
 
 

STATE-OF-HEALTH PREDICTION INTEGRATED WITH 

STATE-OF-CHARGE MONITORING OF A LITHIUM-ION 

BATTERY CELL FOR LIFETIME PREDICTION 

 

 

 

 

 

 

 

 

 

LEOW YOONG YANG 

 

 

 

 

 

 

 

 

 

 

UNIVERSITI SAINS MALAYSIA 

2018 



 
 

STATE-OF-HEALTH PREDICTION INTEGRATED WITH 

STATE-OF-CHARGE MONITORING OF A LITHIUM-ION 

BATTERY CELL FOR LIFETIME PREDICTION 

 

 

 

 

by 

 

 

 

 

LEOW YOONG YANG 

 

 

 

 

Thesis submitted in fulfilment of the requirement  

for the degree of  

Bachelor of Engineering (Electrical Engineering) 

 

 

 

 

JUNE 2018 



 
 

 

 

 

This thesis is dedicated to my dearest parents, brother, grandmother  

and the memories of my grandfather. 

I couldn’t have done this without their love and support.  

 

 

 

 

 



iv 
 

ACKNOWLEDGEMENT  

 

 Throughout the process of completing this thesis, I have received guidance and 

support from various parties. For instance, my supervisor, friends and family members, 

as well as school. Hence, I would like to show my sincere gratefulness to all who made 

this thesis a reality.  

 

 First of all, I would like to take this opportunity to express gratitude to my Final 

Year Project (FYP) supervisor, Dr. Ooi Chia Ai, for her fruitful advices and her precious 

time spent during the period of conducting this FYP. Her generous sharing of experience 

and knowledge related to power electronics, battery and so on has contributed greatly in 

this FYP.  

 

 Next, I would like to extend my gratitude to all friends and family members who 

have supported me mentally throughout the progression of this FYP. Their selfless 

encouragement has helped me to face difficult times positively during the period of 

completing this FYP.  

 

 Moreover, I would like to show my gratitude to Engineering Library of USM for 

supplying valuable references and information which assisted me in completing this FYP. 

Last but not least, I would also like to express my appreciation to School of Electrical and 

Electronic Engineering for providing funding and facilities such as laboratory, as well as 

holding FYP seminars.  

 

  



v 
 

TABLE OF CONTENTS 

Acknowledgement  iv 

Table of Contents v-vi 

List of Tables vii 

List of Figures viii-ix 

List of Abbreviations x 

Abstrak xi 

Abstract xii 

  

Chapter 1: Introduction  

1.1 Research Background 1-3 

1.2 Problem Statements 3-5 

1.3 Objectives of the Research 5 

1.4 Scope of the Research 5-6 

1.5 Thesis Outline 6 

  

Chapter 2: Literature Review  

2.1 Introduction 7 

2.2 General Classification of Batteries  7-8 

2.3 Development of Lithium-Ion Batteries 8 

2.4 Applications of Lithium-Ion Batteries 9-10 

2.5 Battery Management System (BMS) 10-11 

2.6 State-of-Charge (SoC) Estimation Methods 

2.6.1 Coulomb Counting and Open Circuit Voltage (OCV)    

         Methods 

2.6.2 Kalman Filter (KF) Method 

2.6.3 Equivalent Circuit Model (ECM) of Lithium-Ion Battery 

2.6.4 Comparison of SoC Estimation Methods 

11-12 

12-13 

 

13-15 

15-17 

17-18 

2.7 State-of-Health (SoH) Prediction Methods 

2.7.1 Neural Network (NN) Method 

2.7.2 DC Resistance Method 

2.7.3 Comparison of SoH Prediction Methods 

18-19 

19-20 

20-21 

21 

2.8 Battery Lifetime Analysis 22-24 



vi 
 

2.9 Chapter Summary 25 

  

Chapter 3: Research Methodology  

3.1 Introduction 26 

3.2 System Overview 26-29 

3.3 Data Logger System 30-31 

3.4 Lithium-Ion Battery and Power Resistor Load 32-33 

3.5 SoC Estimation 

3.5.1 Coulomb Counting Method 

3.5.2 Open Circuit Voltage (OCV) Method 

34 

34-35 

36 

3.6 SoH Prediction 38-39 

3.7 Battery Lifetime Analysis 40-42 

3.8 Chapter Summary 43 

  

Chapter 4: Results and Discussion  

4.1 Introduction 44 

4.2 Overall System Final Assembly 44-45 

4.3 SoC Estimation 

4.3.1 Coulomb Counting Method 

4.3.2 Open Circuit Voltage (OCV) Method 

45 

45-48 

49-55 

4.4 SoH Prediction 55-56 

4.5 Battery Lifetime Analysis 57-65 

4.6 Chapter Summary 65 

  

Chapter 5: Conclusion 66-67 

  

References 68-71 

  

Appendices   

Appendix A: Battery Datasheet 

A.1 Panasonic NCR18650B Lithium-Ion Battery Datasheet 

 

72 

Appendix B: Coding 

B.1 Arduino Coding 

B.2 MATLAB Coding 

 

73-74 

75-76 

  



vii 
 

LIST OF TABLES 

 Page 

Table 2.1.  Comparison between proposed methods for SoC estimation [11] 18 

Table 2.2.  Comparison between proposed methods for SoH prediction [11] 21 

Table 3.1.  Coding for data logger system 31 

Table 3.2.  Coding for SoC estimation 35 

Table 3.3.  MATLAB coding for discharge characteristics curve 37 

Table 3.4.  Coding for SoH prediction 39 

Table 3.5.  MATLAB coding for battery lifetime analysis 41 

Table 4.1.  Extracted SoC data for the 21st discharge cycle 47 

Table 4.2.  Experimental data for OCV 49-50 

Table 4.3.  Extracted data from datasheet for OCV 52 

Table 4.4.  RMSE of OCV 54 

Table 4.5.  SoH data for 50 cycles 55-56 

Table 4.6.  Extracted data from the datasheet for cycle life 61 

Table 4.7.  RMSE of battery capacity 63 

 

 

 

 

 

 

  



viii 
 

LIST OF FIGURES 

 Page 

Fig. 2.1.  Revenues of the universal lithium-ion battery market in USD 

    Billion, from 2008 to 2020 [19] 

