

FINAL YEAR PROJECT 2017-2018

PROGRESS REPORT

OPTIMIZATION OF PID CONTROLLER USING GREY

WOLF OPTIMZER AND DRAGONFLY ALGORITHM

Student Name : Nik Muhammad Aiman Bin Nik Mohamed Hazli

Student ID : 126441

Supervisor’s Name : Dr. Wan Amir Fuad Wajdi Bin Othman

Course Code : EEM 449

Program : Mechatronic Engineering

School : Electrical & Electronic Engineering

University : Universiti Sains Malaysia

ii

Acknowledgement

 Alhamdulillah, all praises to Allah for endowing me with health, strength and

knowledge to complete this research. Here, I would to express my gratitude to everyone,

who gave me the opportunity to gain invaluable experience during my final year project.

 Foremost, I would like to express my deepest gratitude and appreciation to my

supervisor, Dr. Wan Amir Fuad Wajdi Bin Othman. He continuously supervise and

support me. Without his help, it is impossible for me to complete my final year project.

His guidance are very helpful.

 Finally, thanks to my beloved parents, Nik Mohamed Hazli and Azidah Binti

Abdul Kadir as well as my siblings for the moral supports. I also need to acknowledge

my friends for supporting me throughout my studies. This accomplishment would not

been possible without them.

