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PENGOPTIMUMAM PENGENDALIAN PID MENGGUNAKAN 

PENGOPTIMUM SERIGALA PUTIH DAN ALGORITMA PEPATUNG  

ABSTRAK 

 

Optimisasi adalah satu cara untuk mencari keseimbangan dalam reka bentuk yang 

perlu ditoleransi antara faktor yang tertentu seperti kecerdasan dan kos. Dalam bidang 

kejuruteraan, salah satu optimisasi yang biasa dijumpai adalah optimisasi pengawal 

kadaran-kamiran-bezaan (PID). Optimisasi pengawal berkadar-integral-berbeza (PID) 

adalah susah kerana terdapat tiga parameter yang hendak dikawal, parameter kadaran, 

Kp, parameter kamiran, Ki, dan parameter bezaan, Kd. Dalam kajian ini, kepintaran 

berkumpulan digunakan untuk menyelesaikan masalah optimisasi. Algoritma serigala 

kelabu dan algoritma pepatung dipilih. Tiga sistem pangkal dipilih. Sistem pertama 

adalah berdasarkan sistem bola dan gelung, dan sistem kedua pula berdasarkan sistem 

servo motor arus terus. Sistem yang terakhir berdasarkan sistem motor berberus arus 

terus. Fungsi objektif untuk kajian ini adalah fungsi kos. Kriteria untuk fungsi kos adalah 

Mp, puncak lanjakan, ess,ralat keadaan mantap,Ts, masa penetapan and masa kenaikan, 

Tr. Walau bagaimanapun, untuk mengunakan algoritma sepenuhnya, parameter algoritma 

perlu ditetapkan sebaiknya. Dalam kajian ini, nombor agen pencarian untuk kedua-dua 

algoritma. Kriteria berhenti juga perlu ditetapkan. Dalam kajian ini, nombor maksima 

kitaran untuk kedua-dua algoritma. Keputusan yang dijangkan adalah kedua-dua 

algoritma dapat mengoptimumkan pengawal berkadar-integral-berbeza (PID). Namun 

begitu, prestasi untuk setiap sistem dijangkan berbeza daripada algoritma yang berbeza.  
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OPTIMISATION OF PID CONTROLLER USING GREY WOLF OPTIMIZER 

AND DRAGONFLY ALGORITHM 

ABSTRACT 

 

 Optimisation is a method to find a balance performance when the design has to 

compromise between a certain factors, which affects fitness and cost. In engineering field, 

one of the common optimisation problem is optimisation of PID controller. Optimisation 

is difficult to optimise as there are three parameters that need to be tuned, Kp, Integral 

parameter, Ki, and derivative parameter, Kd. In this research, swarming intelligence is 

used to solve optimisation problem. Grey Wolf Optimizer and Dragonfly Algorithm were 

chosen. Three plant system were used in this study. First system is based on the ball and 

hoop system and second system is based on the DC servo motor. Last system is based on 

the brushed DC motor. Objective function in this research, cost function was chosen. The 

criteria of the cost function are low peak overshoot, Mp, low steady-state error, ess, low 

settling time, Ts, and low rise time, Tr. However, to fully utilize the algorithm, the 

parameter of the algorithm need to be set properly. In this case, the right number of the 

search agents for both algorithm. The stopping criteria also need to be identified. In this 

study, maximum number of iterations is the stopping criteria. The expected result is the 

algorithms are able to optimise the PID controller. However, the performance of system 

is expected to be different from different algorithm.  
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CHAPTER 1 

 

INTRODUCTION 

1.1 Research Background 

 Search algorithm is an algorithm that used to achieve a certain objective in 

problem domain [1]. The appropriate search algorithm is chosen depending on the 

problem domain.  The problem can be optimisation, classification or satisfaction 

problem. Optimisation problem is the problem of searching the finest solution from all 

possible solutions. The problems can be split into two categories depending on the 

variables either it is continuous or discrete. The discrete optimization is searching for an 

object such as an integer, permutation or graph from a finite while the continuous 

optimization is usually involving constrained problems and multimodal problems. 

Essentially, the aim of objective optimisation is to minimise or to maximise the value of 

a function [2].  

 For this comparative study, meta-heuristic algorithm which is part of stochastic 

optimisation algorithms was studied. The algorithm used in this research was Grey Wolf 

Optimizer (GWO) and Dragonfly Algorithm (DA). It is one of the subclass of meta-

heuristics, Swarm Intelligence (SI) methods [3]. For the example, one of the swarm 

intelligence is Cat Swarm Optimization.  Cat Swarm Optimization (CSO) is actually an 

algorithm influenced based on the natural behaviour of the cat. Cats is one of the animal 

that seen to spend their time in resting but actually they have high alertness and curiosity 

about their surroundings and moving objects in their environment. This behaviour helps 

cats in tracking and hunting them down. While resting, they actually conserve their 

energy. According to Chu and Tsai, there are 2 main mode of the cats, which are seeking 

mode and tracing mode. During seeking mode, the cat is resting while keeping an eye on 

its environment. They decide to move when they sense a prey or danger. If the cat decides 

to move, it does that slowly and cautiously. The second mode is tracing mode. The tracing 

mode simulates the cat chasing a prey. After finding a prey while seeking mode, the cat 

decides its movement speed and direction based on the prey‘s position and speed. This 

algorithm is terminated if the cat hunt down a prey [4].  
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 The performance of the algorithm is measured in terms of optimising Proportional 

–Integral- Derivative (PID) controller. Especially in the industry, Proportional-Integral-

Derivative (PID) controller is one of the common controller that have been used. 