9 

Fig. 2.2.  The general principle of Kalman filter [4] 14 

Fig. 2.3.  Simplest ECM of a lithium-ion battery [17] 15 

Fig. 2.4.  Modified ECM of lithium-ion battery [17] 16 

Fig. 2.5.  Illustration for battery lifetime analysis [17] 22 

Fig. 3.1.  Block diagram of the overall system implemented 27 

Fig. 3.2.  Circuit connection of the overall system 27 

Fig. 3.3.  Flowchart of the overall system 29 

Fig. 3.4.  Arduino Uno microcontroller 30 

Fig. 3.5.  INA219 current sensor module 30 

Fig. 3.6.  Panasonic NCR18650B lithium-ion battery 32 

Fig. 3.7.  Power resistor 33 

Fig. 3.8.  Flowchart for battery lifetime analysis 42 

Fig. 4.1.  Overall system final assembly 45 

Fig. 4.2.  Online SoC estimation displayed on the computer screen 46 

Fig. 4.3.  Discharge current trend for the 21st cycle 48 

Fig. 4.4.  Experimental discharge characteristics curve for OCV method 51 

Fig. 4.5.  R2 value obtained via MATLAB 51 

Fig. 4.6.  Discharge characteristics curve of the datasheet 53 

Fig. 4.7.  R2 value obtained via MATLAB for the datasheet data 53 

Fig. 4.8.  Discharge characteristics curves from the experiment and the  

   datasheet 

54 

Fig. 4.9.  Decreasing trend of SoH data 57 

Fig. 4.10.  Cycle life characteristics curve from experiment 58 

Fig. 4.11.  R2 value obtained via MATLAB for the experimental curve 59 

Fig. 4.12.  Extended cycle life characteristics curve from experiment 59 

Fig. 4.13.  Cycle life characteristics curve via SoH 60 

Fig. 4.14.  R2 value obtained via MATLAB for the curve via SoH 60 

Fig. 4.15.  Cycle life characteristics curve from the datasheet 61 

Fig. 4.16.  R2 value obtained via MATLAB for the datasheet curve 62 



ix 
 

Fig. 4.17.  Extended cycle life characteristics curve from the datasheet 62 

Fig. 4.18.  Cycle life characteristics curves from the experiment and the   

     datasheet 

63 

 

 

  



x 
 

LIST OF ABBREVIATIONS 

 

AI Artificial Intelligence  

BMS Battery Management System 

DoD Depth of Discharge 

EKF Extended Kalman Filter 

EIS Electrochemical Impedance Spectroscopy 

EV Electric Vehicle 

FYP Final Year Project 

GHPF Gauss-Hermite  Particle Filter 

HEV Hybrid Electric Vehicle 

ICE Internal Combustion Engine 

KF Kalman Filter 

Li Lithium 

mAh milliAmpere hour 

MATLAB Matrix Laboratory 

OCV Open Circuit Voltage 

R&D Research & Development 

RMSE Root Mean Square Error 

RUL Remaining Useful Life 

SEI Solid-Electrolyte-Interphase 

SoC State-of-Charge 

SoH State-of-Health 

SVR Support Vector Regression 

 

 

  



xi 
 

RAMALAN KEADAAN KESIHATAN DIGABUNG DENGAN 

PANTAUAN KEADAAAN CAJ BAGI BATERI LITIUM-ION 

UNTUK RAMALAN HAYAT BATERI 

 

ABSTRAK 

 

 Dalam FYP ini, bateri litium-ion akan dipantau semasa kitaran caj-dan-nyahcas 

untuk meramalkan keadaan kesihatan (SoH) dan menganggarkan keadaan caj (SoC) bagi 

analisis masa hidup bateri. Bateri litium-ion akan mengalami kerosakan yang serius jika 

terdedah kepada pengecasan yang berlebihan dan penyahcasan yang mendalam dalam 

masa yang lama, oleh itu anggaran SoC adalah penting untuk membantu pengguna 

mengawasi SoC bateri, jadi jangka hayat bateri tidak akan dikurang disebabkan oleh 

pengecasan berlebihan atau penyahcasan yang mendalam. Selain itu, ramalan SoH 

digunakan untuk menunjukkan keadaan kesihatan bateri sama ada bateri masih boleh 

beroperasi atau tidak kerana bateri litium-ion mengalami kemerosotan dari masa ke masa. 

Analisis masa hidup bateri dijalankan untuk meramalkan hayat bateri sebelum kegagalan 

supaya pengguna dapat mengetahui jumlah kitaran caj-dan-nyahcas sebelum bateri gagal 

dan membuat persiapan awal terhadap penggantian, ini dapat meningkatkan keandalan 

sistem. Dalam FYP ini, satu BMS yang ringkas dibinakan. Kemudian, anggaran SoC akan 

dilakukan melalui kaedah pengiraan Coulomb dan OCV. Pengiraan SoH adalah melalui 

ukuran kapasiti bateri. Akhir sekali, data yang diperoleh dari anggaran SoH akan 

digunakan untuk meramalkan hayat bateri yang tinggal.  

  



xii 
 

STATE-OF-HEALTH PREDICTION INTEGRATED WITH STATE-

OF-CHARGE MONITORING OF A LITHIUM-ION BATTERY 

CELL FOR LIFETIME PREDICTION 

 

ABSTRACT 

 

 In this FYP, a lithium-ion battery cell was monitored during its charge-and-

discharge cycles in order to predict its State-of-Health (SoH) and estimate its State-of-

Charge (SoC) for battery lifetime analysis. Lithium-ion battery will experience serious 

damage if exposed to overcharging and deep discharging for a long time, hence SoC 

estimation is crucial to help the user monitor the SoC of the battery, so the battery lifetime 

will not decrease due to overcharging or deep discharging. Besides, SoH prediction is 

used to indicate the health condition of the battery whether the battery still can operate or 

not since lithium-ion battery undergoes degradation as time passes. Battery lifetime 

analysis is performed to predict the remaining useful life of the battery, so the user can 

know the amount of charge-and-discharge cycles left before failure and then can prepare 

for the replacement in time, thus improving the system reliability. In this FYP, a simple 

battery management system (BMS) was developed. Then, SoC estimation was performed 

via Coulomb counting and OCV methods. SoH prediction was through the measurement 

of battery capacity. Lastly, the data obtained from SoH prediction was employed to 

predict the battery remaining useful life.  
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CHAPTER 1 

INTRODUCTION  

 

 

 

1.1 Research Background 

 

 The rapid developments of portable electronic devices, electric vehicles (EV), 

hybrid electric vehicles (HEV) and renewable energy technologies have been dominating 

the technology sector over the past decade. Hence, the demand for lithium-ion battery has 

been skyrocketed since lithium-ion battery is the core power source for smartphones, 

electric vehicles and so on, as well as the energy storage for the renewable energy such 

as wind and solar power [1]. The condition of lithium-ion battery, however, is unable to 

be examined through the physical appearance. Therefore, in order to monitor the 

performance and the condition of lithium-ion battery in the applications as 

aforementioned, battery management system (BMS) is required to display the significant 

parameters related to the lithium-ion battery during operation. The performance, in terms 

of power consumption and security, of EV and HEV, as well as the service life of lithium-

ion battery can be improved through efficient energy management [2].  

