The parametrisation employ in the numerical simula-

tions are motivated by the ecological studies of Mitani and Mougi (2017) and Mohd

et al. (2017). The ecological model employ in this thesis is assumed to be continuous

in time.

1.7 Thesis Organisation

The organisation of this thesis is shown in Figure 1.1. Chapter 1 presents the intro-

duction, problem statement, aim and objectives of the project. Chapter 2 provides an

overview of some multiple interactions (i.e., mutualism-competition-predation) type

models, and this chapter starts with the prey-predator model, a competition model, a

mutualism model, and a diffusion model. In Chapter 3, the theoretical analysis of the

multiple interactions type ODE model is presented. The analysis here includes the ex-

istence of equilibrium, local stability analysis, global stability analysis, the existence

of Hopf bifurcation, the existence of a limit cycle, and the existence of transcritical

bifurcation.

In Chapter 4, the analytical results of ODE model in Chapter 3 are verified for lo-
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cal and global stability properties. The combined effects of mutualism and competitor

species growth rate (using ODE model) on the species coexistence and community sta-

bility are investigated in this chapter. Some ecological implications of these theoretical

findings are also presented. In Chapter 5, the dynamics of local dispersal, competition,

and other biotic factors are demonstrated using a PDE model. The model is then anal-

ysed using numerical simulation technique and bifurcation analysis. The PDE results

in this thesis is validated by comparing our findings with simpler cases, i.e., when the

strength of dispersal D is relatively weak (D→ 0). Further validation of result is done

by comparing with previous literature (Mitani and Mougi, 2017) and comparison be-

tween numerical simulation and bifurcation analysis finding. The model results with

local dispersal are also compared with no-dispersal case for an in-depth understanding

of the coexistence mechanisms in this multiple interactions type system. The ecolog-

ical implications of the findings are also presented. In Chapter 6, the dynamics of

local dispersal, predation, mutualism, and other biotic factors are examined using PDE

models with different functional responses (FR). The Holling Type II functional re-

sponse (i.e., "the amount of prey consumed decreases gradually with prey density") is

incorporated into the PDE model. The results of PDE models with different functional

responses (Type I and Type II) are compared to enhance understanding on multiple

species coexistence dynamics. The ecological implications of the results are also dis-

cussed. In Chapter 7, a summary of the thesis and the conclusion are presented. Also,

the limitation of this study and recommendation for future work are presented.
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Figure 1.1: A flowchart of this thesis.
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CHAPTER 2

REVIEW OF SELECTED MATHEMATICAL MODELS

2.1 Introduction

In the previous chapter, the ecological background of the study, problem statement

and motivation, aim and objectives and thesis organisation has been presented. This

chapter explores multiple interactions type system, and provide an overview of several

multi-species models that are appropriate to this thesis. The overview from previous

studies provides fundamental insights into multiple interactions type models that would

be investigated throughout this thesis. In this thesis, we consider different types of

multiple interactions type systems. First, we start with the predator-prey model of two-

species interaction. Also, the three-species interactions type model are presented. This

is followed by a diffusion model that represents species movement along an adjacent

spatial location (i.e., local dispersal). The ecological applications of these models are

highlighted in this chapter. Furthermore, review of previous multiple interactions type

systems are discussed.

2.2 Prey-Predator Model

The first successful attempt to mathematically represent the interactions of species

was achieved a century ago. Lotka (1925) and Volterra (1926) were the first to achieve

this goal. Their work laid the foundation for population dynamics and mathematical

ecology. Their formulated prey-predator model is a pair of non-linear first-order dif-

ferential equations used to relate the interplay between two-species interaction in a
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biological system. It has a simple representation as:

dx
dt

= g1(x)+ f1(x,y),

dy
dt

= g2(x)+ k f1(x,y),

(2.1)

where g1, g2, f1 and k are functions of the interaction between species. The system

(2.1) represents different types of interactions. The classical type of interaction is

called Lotka-Volterra competition model (Lotka, 1925), which describes the dynamic

interaction between a predator population x and a prey population y. We represent the

differential equations as:
dx
dt

= rx−axy,

dy
dt

= eaxy−dy,

(2.2)

where systems (2.1) and (2.2) can be described as follows:

• g1(x) = rx represents the growth rate of the prey population in the absence of preda-

tors. r is the intrinsic growth rate of the prey (i.e., when the predator is absent). There-

fore, the population of the prey would increase exponentially in the absence of preda-

tors as: x(t) = x0ert , where x0 is the initial population of prey.