Proportional-Integral-Derivative (PID) controller consists of a few tuning parameters that 

need to be optimised [5].The tuning parameters are Proportional gain (Kp), Integral gain 

(Ki) and Derivative gain (Kd). The summation of proportional, integral and derivative 

terms as shown in Equation 1.1 is the output of the PID controller. 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
+ 𝐾𝑑

𝑑

𝑑𝑡
𝑒(𝑡)                     1.1 

Tuning a Proportional-Integral-Derivative (PID) controller is quite a hassle even 

though it only has 3 parameters. These parameters need to tune properly as it will the 

transient response of the system. For example, overshoot (Mp), rise time (Tr), steady state 

error (ess) and settling time (Ts) in the step response of a closed-loop time system. The 

selection of the parameters is important so that it meets the design requirements [6].  

There is a lot of methods that have been proposed to optimise PID controller such as 

manual tuning, Ziegler- Nichols and Tyreus Luyben method. However, these methods 

also have certain limitation. For example, manual tuning requires personal experience 

and, some trial and error. Ziegler-Nichols adjusts the controller for one fourth of 

amplitude damping response, which overshoots and fluctuate a bit, leaves the controller 

with very little sturdiness, which can lead to loop instability [7].  

Since there are some shortcomings of the mentioned above methods, meta-

heuristic optimization techniques is another option. The algorithms inspired from the 

behaviour of animals such as spider, ant and bees [8]. The reason why they are preferable 

because meta-heuristics are simple. They are related to simple concept such as physical 

phenomena, animals’ behaviours or evolutionary concepts. The directness of them allow 

scientists to learn, stimulate, propose, combine, improve and apply them. Second, they 

are so flexible that they can be apply to different problem. Third, they are suitable for real 

problems with fancy and unexplored derivative information. Finally, they are good for 

avoiding to local optima and optimizing hard real-time problem [8]. 

 The effectiveness of the algorithm was compared by thoroughly analysing the 

minimisation of objective function. In this study, the objective is to reduce the cost 

function. The algorithm must be able to find the optimal solution in order to reduce cost 

function. Minimal overshoot, fast rise time and settling time and smaller steady state 
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error. These criteria is known as cost function [9]. It will be used to evaluate the solutions 

in order to find the best solutions among the feasible solutions.  

 

1.2 Problem Statement 

 

 In the engineering world, the optimisation problem is always a challenge to the 

engineer to solve it as the size and complexity are also increased. However, as the 

technology is developing, more algorithms are developed such as Genetic Algorithm, 

Simulated Annealing and Ant Colony Optimizer. Lately, nature-inspired metaheuristics 

is getting a lot attention. Many recent metaheuristics are being developed. These 

metaheuristics depend on how the nature phenomenon simulated. Nonetheless, these 

approaches are not very accurate and they not always returning an optimal result. As they 

are simulating the nature phenomenon, the simulation is not perfect as they are bound to 

the rules of Agent Based Modelling (ABM).  Recent years, new algorithms are developed 

to compensate these drawbacks. In order to review the performance of selected algorithm, 

parameters of PID controller are used to test the algorithms in real world application.  

 

1.3 Objectives of research  

 

 The aim of this research to study the performance of Grey Wolf Optimiser (GWO) 

and Dragonfly Algorithm (DA) for tuning the parameters Kp ,Ki and Kd of PID controller. 

Below are the objectives to be achieved from this study: 

 To optimise PID controller using Grey Wolf Optimiser (GWO) 

 To optimise PID controller using Dragonfly Algorithm (DA) 

 To compare the performance of Grey Wolf Optimizer and Dragonfly Algorithm 
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1.4 Scope of research  

  This study solely focus on optimising the parameters of PID controller to achieve 

optimum result. Proportional-Integral-Derivative (PID) controller consists of a few 

tuning parameters that need to be optimised. The tuning parameters are Proportional gain 

(Kp), Integral gain (Ki) and Derivative gain (Kd). But, tuning a Proportional-Integral-

Derivative (PID) controller is a difficult problem even though it only has 3 parameters. 

The PID controller parameters must be properly chosen because the selection of 

parameter will be affecting the transient response of the system. For example, overshoot 

(Mp), rise time (Tr), steady state error (ess) and settling time (Ts) in the step response of a 

closed-loop time system. 

 The objective of this optimisation is to reduce the cost function of the PID 

controller. The best possible results of PID controller parameters depend on cost function. 

The cost function is the transient response of the system. The criteria are minimal peak 

overshoot, Mp, steady state error, ess, rise time , Tr, and settling time, Ts [7]. 