 

 There are two crucial battery parameters to be displayed by BMS, namely State-

of-Charge (SoC) and State-of-Health (SoH). Both SoC and SoH are parameters expressed 

in percentage, while the former is to indicate the relative amount of charge (or energy) 

stored within a battery at certain instant or simply the amount of battery available capacity 

[3], and the latter is to reveal the battery’s ability to store and deliver electrical energy (or 

power) compared with a new battery [4,5]. SoC is considered as the most important 

parameter of BMS [3] as it is indispensable in helping the user to identify whether the 

battery is fully charged and also to predict the remaining discharge time of the battery 

when it is connected to a load before it needs to be recharged again, since lithium-ion 

battery will be seriously damaged and its remaining useful life will be decreased if it is 

overcharged or deep discharged [4]. Typically, a new lithium-ion battery will have SoH 

of 100% approximately. Lithium-ion battery will undergo degradation (or aging) as time 

passes, thus SoH will drop during the lifetime of a battery. Once SoH of a battery 
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decreases until a certain percentage, the battery is considered to be “unhealthy” and is 

unable to perform well, so it should be replaced by a new battery to prevent the overall 

system failure as it has reached the end of its lifetime.  

 

 There are various works that presented the classification of SoC estimation 

methods of lithium-ion battery in a diverse manner [6]. Generally, SoC estimation 

methods can be divided into conventional [6], adaptive [7] and hybrid [6,7] methods. The 

conventional methods consist of Coulomb counting and open circuit voltage (OCV) 

methods [6], while the adaptive methods comprise neural network, fuzzy logic and 

Kalman filter [7]. The hybrid method is the mix of both conventional and adaptive 

methods, it involves two to three algorithms, greatly increasing the efficiency and 

accuracy of the SoC estimation [6]. Most of the works have employed the Kalman filter 

method [2,8] and artificial neural network [9] to estimate the SoC of lithium-ion battery 

for solely HEV and EV application. Despite being real-time and high accuracy [8], the 

degree of complexity of the mathematical modelling for these methods has prohibited 

them to be implemented in low-cost microcontrollers [10].  

 

 The prediction of SoH is closely related to battery capacity and internal resistance 

since the aging of lithium-ion battery is associated with capacity fade [11]. In the literature, 

majority of the SoH prediction methods are based on Kalman filer, neural networks, fuzzy 

identification and so on, which are designed for HEV and EV application [10]. Thus, the 

stated methods are too complicated for being executed in low-cost microcontrollers [10].  

 

 Battery lifetime analysis is about predicting the remaining useful life (RUL) of 

lithium-ion battery which means the available service time left before the capacity fade 

achieves an intolerable level [12] and hence the battery should be replaced. In the 

literature, battery lifetime analysis is linked to battery capacity [12] and internal resistance 

[13] which is similar to the SoH prediction as aforementioned. An integrated method, 

employing the Gauss-Hermite particle filter (GHPF) technique to predict the capacity as 

well as the remaining useful life, has been proposed and it is particularly for lithium-ion 

battery in implantable medical devices [12]. Besides, the battery lifetime can be evaluated 

through the determination of battery internal resistance via the identification algorithm 

[13].  
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 In this Final Year Project (FYP), lithium-ion battery is the main research target. 

A lithium-ion battery is monitored during its charge-and-discharge cycles in order to 

predict its State-of-Health (SoH) and estimate its State-of-Charge (SoC) for battery 

lifetime analysis. The proposed methods for the SoC estimation are Coulomb counting 

and open circuit voltage (OCV) methods. On the other hand, SoH is predicted through 

the measurement of battery capacity. Hence, the SoH data obtained is used for battery 

lifetime analysis to predict the remaining useful life of the battery, so the number of cycles 

left before the battery failure can be known by the user in order to prepare for battery 

replacement.  

 

 

 

1.2 Problem Statements 

 

 Lithium-ion batteries have been widely used in many applications such as hybrid 

electric vehicles (HEV), electric vehicles (EV), laptops, smartphones and so on [4]. 

However, overcharging and deep discharging are the critical issue faced by lithium-ion 

battery. This is because the internal structure of the battery may be permanently damaged 

if the battery is exposed to overcharging and deep discharging frequently [4]. Hence, the 

lifetime of the battery will be cut short drastically.  

 

 Besides, lithium-ion battery also encounters the problem of degradation (or aging). 

Over the lifetime of a lithium-ion battery, the chemical reaction within the battery will 

cause the degradation to occur and hence the battery’s capacity will decrease (capacity 

fade), no matter the battery is used regularly or at rest [1]. Therefore, the performance of 

the battery will be greatly reduced due to the capacity fade and the battery will fail 

eventually. 

 

  In order to solve the problems of overcharging and deep discharging, precise SoC 

estimation is an essential solution. Through SoC estimation, the user will know the 

remaining available charges in a battery which expressed as a percentage of its maximum 

capacity [2]. Hence, the user will recognize the right moment to recharge the battery, as 

well as unplug the battery from the charger. Therefore, the battery lifetime will be 

extended. There are many previous works based on Kalman filter [2,8] and artificial 



4 
 

neural network [9] to estimate solely SoC. Those previous works are successful in 

estimating SoC with high degree of accuracy. However, those works do have a common 

limitation. The drawback is that those works only consider SoC estimation, while SoH 

prediction and battery lifetime prediction are neglected. Hence, the user only knows when 

to recharge the battery, but unable to identify the battery condition due to aging, as well 

as unable to prepare battery replacement timely which may lead to the failure of overall 

system.  

 

 On the other hand, since the degradation of lithium-ion battery is inevitable, so it 

is crucial to predict SoH of a battery in order for the user to know whether battery 

replacement is required. As aforementioned, there are various approaches based on 

Kalman filer, neural networks, fuzzy identification and so forth, for the SoH prediction 

of lithium-ion battery in HEV and EV application [10]. For instance, SoH prediction 

based on neural network [14] is highly accurate with low computation cost and low 

memory requirement. However, the limitation is that SoC estimation is neglected. Hence, 

overcharging and deep discharging may occur since the user is unable to identify the 

charge percentage of the battery without SoC estimation, causing severe damage to the 

battery and decreasing the battery lifetime.  

 

 Furthermore, there is a previous work about remaining useful life (RUL) 

prediction of lithium-ion battery which based on discrete wavelet transform [15]. Since 

both RUL and SoH are crucial to BMS to guarantee the safety and reliability of EV 

application, the proposed method is able achieve high accuracy of RUL prediction [15]. 

However, the limitation is that SoC estimation is neglected. As the aging of lithium-ion 

battery is affected by the depth of discharge, thus SoC estimation is also critical to 

improve the accuracy of RUL prediction.  

 

 Referring to the literature, there are diverse works done to either estimate SoC 

[2,3,7,8,9], predict SoH [5,10,14] or battery lifetime [15], but it is uncommon to find a 

work which is the combination of SoC estimation and SoH prediction and the battery 

lifetime prediction. Hence, this FYP will focus on SoC estimation and SoH prediction, as 

well as the battery lifetime analysis for lithium-ion battery cell in order to overcome the 

limitations.  
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 Since the SoC value of a battery only indicates its current capacity in percentage 

and does not reflect the health status of the battery. Hence, a battery with SoC of 100% 

may perform poorly (supply power to the load for a short time) and cause interruption to 

the overall system connected. Moreover, the SoH data can be used for the battery lifetime 

analysis, so the remaining useful life of the battery can be estimated and the user will 

know the remaining period of the battery before failure, hence the user has sufficient time 

to prepare for the replacement. Therefore, SoC estimation and SoH prediction for battery 

lifetime analysis is able to improve the reliability and efficiency of lithium-ion battery, as 

well as to ensure the safe operation of lithium ion battery [11]. 