• k f1(x,y) = eaxy is the production/growth rate of predator offspring, where e is the

conversion rate of prey into predator, where a is the capture rate and k is constant.

• g2(y) =−dy represents the predators death rate in the absence of prey and d is the

mortality rate per capita of a predator when prey is not present. Therefore, predator

decay exponentially in the absence of prey is: y(t) = y0e−dt , where y0 is the initial
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population of predator.

More recently, there has been a renewed effort at designing sophisticated models

from multiple interacting species based on the earlier works of Lotka and Volterra.

The functional response (Papanikolaou et al., 2020; Spalinger and Hobbs, 1992; Wu

and Huang, 2020), crowding (Diamantidis et al., 2020; Vallejos et al., 2020; Wang

et al., 2020a), age structure (Bashkirtseva et al., 2020; Widayani et al., 2020), switching

(Charfeddine, 2017; Jylkka et al., 2020), time delay (Barril et al., 2018; Gan et al.,

2020) where the major factors considered. The hosts and parasites, parasitoid plants

and herbivores and typical prey-predator relationship cover various kind of natural

enemies whose interactions falls under the prey-predator relationships. Competition

has also received more attention than predation despite the great feat achieved by Lotka

and Volterra in their early work (Madhok, 2020; Mukherjee, 2020; Murray and Young,

2020). This attention can be attributed to the difficulties encountered in integrating

biologically realistic parameter into predation models in contrast to competitive models

(Arancibia-Ibarra and Flores, 2020; Ghanbari and Djilali, 2020; Hassell, 2020). The

competitive effect between species or the coexistence conditions is the major results

of the stability analysis of simple biological models (Bernhardt et al., 2020; Damas-

Moreira et al., 2020; Luimstra et al., 2020). The dynamics of the two-species in prey-

predator models are defined on the "trophic function" f (x,y) which was represented

in the prey equation as a functional response. In the ecological models, the more

common functional responses used is classified as ratio-dependent, prey-predator and

prey-dependent (Arditi et al., 1978). We discuss them in details in next subsections.
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2.2.1 Prey-Dependent Functions

The rate at which the predator feeds on the prey is best to describe as prey-dependent

functions. Furthermore, the prey-dependent functional response has diverse classifica-

tion and has been discussed in many literature (El Bhih et al., 2020; Holling, 1959; Li

and Zhao, 2020; Tripathi, 2020).

2.2.1(a) Lotka-Volterra Type

Lotka and Volterra assume in their model that the individual rate of consumption

grows linearly with the population of the prey. Thus, the functional response use in

their model can be written as: f (x) = ax,x ≥ 0, where a > 0 represent the rate at

which the predator consumes the prey. The applications of this can be found in many

literature (Huang et al., 2020; Lin et al., 2020; McGee, 2020).

2.2.1(b) Holling Type I Functional Response

Holling Type I looks very much like the Lotka-Volterra type. The only difference

is the maximum or upper limit (τ), which is defined as:

f (x) =


ax, 0 < x < α,

τ, x≥ α,

(2.3)

where α is the fixed amount of prey at which the predator overfeeds at τ .

Lotka-Volterra and Type I functional responses are manageably used to study eco-

logical models despite their simple nature (Bian et al., 2017; Rosenbaum and Rall,
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2018; Schröder et al., 2016).

2.2.1(c) Holling Type II Functional Response

Holling Type II assumes that the rate of consumption of each consumer rises at a

reducing rate for the prey density up till when it becomes constant at saturation point.

The maximum value is asymptotically approached when a = 1
h . It is defined as:

f (x) =
Ax

1+Ahx
, (2.4)

where h is the time spent in consuming one prey, A is the search rate, b = 1
Ah is the

half-saturation level such that f (b) = a
2 , a is the rate at which the predator consumes

the prey. Holling Type II is the most widely used model by mathematical ecologists.

It is sometimes referred to as the "Michaelis-Menten type" because it was first used

by Michaelis and Menten (Cornish-Bowden, 2013). The application of this functional

response can be found in several studies (Cuthbert et al., 2019a; Fathipour et al., 2017;

Pritchard et al., 2017; Sidhom and Galla, 2019).