 

1.5 Thesis Outline 

  This thesis consists of five chapters which include Introduction, Literature 

Review, Methodology, Result and Discussion, Conclusion and Future Work. Chapter 1 

mainly explain about the project overview, problem statement and objectives of this 

study. Next, chapter 2 consists of basic concept of optimisation, optimisation algorithms 

and categories of optimisation methods such as heuristics and meta-heuristic methods. 

This part elaborates the development and implantation of Grey Wolf Optimiser (GWO) 

Algorithm in optimisation PID controller. In addition, explained the impact of controller 

parameters to optimize the cost and time by utilizing GWO. Chapter 3 presents about the 

methodology, design and implementation of GWO in this problem. Also, includes the set 

of variables and control parameters used as well procedures in order to design solution 

via MATLAB. Chapter 4 simply presents the results of simulations and analyses the 

optimum solution for this system. Besides, this section discuss about the minimisation of 

cost function as objective function. Chapter 5 presents the conclusion that can be drawn 

based on the carried out results. Finally, considerate the future work which related to this 

study. 
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CHAPTER 2  

 

LITERATURE REVIEW 

2.1 Introduction 

In this chapter, several research papers related to search algorithm, concept of 

optimisation, metaheuristic and swarming intelligence are reviewed in section 2.2 until 

section 2.4.1. Those two algorithms that used in this research, Grey Wolf Algorithm 

(GWO) and Dragonfly Algorithm (DA) are briefly explained in section 2.4.2 and 2.4.3. 

Section 2.6 is the summary of chapter 2. 

 

 

2.2 Search Algorithm    

 Search algorithm is an algorithm that used to find a target or more within a search 

space. It is also called as “Storage and Retrieval Information” or “Table Look-up”. The 

search process is mimic the process of gathering information in a computer memory in a 

way that it can be obtained instantly.  The data can be saved for next call or deleted for 

computational purposes. The saved data need to be organized for a fast retrieval. A very 

simple search algorithm is a way to find the data that has been saved with a given clue. 

The problem is to find a precise one in the given search space. The search space is usually 

the space that contains potential candidate for solution.  Each candidate or data is unique.  

The data will be tested for identification purpose. After the search is done, the result can 

be only successful or unsuccessful [10]. A very simple and famous search algorithm is 

Brute Force Algorithm. Brute Force Algorithm is basically sequential searching. It start 

the search at the very beginning, and go on until a suitable solution is found. This 

searching procedure is an obvious way to search something. The problem is if the search 

space or number of candidates is very large, it take long time and waste of computational 

power. However, it is a useful algorithm as it is a base for search algorithms[11].  
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2.3 Concept of Optimisation 

 

 Optimisation is one of the important process in engineering world. Optimisation 

is a method to find a balance performance when the design has to compromise between 

a certain factors, which affects fitness and cost [12]. Practically, optimisation must be 

able to produce low cost design without sacrifice the fitness. So, criterion must be set in 

order to define the optimised solution. The criterion is also called as objective function. 

The objective can be either minimise cost function or maximise fitness function [13]. 

Objective function is important in order to compare all possible solutions. The best 

solutions will be selected. This is why sometimes optimisation has more than one 

objective function, which is also known as multiobjective function. Cost function is a 

function of error, which usually is difference between desired output and actual output 

[9]. Fitness function is usually a function to determine the degree of achieving the 

intended target. Cost function and fitness function are reciprocals of each other. The 

algorithm that used for optimisation is called optimisation algorithm [14].  

 

2.4 Metaheuristic 

 

 One of the solution to optimisation problem is metaheuristic. Metaheuristic is a 

high level heuristic invented to find a solution to an optimisation problem. Metaheuristic 

is surprisingly useful for solving optimisation problem that without complete information 

or enough computational power. Lately, nature-inspired metaheuristics are getting a lot 

of attention. Nature-inspired metaheuristic are inspired by system of nature. There are a 

few reasons why metaheuristics are worth getting attention [8]. First, they are simple. 

Mostly they are inspired by simple concept that can be easily understand. The inspirations 

are usually related to physical phenomena, animals’ behaviour or evolutionary concepts 

[15]. The simplicity allow the computer scientists to simulate the phenomena using 

software. Second, mostly metaheuristics are flexible as they are easily can be apply to 

any structure. They are not bound to any special conditions to make them work since 

problems usually will be assumed as black boxes problems. Third, they have derivation-

free mechanism. They mostly start the solutions randomly without enough information 

regarding the solution. Finally, they have abilities to avoid or trap in local optima 
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compared to the other optimisation methods. This is due to stochastic nature of 

metaheuristics which let them to avoid local solutions and search the entire search space 

[5].  

2.4.1 Swarming Intelligence 

 

 Swarm is defined by a huge quantity of alike, simple agents communicating 

locally among themselves, and their habitat, with no central control to let a global 

beautiful behaviour to combine. Swarm-based algorithms usually is inspired by nature. 