 

 

 

1.3 Objectives of the Research  

 

 To estimate the State-of-Charge (SoC) of a lithium-ion battery through the Coulomb 

counting and open circuit voltage (OCV) methods. 

 

 To predict the State-of-Health (SoH) of a lithium-ion battery through the battery 

capacity. 

 

 To perform battery lifetime analysis with the obtained SoH data.  

 

 

 

1.4 Scope of the Research 

 

 This FYP is concerned on the SoC estimation via the Coulomb counting and open 

ciruict voltage (OCV) methods, while the SoH prediction via the measurement of battery 

capacity. Therefore, there are two vital physical quantities that must be measured and 

recorded – voltage and current – in order to estimate SoC and predict SoH of the battery. 

Data logger system which was built with Arduino Uno and current sensor was employed 

to measure the voltage and current during the discharging of the battery and then 

transferring the data to the computer for SoC estimation and SoH predition. Moreover, 

the SoH data obtained was employed for the battery lifetime analysis via MATLAB and 
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the prediction of remaining useful life was displayed on the computer. The type of 

lithium-ion battery used was Panasonic 18650B with capacity of 3350mAh. The load 

connected to the battery is power resistor of 2Ω with discharging rate of 0.5C at around 

room temperature.  

 

 

 

1.5 Thesis Outline 

 

 This thesis comprises five main chapters – introduction, literature review, 

methodology, results and discussion, as well as conclusion. In the chapter of introduction, 

the background, problem statements, objectives and scope of the research for this FYP 

are clearly explained.  

 

 Chapter 2 is the literature review of previous works related to this FYP. In this 

chapter, theoretical concepts of lithium-ion battery are reviewed. Moreover, the methods 

for SoC estimation and SoH prediction, as well as the battery lifetime analysis proposed 

in the latest previous works are discussed.  

 

 Next, chapter 3 is the methodology of the research. The system overview is first 

explained, followed by the Coulomb counting and open circuit voltage (OCV) methods 

to estimate SoC and subsequently the SoH prediction method, then the battery lifetime 

analysis. In addition, all the hardware, coding and mathematical equations involved in 

this FYP are presented. 

 

 Chapter 4 is the section for the results of this FYP. The results for SoC estimation 

via the Coulomb counting and open circuit voltage (OCV) methods are depicted, along 

with the results for SoH prediction and battery lifetime prediction. The results are 

presented in the form of graphs and tables. Furthermore, the results obtained are compared 

with the datasheet, followed by discussion.  

 

 The final chapter is about the conclusion of the research. It covers the summary 

and the contribution of this FYP, in addition to the recommendation for the future work 

to improve the weaknesses.   
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CHAPTER 2 

LITERATURE REVIEW 

 

 

 

2.1 Introduction 

 

 This chapter begins with the general classification of batteries to provide insight 

to the types of batteries in the market. In section 2.3, development of lithium-ion batteries 

is briefly discussed to study the marketing potential of lithium-ion battery. Next, the 

applications of lithium-ion batteries in different sectors are explained. Section 2.5 

introduces battery management system. Then, the methods for SoC estimation and SoH 

prediction from previous works are reviewed briefly. The review of battery lifetime 

analysis is presented in section 2.8. Lastly, all the contents are summarized in section 2.9.  

 

 

 

2.2 General Classification of Batteries  

 

 Batteries can be categorized into two, namely primary (non-rechargeable) and 

secondary (rechargeable) batteries. Primary batteries are handy for applications that draw 

intermittent power since they are cheap and readily available in the market. Regulated 

under IEC 60086 Standard, primary batteries are employed in heart pacemakers, tire 

pressure gauges, smart meters, clocks, wristwatches, remote controls, toys and so on [16]. 

However, the cost of continuous usage of primary batteries will be high and the 

worldwide disposal of primary batteries has caused severe environmental pollution issues.  

 

 Therefore, secondary (rechargeable) batteries have been invented to overcome the 

drawback of primary batteries. The most common rechargeable batteries available in the 

market are lead acid, nickel-cadmium, nickel-metal-hydride and lithium-ion batteries [16]. 

The growth in the industry of portable electronic device since the past two decades has 

stimulated the demand for high reliable and performance power sources. Thus, 
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rechargeable batteries that can provide longer lifetime and higher power has become the 

better choice for consumers [1]. The main concern in this FYP is lithium-ion battery.  

 

 

 

2.3 Development of Lithium-Ion Batteries 

 

 In 1980s, lithium-ion battery was developed under the cooperation between Asahi 

Chemicals and Sony, then first released to the market in 1991 [17]. During that time, 

lithium-ion battery was competing with the other two types of rechargeable battery, 

nickel-cadmium and nickel-metal-hydride, as aforementioned in section 2.2. Both, 

however, were limited in the aspects of gravimetric and volumetric energy density as 

compared to lithium-ion battery [17]. 

 

 Since 1991, the technology of lithium-ion battery has been developed from time 

to time, thus its market share also has been skyrocketed [17]. Nowadays, lithium-ion 

battery is taking the lead in the consumer market compared to the other battery 

technologies [18]. In 2013, five billion lithium-ion cells were sold globally just for 

powering of portable electronic devices [18]. The worldwide market for lithium-ion 

batteries has been escalating swiftly and is predicted to cross 30 billion USD by 2020 

[19]. The market size of lithium-ion batteries for the phase between 2008 and 2013, in 

addition to the predicted market size for the phase between 2014 and 2020 are shown in 

Fig. 2.1 [19]. Presently, numerous companies in Japan (Panasonic, Sony, Hitachi, Toshiba 

and Mitsubishi Electric), South Korea (Samsung and LG), China (BYD) and the United 

States (A123) compete with each other intensely in the lithium-ion battery market [19].  
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Fig. 2.1.  Revenues of the universal lithium-ion battery market in USD Billion, from 

2008 to 2020 [19] 

 

 

 

2.4 Applications of Lithium-Ion Batteries 

 

 At the moment, lithium-ion batteries are widely employed in the fields of portable 

electronic devices, hybrid electric vehicles (HEV) and electric vehicles (EV), unmanned 

aerial vehicles, standby units in uninterrupted power supplies and storage of excess 

energy from renewable energy sources (wind and solar) [1]. Among the stated 

applications, lithium-ion batteries are extensively used in portable electronic devices, 

such as smartphones, cameras and laptops [19]. This is because lithium-ion batteries have 

higher energy density with lighter weight than the other battery technologies to support 

the features like high definition displays, powerful processors and wireless 

communication which consume enormous portion of energy [18].  