2.2.1(d) Holling Type III Functional Response

Holling Type III assumes that the rate of consumption by the individual predator

accelerates initially and thereafter reduces to the saturation point. It can be defined as:

f (x) =
Ax2

1+Ahx2 .
(2.5)

The application of this Type III functional response can be found in several studies

(Cuthbert et al., 2019b; Lazear et al., 2019; Meng and Wang, 2019; Shah et al., 2019;
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Wang et al., 2020b).

2.2.2 Ratio-Dependent Functions

The abundance of the predator is not incorporated into the prey-dependent func-

tional responses formula. Thus, Arditi and Ginzburg (1989) presented a different func-

tional response type of model known as ratio-dependent function. Here, the prey feed-

ing rate per predator is a function of the ratio between their respective densities and

does not depend solely on the prey density. They use the ratio x
y in place of x in the

Holling Type II functional response as their functional response, and it is given below:

f (x,y) =
A(x

y)

1+Ah(x
y)
. (2.6)

The applications of this functional response are in several studies (Hossie and Murray,

2016; Li and Cheng, 2020; Liu and Liu, 2019; Mishra and Agarwal, 2018; Roy et al.,

2020; Suryanto and Darti, 2017; Xu et al., 2018; Yang et al., 2017).

2.2.3 Predator-Dependent Functions

Here, it is assumed that the functional responses depend on both the predator and

prey densities. Hassell and Varley (1969) and Beddington (1975) suggested that high

predator density often causes recurrent encounter among predators population. DeAn-

gelis et al. (1975) and Beddington (1975) were the first to use the predator-dependent

functional response in their work. Their model on prey-predators is referred to as the

DeAngelis-Beddington functional response. Sometimes, using mathematical analysis,

the ratio-dependent functional responses and the prey-dependent functional responses
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are described to be the limitation of the general case of predator-dependent functional

response. Their model is represented as:

f (x,y) =
ax

βy+αhx+1
, (2.7)

where β is a constant, and it can be defined as the product of the predator handling

time and the predator encounter rate, h is the prey handling time. The applications

of this functional response are found in these studies (Cai et al., 2020; El Bhih et al.,

2020; Fakhry and Naji, 2020; Ghanbari et al., 2020; Hadjimichael et al., 2020; Tripathi,

2020; Tyutyunov and Titova, 2020).

2.3 Competition Model

The first successful attempt to mathematically represent the interactions of species

was achieved a century ago. Lotka (1925) and Volterra (1926) were the first to achieve

this goal. Their work laid the foundation for competition in two-species studies (Mit-

telbach and McGill, 2019). Recently, this model has been use to study n ≥ 2 (n is

the number of species in a community) competition among species (Fort and Segura,

2018; Vet et al., 2018). The basic assumption in this model is that the consequences of

competition among two competing species inhibit each species in the system.

Gause (1932) employed a Lotka-Volterra competition model to forecast the conse-

quences of competition among two paramecium species. The competition model has

been reported to give a good forecast of the distribution of protozoan species (Vander-

meer, 1969). Also, the Lotka-Volterra competition model has been employed to study

the competition among butterfly Melitaea cinxia (butterfly that belongs to the family
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Nymphalidae) (Lei and Hanski, 1998). From the above discussion, species coexistence

is one of the consequences of this competition model when the interactions between

species are weak (Jorgensen and Fath, 2014). However, species coexistence could

not be observed for birds in New Guinea (Jorgensen and Fath, 2014). The ecological

model is represented as follows:

dNi

dt
=

riNi

ki

(
ki−

m

∑
j=1

αi, jNi

)
, (i = 1,2) (2.8)

where Ni represents the density of species i, the term ri represents the growth rates of

species i, ki represents the carrying capacity. Also, the term αi j represents the com-

petitive impact of species j and i. For the ecological dynamics of this competition

model, interested readers are referred to the works of Mohd (2016), Kot (2001), Stro-

gatz (2001).

2.4 Mutualism Model

The interactions that exist between species of different kinds are mutualistic if the

presence of one species increases the growth rate of the other species (Rai et al., 1983).