These algorithms are capable of generating low cost, fast and robust solutions to certain 

problems. The agents of swarming intelligence usually are insects, birds or swarm 

individuals. They are modelled using Agent Based Modelling (ABM) to simulate the 

interaction the swarming behaviour with limited capabilities [16]. The interaction can be 

categorised into two, direct and indirect. Indirect interaction usually occurs when the 

agent communicating each other through visually or audio [5].  For example, in Bees 

Colony Algorithm, the bees communicate each other through dance. Indirect interaction 

happens when the agent change the environment and other agent react to that new 

environment such in Ant Colony Optimisation, the ants release pheromone to indicate the 

trails from food sources to their colony. As for Lion Optimization, it was based on the 

special lifestyle of lions and their cooperation characteristics [17]. Swarm Intelligence 

have been successfully applied in different type of problems such as optimisation 

problems, optimal routes, scheduling and structural optimisation [8]. Although Swarming 

Intelligences have a lot of potential, it also has a few limitations. First, it is advisable to 

not apply swarming intelligence in time critical applications as it consumes a lot of time 

to apply. Second, the tuning parameters are unpredictable and might react differently 

based on problem domain.  Third, it is possible for the intelligence to stagnate. They 

might trap in a same solution or local solution no matter what tuning parameters are [11]. 
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2.4.2 Grey Wolf Optimizer (GWO)      

 

Grey Wolf Optimizer is a nature-inspired metaheuristic proposed by Seyedali 

Mirjalili [18]. Grey Wolf Optimizer is basically an algorithm influenced based on the 

social behaviour of grey wolves, group hunting in addition to the social hierarchy of 

wolves in the pack. Based on the figure 2.1, the pack is dominated by alphas, followed 

by beta, delta and omega. The alpha wolves are the leader and responsible for making 

decisions for the pack. The betas are subordinate wolves that advice alpha in decision 

making. The omega plays the role of scapegoat and must submit to all the other dominant 

wolves. In order to model the social hierarchy of wolves, the fittest solution is considered 

as alpha followed by beta, delta and omega respectively.  

 

Figure 2.1: Hierarchy of grey wolf (dominance decreases from top to bottom) [18] 

From the figure 2.2, the main phases of grey wolves hunting are searching for 

prey, encircling prey and attacking prey. In the first phase, they will move in the pack 

and search for suitable prey. They usually preferred ungulates, large hoofed animals such 

as deer and elk. As they found their prey, they may trail their pray before moving into the 

next phase, encircling prey. In this phase, they will encircle prey. They will encircle the 

prey for a few times to adjust their position accordingly to prey in order to estimate the 

position of the prey. They will constantly update their position randomly around the prey. 

Lastly, the final phase, attacking prey. They will finish hunt by attacking the prey when 

it stops moving. The prey position is the best solution. Figure 2.3 shows the pseudo code 

of Grey Wolf Optimizer. 
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Figure 2.2: Hunting behaviour of grey wolves [18] 

 

Grey Wolf Optimizer starts the algorithm by initializing the population of grey 

wolf. Then, the basic parameter of the algorithm (refer Section 3.31) will be initialized.  

The fitness of each search agent will be calculated. The best agent will be set as alpha, 

followed by beta and delta. The search agent will start to move according to hunting 

behaviour. For every iteration, the search agent will be updating the position. The fitness 

of each agents will be calculated again. The fitness by alpha, beta and delta will be 

updated. This operation will be repeated until the algorithm meets the maximum number 

of iterations.  
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Figure 2.3: Pseudo code of Grey Wolf Optimizer [19] 

 

2.4.3 Dragonfly Algorithm (DA)      

 

 Dragonfly algorithm is another algorithm that designed by Seyedali Mirjalili [20] 

. Dragonfly is basically an algorithm inspired from the static and dynamic swarming 

behaviours of dragonflies. The modelling is designed based on the action, finding for the 

foods and by passing enemies when swarming dynamically or statically. Based on the 

figure 2.4, the former is called static swarm (feeding) while latter is called dynamic 

swarm (migration). In static swarming, dragonflies make small- scaled groups and fly 

and back and forth over a narrow are to hunt the preys. Local movements and abrupt 

changes in the flying path are the major characteristic of static swarm. In dynamic swarm, 

a huge quantity of dragonflies make the swarm for migrating in one direction over 

expanded distances. These two behaviours are very alike to two main phases of 

Initialize the grey wolf population  

Initialize a, A , and C 

Calculate the fitness of each search agent  

 Xa = the best search agent  

 XB = the second-best search agent 

Xd = the third search agent 

while (t < Max number of iterations) 

 for each search agent  

  Update the position search agent  

 end for 

 Update a, A and C 

 Calculate the fitness of all search agents  

 Update Xa , XB and Xd 

 t=t+1 

end while  

return Xa 
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optimization, which are exploration and exploitation. In exploration, dragonflies make 

small groups and fly over different areas in a static swarm. In exploitation phases, 

dragonflies fly in large group and fly along one direction.  

 

 

Figure 2.4: Static versus dynamic dragonfly swarm [20] 

 

From the figure 2.5, the behaviour of swarms is following three basic principles; 

separation, alignment and cohesion. Separation refers to the static collision prevention of 

the individuals from the others in the neighbourhood. Alignment signifies velocity 

matching of individuals to that of other individuals in neighbourhood. Cohesion refers to 

the percentage leaning of individuals towards the centre of the mass of the 

neighbourhood. The nature of any animal is survival, so all individuals will be attracted 

to food sources and distracted outward enemies [21].  Figure 2.6 shows the pseudo code 

of Dragonfly Algorithm. 
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Figure 2.5: Primitive pattern of behaviour of dragonflies in a swarm [20] 

 

The algorithm starts with initializing the dragonflies’ population and step vectors. 