 

 The issues of high carbon dioxide emission and global warming are triggered by 

the excessive amount of fossil-fuelled vehicles [20]. Moreover, the automobile industry 

is intimidated by the limited crude oil resource [6]. Thus, the issues have prompted the 

development of EV and HEV with the aim to replace the internal combustion engine (ICE) 
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vehicles with an environmentally friendly alternative. Since the early 2010s, HEV and 

EV have become more feasible and commonly available in the market [17]. For instance, 

Nissan Leaf, Tesla Model S and X, BMW i3 and Chevrolet Spark [17]. In HEV and EV, 

batteries are a vital element to allow sustainable, clean and electrified movement [21]. 

Despite the variety of battery technologies available, lithium-ion battery is considered as 

the most potential option which can effectively guarantee the progressive propulsion of 

HEV and EV [15]. Hence, the research and development (R&D) projects for lithium-ion 

battery have been sprouted worldwide. 

 

 The limited supply of fossil fuels has also initiated the persistent shift to renewable 

intermittent energy sources, such as wind and solar power [17]. Thus, electrical energy 

storage system will become crucial gradually to manage the variable energy demand 

efficiently, since the supply of renewable energy is unstable and subjected to the changes 

of weather and occasion [17]. Besides, the electricity supply problems arise from the 

eastern Japan earthquake and the international determinations to adopt smart grids have 

caused energy storage system to gain the attention [19]. In the context of battery energy 

storage system, lithium-ion battery has come into the spotlight due to high density, long 

lifespan and high efficiency [6].  

 

 

 

2.5 Battery Management System (BMS) 

 

 The operating condition of lithium-ion battery is relatively critical in large-scale 

applications like HEV, EV and energy storage system. The failure of lithium-ion battery 

will lead to the failure of overall system [23]. Thus, BMS is necessary to monitor the 

battery condition to increase the overall system reliability [17]. In order to improve the 

favourable performance and reliability of lithium-ion battery, battery management system 

(BMS) is used to monitor the battery and provide accurate battery information for the 

user [2]. Moreover, battery monitoring also helps to facilitate maintenance and 

operational-based decisions [1]. There are two important parameters which are the main 

concerns in battery monitoring, namely State-of-Charge (SoC) and State-of-Health (SoH). 

SoC indicates the remaining capacity in a battery which expressed as a percentage of the 
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battery’s maximum capacity. SoH is defined as the battery’s ability to store and deliver 

electrical energy (or power) compared with a new battery.  

 

 Both SoC and SoH are indirectly measured parameters due to the lack of sensors 

for electrochemical phenomena within the battery [11], which means they are unable to 

be measured directly like physical quantities such as voltage, current and power. Hence, 

they can only be estimated through relative quantities, such as battery’s voltage, current, 

temperature and so on [2].  

 

 

 

2.6 State-of-Charge (SoC) Estimation Methods 

 

 State-of-Charge (SoC) is a parameter which expresses how much charge can be 

discharged from a battery in its present state as a percentage of the battery capacity [17], 

which is shown as follows:  

 
𝑆𝑜𝐶 =

𝑄𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔

𝑄𝑚𝑎𝑥𝑖𝑚𝑢𝑚
× 100% 

(2.1) 

 

 𝑄𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 = 𝑄𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝑄𝑐ℎ𝑎𝑟𝑔𝑒𝑑 (2.2) 

 𝑄𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 = 𝑄𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑑 (2.3) 

 𝑄𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 = 𝑄𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (2.4) 

where Qremaining represents the amount of remaining charges in the battery, Qmaximum 

represents the battery capacity which is the maximum amount of charges that can be 

stored in the battery, Qinitial represents the initial charges in the battery before charging or 

discharging, Qcharged represents the amount of charges charged to the battery and Qdischarged 

represents the amount of charges discharged from the battery. SoC can be defined 

mathematically as shown in equation (2.1). Since a battery can be charged and discharged, 

thus when it is charging, Qremaining is expressed as depicted in equation (2.2), and when it 

is discharging, Qremaining is expressed as equation (2.3). If the battery is at rest, Qremaining is 

expressed as equation (2.4) since no charge is discharged or charged when the battery is 

at rest. Hence, this implies that SoC is increased when a battery is charging or vice versa 

when the battery is discharging and SoC is fixed when the battery is at rest.  
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 Since it is impossible to calculate the amount of charges directly, thus SoC can 

only be estimated to prevent overcharging and deep discharging which is fatal to lithium-

ion battery. There are many methods have been proposed to estimate SoC such that each 

method has its own advantages and disadvantages [11]. In the literature, most of the SoC 

estimation methods proposed are for the application in HEV and EV. As aforementioned, 

SoC estimation methods can be categorised into conventional, adaptive and hybrid 

methods.  

 

 

 

2.6.1 Coulomb Counting and Open Circuit Voltage (OCV) Methods 

 

 Both Coulomb counting [24] and open circuit voltage (OCV) methods [3,25] are 

the conventional ways for SoC estimation as aforementioned. The principle of Coulomb 

counting method is related to equations (2.1) to (2.3), such that SoC is estimated by 

accumulating the charge that transferred in or out of the battery [4]. For instance, when a 

lithium-ion battery is discharging, the amount of charges that discharged out from the 

battery can be determined by integrating the discharge current over the duration of 

discharge as shown in equation (2.5): 

 
𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑑 = ∫ 𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑡

0

𝑑𝑡 
(2.5) 

 

where Idischarge is the discharge current and t is the duration of discharge. For the case of 

charging, the amount of charges that charged into the battery is shown in equation (2.6): 

 
𝑄𝑐ℎ𝑎𝑟𝑔𝑒𝑑 = ∫ 𝐼𝑐ℎ𝑎𝑟𝑔𝑒

𝑡

0

𝑑𝑡 
(2.6) 

 

where Icharge is the charging current and t is the duration of charging. Then, SoC of the 

battery can be estimated online by employing equations (2.1) to (2.3). It should be noted 

that the battery capacity (Qmaximum) and the initial charges (Qinitial) before discharging must 

be known when using the Coulomb counting method. The easiest way of finding Qmaximum 

is by measuring the total transferred charges during a full discharge of a fully charged 

battery [17], while Qinitial can be determined via OCV method.  

 

 The principle of OCV method is related to the battery discharge curve. It has been 

proven that there is relationship between OCV and SoC of lithium-ion battery. Thus, the 
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discharge curve is a graph of OCV against SoC. Hence, by measuring the open circuit 

voltage (OCV) of a battery, SoC can be estimated by referring to the discharge curve. 

Although this method is easy to be implemented, it is an offline method which means the 

battery must be at rest when using this method to estimate SoC. Moreover, this method is 

employed to determine the initial SoC or Qinitial for the Coulomb counting method.  