The previous studies of two-species models of mutualism explicitly neglected the ben-

efits derived from mutualistic interactions (Christiansen and Fenchel, 2012; Janzen,

1967; Vandermeer and Boucher, 1978; Whittaker and Likens, 1975). In some cases,

two-species models of mutualism have been extended for n ≥ 3 species without any

further complexity added (Harley, 1970; Travis et al., 1979). However, in some stud-

ies, more complex models of mutualism have received significant attention (Lawlor,

1979; Vandermeer, 1980).
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The concept of mutualism in ecology does not replace competition; instead, it has

expanded and transformed the general perspective involving the interactions between

different species. Species cooperation has enjoyed recent popularity in the study of

ecology, and biological philosophers have picked tremendous interest in it (Gilbert

et al., 2012). In the past, little or no importance was attached to mutualism by ecol-

ogists. Thus, Axelrod and Hamilton (1981) carried out a mathematical study on co-

operation. Some years later, May (1984) documented that "mutualism has remained

relatively neglected in the field of ecology, laboratory, theory and textbooks". The

pioneering work of Margulis (1981) faced much resistance in promoting the under-

standing of mutualism as it is often regarded as symbiotic relationship and exotic, and

this affects the understanding of the ecosystem functioning.

The action of mutualism can result in the production of "mutually-constituted or-

ganisms" which are intertwined, i.e., an alga and a fungus form a lichen ("a composite

organism that emerges from algae or fungi in a mutually beneficial symbiotic relation-

ship") (Spribille et al., 2016). The economic outcomes of mutualisms are great; for

example, pollination is key to agriculture, and the maintenance of soil nutrients is also

vital in agriculture, and all these involves a lot of mutualisms (Wall and Moore, 1999).

The essential roles of "soil biota" (i.e., algae, fungi, and bacteria) in agricultural pro-

cesses are too valuable (Welbaum et al., 2004). The maintenance and development of

a healthy immune system and gut require the presence of bacteria (Davison, 2020).

Mutualisms unlock unique ecological niches (Favareau, 2009).

The dynamics of the three-species (prey-predator-mutualist) model can be described
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by (Rai et al., 1983):

du
dt = uh(u,x),

dx
dt = αxg(u,x)− yp(u,x),

dy
dt = y[−s+ cp(u,x)],

(2.9)

where u, x, y represents predator, prey, and mutualist species, respectively. The term

h(u,x) is the growth rate of the mutualist species, p(u,x) is the impact of predator

species on prey, g(u,x) is the growth rate of prey species, x is the mutualist impact of x

on u, −s is the death rate of the mutualist species, and α is an arbitrary constant which

will later serve as the bifurcation parameter.

Assumptions: It is assumed that the system has birth and death rates that is contin-

uous with time. Also, ∂h
∂u < 0, ∂h

∂x > 0, h(0,x)> 0, x≥ 0, u≥ 0.

We obtain the system equilibrium by equating system (2.9) to zero.

uh(u,x) = 0,

αxg(u,x)− yp(u,x) = 0,

y[−s+ cp(u,x)] = 0.

(2.10)

The system (2.10) has six biologically-meaningful equilibria:

E0(0,0,0), E1(0,k(0),0), E2(0,x∗,y∗), E3(L(0),0,0), E4(u∗,x∗,0) and E5(u∗,x∗,y∗).
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2.5 Diffusion Model

In several studies, the concept of a random walk has been used to illustrate the

diffusion model. This equation represents the most notable diffusion model:

∂N
∂ t

= D
∂ 2N
∂x2 ,

(2.11)

where N represents species density and D denotes the diffusion strength. The model

(2.11) assumes a localised dispersal pattern (i.e., dispersal takes place along adjacent

spatial locations). The assumption in the system (2.11) gives a true reflection of some

plant whose seeds disperses within a short distance not too far from the parents plant

(Cain et al., 2000; Holmes et al., 1994; Mohd, 2016). The results from the numerical

simulation of the system (2.11) demonstrate how species move from well-populated

area to less populated area as time progress. It further shows that species movement is

directly proportional to the dispersal strength (D).

To have a clear presentation of the effect of diffusion in an ecological system,

we incorporate dispersal term into a single-species mutualist community (Rai et al.,

1983) and numerically simulate the model to observe the dynamics of the system. The

equation of single-species mutualist community with dispersal is as follow:

∂Z
∂ t

= Z(−s+ cp)+Dz
∂ 2Z
∂k2 ,

(2.12)

where Z is the population density of the mutualist species, s is the death rate of the

mutualist species, p is the impact of mutualist species, c is a positive constant and k

represent the spatial domain. The diffusion system is numerically solved by imposition
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