For every iteration, the fitness of each dragonfly. The position of the food source and 

enemy will be updated. Update the dragonfly algorithm parameter (refer Section 3.4.1). 

Calculate the score of each primitive pattern of behaviour. If the number of dragonfly in 

a neighbourhood is more than one, update vector position and velocity. If the number of 

dragonfly in a neighbourhood is less than one, perform update vector position. Each 

dragonfly update the position. This operation will be repeated until the algorithm meets 

the maximum number of iterations. 
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Figure 2.6: Pseudo code of Dragonfly Algorithm (DA) [20] 

 

 

2.5 Related research work on PID controller tuning 

 

 Optimization of PID controller using swarming intelligence have been done and 

numerous related research paper regarding it. They have been applied in different kinds 

of subject areas and systems. Various research papers were deeply reviewed to enhance 

the understanding of concept of optimization. Different algorithm has different 

advantages and drawbacks on certain types of problems.  

  

Initialize the dragonflies population Xi ( i = 1,2,…n) 

Initialize step vectors ∆𝑋𝑖 ( i = 1,2,….n) 

while the end condition is not satisfied 

 Calculate the objective values of all dragonflies 

 Update the food source and enemy 

 Update w, s, a, c, f and e 

 Calculate S, A, C, F, and E using Eqs. (3.1) to (3.5) 

 Update neighbouring radius  

 If a dragonfly has at least one neighbouring dragonfly 

  Update velocity vector using Eq. (3.6) 

  Update position vector using Eq. (3.7) 

 else  

  Update position vector using Eq. (3.8) 

 end if  

 Check and correct the new positions based on the boundaries of variables 

end while 
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2.5.1 Optimization PID controller using GWO algorithm for speed control in 

DC motor  

 

 A research proposed by Kaushik Ranjan Das [22]. The project is conducted to 

study the performance of a PID controller used in DC motor speed control, which 

optimizes by a nature inspired metaheuristic, GWO. Adaptive PID controller design to 

adopt a second order DC motor system. The optimization algorithm used in this study is 

Grey Wolf Optimizer to optimize the controller. Using MATLAB, the best set of PID 

parameters is obtained from the optimization with a step input to the DC motor to get the 

transient response specifications. The transient response specification such as rise time, 

settling time, maximum overshoot and steady state error, was recorded. These results are 

compared with other results from the other conventional techniques. The other techniques 

were Ziegler Nichols (ZN), Particle Swarm Optimization (PSO) and Artificial Bee 

Colony (ABC). Compared to the other techniques, GWO was able to give the best results 

for the rise time, settling time and peak overshoot, which the values are the minimum 

compare others. But, steady state error for GWO is higher than PSO and ZN.  

 

2.5.2 Optimization of Fractional Order PID (FOPID) based temperature 

control of bioreactor 

  

 A project proposed by Dharmendra Tiwari. The project is focused on precise 

temperature control of bioreactor. The control of the process is difficult because of its 

highly nonlinear and dynamic nature. The proposed solution is using Fractional Order 

PID (FOPID) controller for the temperature control of bio reactor. Three algorithm were 

used to evaluate the design parameters, which are Dragonfly Algorithm, Genetic 

Algorithm and Simulated Annealing (SA). The performance of the design of each 

algorithm were evaluated [23]. The transient responses from each algorithm are observed. 

The result is DA converges significantly faster as compared to GA and SA. DA also 

minimizes the cost function slightly better compared to the other two algorithms [24]. 

The performance of FOPID designed by DA is better than the others two algorithms. The 

FOPID gave minimum value of set point tracking and disturbance rejection. The 
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conclusion from this project that FOPID is better solved by DA rather than Genetic 

Algorithm and Simulated Annealing. Dragonfly algorithm is more robust and efficient.  

 

2.6 Chapter Summary  

 

 In this chapter, it can be summarised that engineering problems especially 

optimisation problem need right optimisation technique to obtain optimum results. 

Optimisation problems need to be optimised with respect to objective function either 

fitness function or cost function. Based on objective function, it will be used to measure 

the performance of the system that need to be optimised. The right optimisation algorithm 

able to give an optimum results. Metaheuristics is one of the preferred optimisation 

technique as they are simple, flexible, free-derivation mechanism and ability to avoid 

local optima. One of the metaheuristics subclass is nature-inspired metaheuristic. One of 

the branch of the nature-inspired metaheuristic is swarming intelligence. Swarming 

intelligence is preferable because it is low cost, fast and robust to certain problems. The 

swarming algorithms used in this study are Grey Wolf Optimizer and Dragonfly 

Algorithm. The concept and idea of these algorithms were explained briefly. Based on 

the concepts of optimisation, these algorithms is applied to optimise and tune PID 

controller parameters.  
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CHAPTER 3 

 

METHODOLOGY 

 

3.1 Introduction 

 

 This chapter presents the optimisation of tuning PID controller parameters by 

implementing Grey Wolf Optimizer (GWO) and Dragonfly Algorithm (DA). In this 

section, the variables and parameters set in the algorithm is included as well as procedures 

to create basic design using MATLAB. The methods to evaluate the performance of the 

algorithms are also included.  