 

 Both methods are easy and less complex to be implemented as well as fast in 

computation, but the Coulomb counting method extremely relies on the accuracy of 

current sensor and it is sensitive to the initial SoC value and accumulation errors, while 

the open circuit voltage method is not effective for battery with flat open circuit voltage 

characteristic curve [2,11]. Moreover, an enhanced Coulomb counting method [26] has 

been proposed to overcome the weakness of typical Coulomb counting method through 

the correction of the operating efficiency and the evaluation of SoH.   

 

 

 

2.6.2 Kalman Filter (KF) Method 

 

 Besides, there are also artificial intelligent (AI) based methods have been 

proposed to establish black-box SoC estimation models, such as neural network[9], fuzzy 

logic and support vector regression (SVR) models [11]. Moreover, the Kalman filter (KF), 

extended Kalman filter (EKF) [2,8,17] and sliding mode observer have also been 

employed for SoC estimation, which are model-based, closed-loop, and thus can use 

output feedback to keep better robustness than non-feedback methods [11]. Those 

mentioned methods are adaptive methods which are algorithm-based and suitable for 

online application [17].  

 

 Among the stated adaptive methods, both Kalman filter (KF) and extended 

Kalman filter (EKF) methods are the most common [17]. Generally, KF is a recursive 

state estimator which is used to estimate a time-dependent and indirect-measured 

parameter in the presence of noises from measureable parameters. In other words, KF is 

an algorithm or a set of mathematical equations which predicts and corrects a new state 

repeatedly while the system is operating.  
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 The general principle of KF is illustrated in Fig. 2.2 [4]. The most crucial element 

in KF is the model that represents the actual system. The model refers to mathematical 

equations which used to describe the system and deriving the model is the first step in KF. 

The general equations involved are as follows [4,6]: 

 𝑥̂𝑘+1 = 𝐴𝑘𝑥̂𝑘 + 𝐵𝑘𝑢𝑘 + 𝑤𝑘 (2.7) 

 𝑦̂𝑘 = 𝐶𝑘𝑥̂𝑘 + 𝐷𝑘𝑢𝑘 + 𝑣𝑘 (2.8) 

 𝑥̂𝑘+1 = 𝑥̂𝑘+1 + 𝐾𝑘+1(𝑦𝑘+1 − 𝑦̂𝑘+1) (2.9) 

where x is the system state (parameter to be estimated), u is the control input, w is the 

process noise, y is the measurement output, v is the measurement noise, K is the Kalman 

gain, k is the time step, while A, B, C and D are the covariance matrices which are time 

dependent and depict the dynamics of the system. Equation (2.7) is the state equation 

which is to estimate the current system state from the earlier state and control input, while 

equation (2.8) is the measurement equation which is to estimate the measureable 

parameter from the system state and control input. Then, equation (2.9) is the 

update/correction equation which is to minimize, in real time, the error between the 

estimated and the measured outputs in order to update/correct the estimated state. The 

correction is governed by K, the Kalman gain, which is calculated at each iteration from 

noises and prediction errors. KF can be applied to any system that can be modelled by the 

general equations.  

 

Fig. 2.2.  The general principle of Kalman filter [4] 

 

 After the equations are derived, the KF algorithm can be constructed. The 

algorithm works by estimating the values of present state, output and error covariance 

first after the initialization process. Then, the algorithm corrects the estimated state and 

error covariance by using the measurement of the physical system output [4]. Although 
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the estimation via KF method is highly accurate, KF is not applicable to a non-linear 

system such as battery system [6]. Hence, extended Kalman filter (EKF) method is 

employed to overcome the non-linear characteristic of battery system [8]. The general 

principle of EKF is similar to that of KF, but partial derivatives and first order Taylor 

series expansion are used in EKF to linearize the battery model [6].  

 

 

 

2.6.3 Equivalent Circuit Model (ECM) of Lithium-Ion Battery 

 

 In order to employ EKF for SoC estimation, battery modelling is the critical first 

step before proceeding further. Battery modelling is to develop a virtual battery model 

which is able to satisfy the actual behaviour of the real battery to an adequate degree, 

along with achieving adequate computational performance [17]. In EKF, a system must 

be mathematical modelled based on equations (2.7) to (2.9) as aforementioned, thus 

battery modelling must be performed first to assist in the mathematical modelling.  

 

 Typically, the types of battery models can be classified into three, namely pure 

empirical model, electrochemical model and equivalent circuit model. However, 

equivalent circuit model (ECM) is the most common and popular model to be applied due 

to fair accuracy and computational performance [17]. The fundamental concept of ECM 

is to model the dynamic behaviour of battery with simple hypothetical electric circuit, 

comprising elements such as resistors, voltage sources and capacitors connected in series 

and parallel configurations [17]. Hence, the actual physical occurrences in the battery are 

represented by the elements in ECM. The simplest form of ECM is depicted in Fig. 2.3 

[17]. 

 

Fig. 2.3.  Simplest ECM of a lithium-ion battery [17] 
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 The ECM in Fig. 2.3 represents a battery as a voltage source with internal 

resistance, such that Vt is the terminal voltage, OCV is the open circuit voltage and R is 

the internal resistance. Despite its simplicity, it still contains some essential battery 

behaviour. For instance, the value of OCV is dependent on SoC since it is proven that 

there is relationship between OCV and SoC as shown in battery discharge curve as 

aforementioned. Moreover, the terminal voltage will decrease when the battery is loaded 

due to the presence of internal resistance in the battery according to Ohm’s Law and it is 

shown in equation (2.10).  

 𝑉𝑡 = 𝑂𝐶𝑉(𝑆𝑜𝐶) − 𝐼 ∙ 𝑅 (2.10) 

 

 There is another battery behaviour not included in the ECM above – the voltage 

drop after being loaded is not instantaneous but a decaying behaviour. This implies that 

an actual battery will not respond immediately to an applied current and the terminal 

voltage will not increase to OCV instantly after being unloaded. This is because of the 

diffusion effects within the battery cell. Hence, in order to describe this behaviour, the 

previous ECM is modified by adding a series of parallel resistor-capacitor (RC) couples 

and the modified ECM is shown in Fig. 2.4 [17], where Cn and Rn are the capacitance and 

resistance of the nth parallel pair respectively, and Vn the transient voltage across the nth 

pair. 

 

Fig. 2.4.  Modified ECM of lithium-ion battery [17] 

 

 The purpose of adding the RC pair is to model the non-instantaneous behaviour 

of voltage drop and the voltage across the RC pair is shown in equation (2.11). Hence, 
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the terminal voltage equation is modified to equation (2.12). Since the voltage across RC 

pair in equation (2.11) shows non-linear characteristics, thus a linear differential equation 

can be obtained by applying Kirchhoff’s current law as shown in equation (2.13) and then 

equation (2.14) obtained by rearranging the terms in equation (2.13). Therefore, it can be 

seen that the significance of ECM is to allow the battery parameters to be mathematical 

modelled during the process of KF and EKF.  

 
𝑉𝑛 = 𝑉0 ∙ 𝑒

−
𝑡

𝑅𝑛∙𝐶𝑛 
(2.11) 

 
𝑉𝑡 = 𝑂𝐶𝑉(𝑆𝑜𝐶) − 𝐼 ∙ 𝑅0 − ∑ 𝑉𝑛

𝑛

𝑛=1

 

 

 

(2.12) 

 
𝐶𝑛

𝑑𝑉𝑛

𝑑𝑡
+

𝑉𝑛

𝑅𝑛
= 𝐼 

(2.13) 

 𝑑𝑉𝑛

𝑑𝑡
= −

1

𝑅𝑛𝐶𝑛
∙ 𝑉𝑛 +

1

𝐶𝑛
∙ 𝐼 

(2.14) 

 

 

 

2.6.4 Comparison of SoC Estimation Methods 

 

 All the SoC estimation methods mentioned above are summarized in Table 2.1 

for clarification. From the literature, it can be seen that majority of the previous works 

focus in developing SoC estimation methods with higher accuracy, so most works only 

cover SoC estimation without SoH prediction and lifetime prediction. Hence, this 

limitation will cause the user unable to identify the battery condition and prepare the 

battery replacement in time. In this FYP, Coulomb counting and OCV methods are 

employed to estimate the SoC of lithium-ion battery since there is limited literature for 

that particular methods.  
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Table 2.1.  Comparison between proposed methods for SoC estimation [11] 

Methods Advantages Disadvantages 

 

Coulomb counting 

method 

Simple. Open-loop, sensitive to the 

current sensor precision and 

uncertain to initial SoC. 

 

Terminal voltage 

method 

Simple. Open-loop, sensitive to the 

voltage sensor precision and 

unsuitable for battery with flat 

OCV-SoC curve. 

 

Neural network Generic, good nonlinearity 

mapping approximation. 

Sensitive to the amount and 

quantity of training data. 

 

Fuzzy logic Generic, good nonlinearity 

mapping approximation. 

Sensitive to the amount and 

quantity of training data. 

 

Support vector 

machine  

Generic, good nonlinearity 

mapping.  

Sensitive to the amount and 

quantity of training data. 

 

Kalman filter  Closed-loop, online, and 

accruate 

More computationally expensive 

than non-feedback methods and 

highly dependent on the model 

accuracy. 

 

Sliding mode 

observer 

Closed-loop, online and 

accurate 

More computationally expensive 

than non-feedback methods and 

highly dependent on the model 

accuracy. 

 

 

 

 

2.7 State-of-Health (SoH) Prediction Methods 

 

 Since all lithium-ion batteries will undergo degradation throughout their lifetime, 

so the SoH prediction is important to determine the status of a lithium-ion battery whether 

it still can function normally or it needs a replacement. In other words, SoH is an indicator 

of the level of battery performance due to degradation process [17]. The degradation is 

caused by the chemical mechanisms inside the battery cell and then the growth of a solid 

electrolyte interface (SEI) layer will increase the internal resistance of the battery and 

reduce the maximum power output of the battery. Furthermore, the loss of bonding sites 

in the active material and the loss of active lithium ions will decrease the capacity of the 
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battery [1,5]. SoH is a significant parameter because it can avoid severe battery failure, 

regulate battery operation and maintenance to boost efficiency and return on investment 

and it is vital for accurate SoC prediction [17].  

 

 Regrettably, SoH does not have a fixed set of definition and numerous different 

metrics are employed in the industry [17]. Similar to SoC, it is impossible to measure 

SoH directly [17]. Since both internal resistance and capacity are affected by the 

degradation, therefore the prediction of SoH can be done by monitoring the internal 

resistance and capacity of the battery during operation [27]. SoH which is defined in term 

of internal resistance is shown in equation (2.15), while SoH defined in term of capacity 

is depicted in equation (2.16), where Ri is the ith measurement of internal resistance, R0 

is the initial value, Ci is the ith measurement of capacity and C0 is the initial value [5]. 

 
𝑆𝑜𝐻 =

𝑅𝑖

𝑅0
× 100% 

(2.15) 

 
𝑆𝑜𝐻 =

𝐶𝑖

𝐶0
× 100% 

(2.16) 

 

 

 

2.7.1 Neural Network (NN) Method 

 

 In the literature, many approaches are proposed to predict SoH via battery 

capacity [5,10,20,28] which are based on battery modelling merged with filtering or 

observer [23] algorithms. Among the methods, neural network (NN) method is suitable 

for SoH prediction of lithium-ion battery in EV application. This is because NN is adapted 

to work in non-linear system such as battery system, in addition to online feature which 

means NN is able to predict SoH while the battery is operating [6].  

 

 Neural network (NN) is an intelligent mathematical tool which possesses the 

flexibility and self-learning feature to describe a complex non-linear system [6]. The 

general principle is that NN is a type of self-learning algorithm which requires large 

amount of experimental input data for training in order to obtain ideal results [14]. The 

structure of a neural network comprises 3 types of layers, namely input layer, output layer 

and hidden layer [6]. The input layer refers to the training data which is the measurements 
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from the actual system. The hidden layer is the set of mathematical functions which 

known as neurons. The output layer is the estimation results produced by the hidden layer. 

Thus, the hidden layer is the vital element of a neural network because the mathematical 

functions work together to produce the estimation output from the training data. In other 

words, a neural network can be seen as a black-box model such that input data is fed to 

the black-box and the estimated data is produced at the output. The black-box model is 

dependent on the respective system.  

 

 Based on the previous work [14], NN method is employed to predict SoH from 

battery capacity. In that case, the input data is the parameters from first order ECM and 

the output obtained is predicted SoH data in term of battery capacity. The hidden layer is 

a set of mathematical equations that represents the battery system. This method is 

successful to predict SoH with low computation cost and low memory requirement [14].   

 

 

 

2.7.2 DC Resistance Method 

 

 On the other hand, the battery internal resistance can be determined through DC 

method [29], AC method, extended Kalman filter and electrochemical impedance 

spectroscopy (EIS). Since the battery internal resistance is increased as a battery 

undergoes aging, thus by tracking the battery internal resistance, SoH can be predicted 

using equation (2.15).  

 

 Referring to the previous work [29], EIS method is off-line, time consuming and 

dependent on expensive apparatus. Thus, DC method is proposed in the work to predict 

real time SoH in term of internal resistance for a lithium-ion battery used as backup 

energy supply. Equation (2.17) as shown below is employed to estimate the internal 

resistance:  

 
𝑅𝑖𝑛𝑡 =

𝑈𝑜𝑐𝑣 − 𝑈𝑏𝑎𝑡

𝐼𝑑𝑒𝑠𝑐
 Ω 

(2.17) 

where Rint is the internal resistance, Uocv is the open circuit voltage, Ubat is the terminal 

voltage after discharge current was applied and Idesc is the discharge current. In order to 

obtain the required parameters accurately, certain equipment is required. For instance, 
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electronic load and thermal chamber. Although this method involves simple calculation, 

the accuracy of results is highly dependent on the measured parameters.  