 

3.2 Closed-Loop System and Optimisation Problem Design  

 

 Optimisation problems usually associated to specific domain of problems. 

Choosing a right method for optimisation is essential as different method give different 

output. Aside from method of optimisation, there are still a few factors that need to be 

considered as they also can affect the performance. They are parameter settings, 

robustness of objective function and scalability of constraints. 

 

3.2.1 System Plant 

 The closed-loop plant response of the PID controller was modelled in MATLAB 

R2017b and executed using workstation powered by Intel Core i7 8700K, Base Clock @ 

3.70 GHz. A closed-loop response system was designed so that the step response can be 

compared with that of the closed-loop system that optimised with Grey Wolf Optimizer 

and Dragonfly Algorithm. A plant transfer function is needed to design the closed- loop 

system. Three different plant transfer function were chosen from research papers. 

According to Pareek et al. [5], Gp1 (System A) was used while one from a research paper, 

Gp2 (system B) by Wadhwani and Verma [7]. Another one, Gp3 (System C) from a 
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research paper by A.A.M Zahir and S.S.N. Alhady [25]. The System A is based on the 

ball and hoop system [5]. The System B is based on the DC servo motor. The last system, 

System C is represent the brushed DC motor for cart follower system [25].The plant 

transfer functions, System A, System B and System C are representing as Equation 3.1, 

Equation 3.2 and Equation 3.3 respectively. The transfer function of PID controller, Gc 

(s) in Laplace form is represented by Equation 3.4 since PID controller is integrated in 

this design.  

𝐺𝑝1(𝑠) =  
1

𝑠4+6𝑠3+11𝑠2+6𝑠
    (3.1) 

𝐺𝑝2(𝑠) =
0.01

0.005𝑠3+0.06𝑠2+0.1001𝑠
   (3.2) 

𝐺𝑝3(𝑠) =  
104.9

𝑠2+103.5𝑠+2617
     (3.3) 

𝐺𝑐(𝑠) =  𝐾𝑝 + 𝐾𝑑𝑠 +
𝐾𝑖

𝑠
     (3.4) 

The general transfer function, T(s) of the systems are as follows: 

𝑇(𝑠) =
𝐺𝑝(𝑠)𝐺𝑐(𝑠)

1+𝐺𝑝(𝑠)𝐺𝑐(𝑠)𝐻(𝑠)
      (3.5) 

Hence the transfer function of system A and system B are represented by Equation 3.6, 

Equation 3.7 and Equation 3.8. 

𝑇1(𝑠) =  
𝐾𝑑𝑠2+𝐾𝑝𝑠+𝐾𝑖

𝑠4+6𝑠3+(11+𝐾𝑑)𝑠2+(6+𝐾𝑝)𝑠+𝐾𝑖
    (3.7) 

𝑇2(𝑠) =
0.01𝐾𝑑𝑠2+0.01𝐾𝑝𝑠+0.01𝐾𝑖

0.005𝑠3+(0.06+0.01𝐾𝑑)𝑠2+(0.1001+0.01𝐾𝑝)𝑠+0.01𝐾𝑖
 (3.8) 

𝑇2(𝑠) =
104.9𝐾𝑑𝑠2+104.9𝐾𝑝𝑠+104.9𝐾𝑖

(1+104.9𝐾𝑑)𝑠2+(103.5+104.9𝐾𝑝)𝑠+(2617+104.9𝐾𝑖)
  (3.9) 

Where H(s) is a unity feedback. 

 The block diagram of PID controller is shown as figure 3.1. The system was 

constructed using Simulink. The input of this system is step input. The output was 

observed using scope.  



18 

 

Figure 3.1 Closed-loop system with PID controller 

 In order to find the step response of the system, the PID controller parameters 

were set up. All of these parameters were selected using PID Tuner App, which one of 

the available application from Control System Toolbox, MATLAB. This app 

automatically tune those three parameter as it was fed by plant transfer function. This 

process was repeated for three times as for each system. The PID Tuner App implemented 

Ziegler Nichols auto-tune method [26]. This method is tuning PID parameters rapidly 

until it reaches the optimum result. For this study, the lower limit and upper limit were 

not set as need to identify the range of parameter for each system [27]. Table 3.1 shows 

the values of Kp, Ki, and Kd parameters. For system A, the highest value is 6.844, so the 

upper boundary was set to 10. For system B, the highest value is 18.625, so the upper 

boundary was set to 50. For system C, the highest value is 1662, however the upper 

boundary was set to 1500 because computational power and time of execution need to be 

considered.       The dynamic performance specification for each system will be discussed 

in Section 4.2.1. 