 

 

 

2.7.3 Comparison of SoH Prediction Methods 

 

 Table 2.2 depicts the summary of proposed methods for SoH prediction. From the 

literature, it can be observed that most of the previous works on SoH prediction focus in 

the improvement of estimation accuracy. However, the significance of SoC estimation 

has been neglected as a battery will fail prematurely due to overcharging and deep 

discharging without SoC estimation. In this FYP, SoH prediction is performed with the 

durability external characteristic method which is by tracking the battery capacity via 

Coulomb counting.  

Table 2.2.  Comparison between proposed methods for SoH prediction [11] 

Methods Advantages Disadvantages 

 

Durability mechanism Comprehensive 

understanding 

Complex, need accurate 

input parameters 

 

Durability external 

characteristic 

Simple and easy to predict 

capacity fade and internal 

resistance increment 

 

Based on a large number of 

experiments 

DC resistance  Simple Less accurate and sensitive to 

disturbances 

 

AC impedance Accurate Complex 

 

Extend Kalman filter Quite easy to implement, 

accurate 

Sensitive to modelling 

accuracy 

 

Fuzzy logic Quite easy to implement, 

accurate 

 

Slow convergence 

Sample entropy Simple 

 

Need large amount of data 

Discharge voltage Easy 

 

Not accurate 

Adaptive control 

system 

Online 

 

 

Sensitive to modelling 

accuracy 
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2.8 Battery Lifetime Analysis 

 

 Battery lifetime analysis is a fundamental aspect for successful market 

introduction [30]. As aforementioned, battery lifetime analysis is to predict the remaining 

useful life of lithium-ion battery which means the available service time left before the 

capacity fade achieves an intolerable level [12] and hence the battery should be replaced. 

The lifetime of a battery can be expressed in the unit of time or the amount of charge-

and-discharge cycles.  

 

 A lithium-ion battery is said to reach its end of life when its remaining useful life 

is zero and this situation occurs when SoH of the battery has attained certain level [17]. 

Thus, SoH is strongly related to the concept of battery lifetime analysis [17]. For the 

application of HEV and EV, a lithium-ion battery reaches its end of life if its SoH in term 

of capacity reaches 80%. While for the application of energy storage system, the limit is 

65% [17]. In simpler words, battery lifetime analysis can be performed via simple curve 

fitting and extrapolation techniques on SoH data over time as depicted in Fig.2.5 [17].  

 

Fig. 2.5.  Illustration for battery lifetime analysis [17] 

 

 Based on the literature, battery lifetime analysis is linked to battery capacity [12] 

and internal resistance [13,31] which is correlated to the SoH prediction as 

aforementioned. An integrated method which employs the Gauss-Hermite particle filter 

(GHPF) technique to track the capacity fade has been proposed and then the remaining 
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useful life prediction is performed by extrapolating the future capacity values [12]. This 

method is especially for lithium-ion battery in implantable medical devices [12]. Besides, 

the battery lifetime can be evaluated through the determination of battery internal 

resistance via the identification algorithm [13] and the accelerated degradation testing 

[31]. The general principle of identification algorithm [13] is rather similar to that of KF 

method. Firstly, ECM of lithium-ion battery is established. Then, all related parameters 

are expressed in the least square algorithm via mathematical modelling. Hence, the 

parameters can be identified by using the experimental data. On the other side, the concept 

of accelerated degradation testing method [31] is about the use of degradation and error 

models, which are empirical type of battery model, to predict the life of lithium-ion cells 

via simulation approach.  

 

 As mentioned earlier, both SoH prediction and battery lifetime prediction are 

linked to each other. This is because both of them are related to the aging process of 

battery. The difference between them is that the aim of SoH prediction is to identify the 

current battery condition by tracking the capacity fade or the increase of internal 

resistance, while the purpose of battery lifetime analysis is to predict the remaining useful 

life of the battery by tracking the capacity fade or the increase of internal resistance so 

the user can know how long the battery will last before failure. However, the previous 

work [14] only focus in SoH prediction and the battery lifetime prediction is neglected. 

Therefore, the previous work only allows the user to identify the present battery condition 

via SoH prediction, but the user is unable to identify the battery condition in the future 

without lifetime prediction. Thus, the user may not prepare the battery replacement on 

time and causing the failure of overall system powered by the battery.  

 

 Besides, the previous works [12,13,31] that focus in battery lifetime analysis have 

ignored the significance of SoC estimation in the remaining useful life prediction. Since 

a good lifetime prediction is critical to BMS in order to ensure the safety and reliability 

of the overall system [15], therefore the factors that affect the accuracy of remaining 

useful life prediction must be considered. It is mentioned that battery lifetime analysis is 

related to the aging process of lithium-ion battery. Thus, the factors that influence the 

aging process must be controlled to ensure the accuracy of remaining useful life 

prediction. For instance, if the aging process was occurring at a faster rate due to the 
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influences of the factors, then the battery might fail prematurely and hence the remaining 

useful life prediction is not accurate.  

 

 Based on the literature, the battery aging is affected by 3 main factors, namely 

discharge current rate, working temperature and depth of discharge (DoD) [32,33]. It is 

proven that high discharge current rate is harmful to the battery performance as the battery 

degrades faster. Moreover, it is shown that the operating temperature has a huge impact 

on the battery performance and remaining useful life of the battery. For instance, at higher 

temperature of 40°C, the battery performance is less compared to at 25°C [32].  

 

 Furthermore, higher depth of discharge (DoD) will also lead to a faster aging 

process. Generally, when a battery is discharging, DoD is defined as the percentage of 

the amount of released charges relative to the battery capacity as shown in equation (2.18) 

below [4]:  

 
𝐷𝑜𝐷 =

𝑄𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑

𝑄𝑚𝑎𝑥𝑖𝑚𝑢𝑚
× 100%  

(2.18) 

where Qreleased is the amount of charges released from the battery during discharging and 

Qmaximum is the battery capacity. Based on the previous work [34], operating at reduced 

DoD improves the cycle life of the battery, decreases its capacity fade and slows down 

the aging process. Besides discharging, DoD can also be applied when a battery is 

charging.  

 

 Due to the influence of DoD to the aging process, thus SoC estimation is critical 

in battery lifetime analysis because SoC parameter reflects the charge and discharge depth 

[35] so the DoD can be controlled. For instance, in order to slow down the aging process, 

the range of SoC is suggested to be 20% to 80% for each charge-discharge cycle. This is 

because high SoC (overcharging) and low SoC (deep discharging) will lead to battery 

capacity deterioration [36]. Therefore, SoC estimation is important to control the DoD at 

certain level so that the remaining useful life prediction is more accurate. This is because 

if the three factors are not controlled, the aging process may occur at slower or faster rate, 

hence the remaining useful life prediction will be inaccurate.  
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