Table 3.1: Values of Kp, Ki, and Kd parameters 

Parameters System A System B System C 

Kp 4.818 18.220 46.99 

Ki 0.335 12.697 1662 

Kd 6.844 18.625 0.28 

 

3.2.2 Theory of Cost Function as Objective Function 

 This research is focussing mainly on optimising PID controller by tuning PID 

parameters. In other word, the optimised PID parameters should be able to produce step 

response, which closely similar the step input. In order to identify whether the PID 
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parameters are optimised or not, certain criteria were observed using cost function.  

Optimised PID must be able to give minimal cost function [9]. 

 The search space was defined by PID controller parameters. Three PID 

parameters indicate three dimensional search space. Each axis was represented by Kp, Ki, 

and Kd respectively. The combination of these three parameter were indicated by a single 

point, which represent the step response. The performance will be evaluated using cost 

function. The cost function consists of several element which can described the 

performance. The cost function is represented by Equation 3.10. The elements that can 

be obtained from cost function were peak overshoot, Mp, steady-state error, ess, rise time, 

Tr and settling time, Ts. This cost function was chosen because it is well defined what a 

good PID controller supposed to be. Minimal peak overshoot, minimal steady-state error, 

short rise time and short settling time [28].    

𝐹 = (1 − 𝑒−𝜌)(𝑀𝑝 + 𝑒𝑠𝑠) + (𝑒−𝜌)(𝑇𝑠 − 𝑇𝑟) (3.10)  

Where 𝜌 is the scaling factor of designer’s choice 

 According to Zwe-Lee, the value of 𝜌 can be set larger than 0.7 for low overshoot 

and steady-state error while for short rise time and settling time, the value of 𝜌 can be set 

less than 0.7 [29]. For this study, two values of 𝜌 were chosen, which are 0.5 and 1.5. 

 

3.3 Grey Wolf Optimizer 

3.3.1 Idealization of Grey Wolf Optimizer 

 To simulate the grey wolf behaviour, the behaviours need to be expressed 

mathematically. In order to model the encircling behaviour mathematically, equations are 

as follow.  

�⃗⃗� = | 𝐶  . 𝑋 𝑝(𝑡) − 𝑋 (𝑡)|     (3.11) 

𝑋 (𝑡 + 1) = 𝑋 𝑃(𝑡) − 𝐴  . �⃗⃗�    (3.12) 

Where t indicates the current iteration, 𝐴  and 𝐶  are coefficient vectors, 𝑋 𝑝 is the position 

vector of the prey, and 𝑋  indicates the position vector of a grey wolf. The vectors 𝐴  and 

𝐶  are calculated as follows.  
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𝐴 = 2𝑎  . 𝑟 1 − 𝑎     (3.13) 

𝐶 = 2 . 𝑟 2      (3.14) 

Where components of 𝑎  are linearly decreased from 2 to 0 over the course of iterations 

and 𝑟1 , 𝑟2 are random vectors in [0, 1]. 

In order to model the hunting behaviour mathematically, alpha is assumed to have better 

knowledge about the location of prey followed by beta and delta. So, the first 3 best 

solutions obtained are saved and oblige the others agents. The equations are as follow. 

�⃗⃗� 𝑎 = |𝐶 1. 𝑋 𝑎 − 𝑋 |, �⃗⃗� 𝐵 = |𝐶 2 . 𝑋 𝐵 − 𝑋 |, �⃗⃗� 𝑑 = |𝐶 3 . 𝑋 𝑑 − 𝑋 |   (3.15) 

𝑋 1 = 𝑋 𝑎 − 𝐴 1. (�⃗⃗� 𝑎), 𝑋 2 = 𝑋𝐵 − 𝐴2 . (𝐷𝐵),𝑋 3 = 𝑋 𝑑 − 𝐴 3 . (�⃗⃗� 𝑑)  (3.16) 

𝑋 (𝑡 + 1) =  
�⃗� 1+ �⃗� 2+�⃗� 3

3
          (3.17) 

 

Alpha, beta and delta estimate the position of the prey, and the other agents update their 

position randomly around the prey. 

 

In order to model the attacking behaviour mathematically, the value of 𝑎  in order 

to mimic the grey wolves approaches the prey. 𝐴  is a random value in the interval [-2a,2a] 

where a is decreased from 2 to 0 over the course of iteration. When random values of 𝐴  

is between [1, 1], it indicates the wolves attack the prey.  

 

In order to mathematically model divergence, 𝐴  is random values greater than 1 

or less than 1 to oblige the agent to diverge from the prey. This forces the agents to search 

globally. When 𝐴  less than 1, the wolves will attack the prey. But, if the values of 𝐴  is 

larger than 1, the wolves will diverge from the prey. 

 

Another component is 𝐶 , which contains random values in [0, 2]. This component 

provides random weight for prey to emphasize (C >1) or deemphasize (C<1) the effect 
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of prey in defining the distance in equation (3.1). This is important in order to create a 

more random behaviour through optimization and avoid local optima. The prey position 

is the best solution. Grey Wolves Optimizer uses the basic parameters listed in table 3.2. 

Table 3.2 shows the basic parameters that exist in Grey Wolf Optimizer.  

 

Table 3.2: Basic parameters in Grey Wolf Optimizer (GWO) 

Parameters Symbols 

Number of search agents (grey wolf) SearchAgents_no 

Parameter for equation 2.4 C 

Parameter for equation 2.3 a 

Cost function fobj 

Number of variables dim 

Maximum number of iterations Max_iterations 

Lower boundary for each variable lbn 

Upper boundary for each variable ubn 

Number of boundaries Boundary_no 

Upper boundary ub 

Lower boundary lb 

 

 

  In Grey Wolf Optimizer, SearchAgents_no refer to number of grey wolf in the 

population. C and a parameter refer to equation 2.4 and 2.3. fobj refer the declared cost 

function. dim refer to the number of variables of the search space. Max_iterations refers 

to maximum number of iterations that the GWO will be executed. lbn and ubn  refer the 

lower upper boundary for each variable. Boundary_no specify number of boundaries. 

Figure 3.2 show the flowchart of Grey Wolf Optimizer (GWO). The flowchart show the 

flow on how the Grey Wolf Optimizer (GWO) works. 
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Figure 3.2: Flowchart of Grey Wolf Optimizer (GWO)  

Start 

Initialize the grey wolf population and 

basic parameter of GWO, a,A and C 

Calculate the fitness of each search agent 

Assign the top three search agent 

Xa = the best search agent 

XB = the second best search agent 

Xd = the third search agent 

Is iteration,t 

larger than max 

number of 

iterations? 

Update the position search agent 

Update a, A and C 

Calculate the fitness of all search agents 

Update Xa , XB and Xd 

Increment iteration,t  

End 

NO 

YES 
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Refer to the flowchart (figure 3.2), the algorithm start with initialize the grey wolf 

population and basic parameter of GWO, which are A and C.  The fitness of each search 

agent will be calculated. The top three search will be assigned as alpha, followed by beta 

and delta. Alpha is the fittest solution. The rest of the search agent will be assigned as 

omega. The search agents will updated the position from prey. Update a, A, and C. the 

fitness of all search agents will be calculated. The position of alpha, beta and delta. 

Increment the value of current iterations. The algorithm will check the stopping criteria, 

which is maximum number of iteration. If the number of the maximum of the iteration is 

equal to the number of current iteration, the algorithm will stop. If not, the operation will 

be continued with update the position of each search agent [30].  

 

3.3.2 Setting of Grey Wolf Optimizer 

 

The algorithm has its own specialised control parameters that can be tuned based on the 

optimisation problem. This parameters is like an interface of the algorithm. The control 

parameters are listed in Table 3.3. 

Table 3.3: Set of control parameters (GWO) 

Description Parameters System A System B System C 

Number of search agents 

 (grey wolf) 

SearchAgents_no 30 30 30 

Number of variables dim 3 3 3 

Maximum number of iterations Max_iterations 200 200 200 

Upper boundary ub 10 50 1500 

Lower boundary lb 0 0 0 

 

 Based on table 3.3, the number of grey wolf was set to 30. The number of 

variables, dim was set to 3 because of three PID controller parameters, Kp, Ki and Kd. The 

value of upper boundary, ub for each system was set differently. For system A, upper 

boundary was set to 10. For system B, it was set to 50. For system C, it was set to 1500. 

The value of upper boundary was set in such way because each system is different. 

Referring to the Table 3.1, the value of Kp, Ki and Kd were different for each system. The 
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value of upper boundary need to set in a way that it was bigger than these values, so the 

algorithm can cover these points when executed except for System C. As for System C, 

it was capped to 1500 because if the value of upper boundary is set higher than that, it 

need to take more times and computational power to executed. Lower boundary for each 

system was set to 0 as the value of Kp, Ki and Kd need to be positive. Max iterations was 

set to 200. The reason why this value was chosen discussed in Section 4.4.  

All of these values were set up by declaring all those values in the beginning of 

file initialisation.m. The objective function was saved as tracklsq.m file. This file was 

interfaced with the m-file of Grey Wolf Optimizer. So, the variables were directly read 

by algorithm.  

 

3.4 Dragonfly Algorithm 

 

 3.4.1 Idealization of Dragonfly Algorithm 

 To simulate the dragonfly behaviour, their behaviour need to be expressed 

mathematically. From the figure 3.3, the behaviour of swarms is following three basic 

principles; separation, alignment and cohesion. Separation refers to the static collision 

prevention of the individuals from the others in the neighbourhood. The separation 

behaviour is mathematically represented as follows: 

𝑆𝑖 = ∑ 𝑋 − 𝑋𝑗
𝑁
𝑗=𝑖   (3.18) 

Where X is the position of the current individual, 𝑋𝑗 presents the position j-th 

neighbouring individual and N is the number of neighbouring individuals. 

Alignment signifies velocity matching of individuals to that of other individuals in 

neighbourhood. The alignment behaviour is mathematically represented as follows: 

𝐴𝑖 =  
∑ 𝑉𝑗

𝑁
𝑗=1

𝑁
− 𝑋  (3.19) 

Where 𝑉𝑗 shows the velocity of the j-th neighbouring individual. 

Cohesion refers to the percentage leaning of individuals towards the centre of the mass 

of the neighbourhood. The cohesion behaviour is mathematically represented as follows: 
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