iii

TABLE OF CONTENTS

Acknowledgement ii

Table of Contents iii

List of Tables vii

List of Figures ix

List of Symbols and Abbreviations xi

Abstrak xii

Abstract

xiii

Chapter 1: Introduction

1.1 Research Background 1

1.2 Problem Statement 3

1.3 Objectives of Research 3

1.4 Scope of Research 4

1.5 Thesis Outline 4

Chapter 2: Literature Review

2.1 Introduction 5

2.2 Search Algorithm 5

2.3 Concept of Optimisation 6

2.4 Metaheuristic 6

2.4.1 Swarming Intelligence 7

2.4.2 Grey Wolf Optimizer (GWO) 8

 2.4.3 Dragonfly Algorithm (DA) 10

2.5 Related research work on PID controller tuning 13

 2.5.1 Optimization PID controller using GWO algorithm for 14

iv

 speed control in DC motor

 2.5.2 Optimization of fractional order PID (FOPID) based 14

 temperature control of bioreactor

2.6 Chapter Summary 16

Chapter 3: Methodology

3.1 Introduction 16

3.2 Closed-Loop System and Optimisation Problem Design 16

 3.2.1 System Plant 16

 3.2.2 Theory of Cost Function as Objective Function 18

3.3 Grey Wolf Optimizer 19

 3.3.1 Idealization of Grey Wolf Optimizer 19

 3.3.2 Setting of Grey Wolf Optimizer 23

3.4 Dragonfly Algorithm 24

 3.4.1 Idealization of Dragonfly Algorithm 24

 3.4.2 Setting of Dragonfly Algorithm 28

3.5 Starting and Stopping Criterion 29

3.6 Chapter Summary 29

Chapter 4: RESULTS AND DISCUSSION

4.1 Introduction 30

4.2 Closed-Loop System 30

 4.2.1 Transient response of system without algorithm 30

4.3 Selection of best set of control parameters 33

 4.3.1 Control parameters selection of Grey Wolf Optimizer 34

 4.3.2 Control parameters selection of Dragonfly Algorithm 39

4.4 Stopping criteria of each algorithm and number of agents 44

v

4.5 Comparative study on cost function and step response of PID controller 45

 4.5.1 Average Cost Analysis 45

 4.5.2 Standard Deviation of Cost Analysis 49

 4.5.3 Analysis on Step Responses 53

4.6 Discussion 63

4.7 Chapter Summary 65

CHAPTER 5: CONCLUSION AND FUTURE WORK

5.1 Introduction 66

5.2 Conclusion 66

5.3 Future Work 67

REFERENCES 68

APPENDIX

APPENDIX A – TABLES OF COST VALUES

A.1 Cost Value for System A with Grey Wolf Algorithm (ρ=0.5) 71

A.2 Cost Value for System A with Grey Wolf Algorithm (ρ=1.5) 72

A.3 Cost Value for System A with Dragonfly Algorithm (ρ=0.5) 72

A.4 Cost Value for System A with Dragonfly Algorithm (ρ=1.5) 73

A.5 Cost Value for System B with Grey Wolf Algorithm (ρ=0.5) 73

A.6 Cost Value for System A with Grey Wolf Algorithm (ρ=1.5) 74

A.7 Cost Value for System B with Dragonfly Algorithm (ρ=0.5) 74

A.8 Cost Value for System B with Dragonfly Algorithm (ρ=1.5) 75

A.9 Cost Value for System C with Grey Wolf Algorithm (ρ=0.5) 75

A.10 Cost Value for System C with Grey Wolf Algorithm (ρ=1.5) 76

A.11 Cost Value for System C with Dragonfly Algorithm (ρ=0.5) 76

A.12 Cost Value for System C with Dragonfly Algorithm (ρ=1.5) 77

APPENDIX B – TABLES OF PID PARAMETERS

vi

B.1 System A with Grey Wolf Optimizer (ρ=0.5) 77

B.2 System A with Grey Wolf Optimizer (ρ=1.5) 78

B.3 System A with Dragonfly Algorithm (ρ=0.5) 78

B.4 System A with Dragonfly Algorithm (ρ=1.5) 79

B.5 System B with Grey Wolf Optimizer (ρ=0.5) 79

B.6 System B with Grey Wolf Optimizer (ρ=1.5) 80

B.7 System B with Dragonfly Algorithm (ρ=0.5) 80

B.8 System B with Dragonfly Algorithm (ρ=1.5) 81

B.9 System C with Grey Wolf Optimizer (ρ=0.5) 81

B.10 System C with Grey Wolf Optimizer (ρ=1.5) 82

B.11 System C with Dragonfly Algorithm (ρ=0.5) 82

B.12 System C with Dragonfly Algorithm (ρ=1.5) 83

APPENDIX C – CODING

 C.1 Grey Wolf Optimizer

 C.1.1 GWO.m 83

 C.1.2 initialization.m 85

 C.1.3 main.m 85

 C.2 Dragonfly Algorithm

 C.2.1 initialization.m 86

 C.2.2 distance.m 86

 C.2.3 Levy.m 87

 C.2.4 DA.m 87

 C.2.5 main.m 91

vii

LIST OF TABLES

Table 3.1 Values of Kp, Ki and Kd parameters 18

Table 3.2 Basic parameters in Grey Wolf Optimizer (GWO) 21

Table 3.3 Set of control parameters (GWO) 23

Table 3.4 Basic parameters in Dragonfly Algorithm (DA) 26

Table 3.5 Set of control parameters (DA) 28

Table 4.1 Dynamic performance specifications of System A, 32

System B and System C

Table 4.2 Lowest cost value for GW30, GW40 and GW50 (System A) 35

Table 4.3 Lowest cost value for GW30, GW40 and GW50 (System B) 37

Table 4.4 Lowest cost value for GW30, GW40 and GW50 (System C) 38

Table 4.5 Lowest cost value for DF30, DF40 and DF50 (System A) 40

Table 4.6 Lowest cost value for DF30, DF40 and DF50 (System B) 42

Table 4.7 Lowest cost value for DF30, DF40 and DF50 (System C) 43

Table 4.8 Number of iterations executed and decided maximum 44

iteration for each algorithm

Table 4.9 Chosen runtime and corresponding PID parameters 54

for System A for ρ = 0.5 and ρ = 1.5

Table 4.10 Dynamic performance specifications of System A 56

for ρ = 0.5 and ρ = 1.5

Table 4.11 Chosen runtime and corresponding PID parameters 57

for System B for ρ = 0.5 and ρ = 1.5

Table 4.12 Dynamic performance specifications of System B 59

for ρ = 0.5 and ρ = 1.5

viii

Table 4.13 Chosen runtime and corresponding PID parameters 60

for System C for ρ=0.5 and ρ = 1.5

Table 4.14 Dynamic performance specifications of System C 62

for ρ = 0.5 and ρ = 1.5

ix

LIST OF FIGURES

Figure 2.1 Hierarchy of grey wolf (dominance decreases from top to bottom) 8

Figure 2.2 Hunting behaviour of grey wolves 9

Figure 2.3 Pseudo code of Grey Wolf Optimizer 10

Figure 2.4 Static versus dynamic dragonfly swarm 11

Figure 2.5 Primitive Pattern of behaviour of dragonflies in a swarm 12

Figure 2.6 Pseudo code of Dragonfly Algorithm (DA) 13

Figure 3.1 Closed-loop system with PID controller 18

Figure 3.2 Flowchart of Grey Wolf Optimizer (GWO) 22

Figure 3.3 Flowchart of Dragonfly Algorithm (DA) 27

Figure 4.1 Step Response of (a) System A, (b) System B and (c) System C 32

without algorithm

Figure 4.2 Block diagram of PID controller integrated with algorithm 33

Figure 4.3 Graph of cost value against iterations for GreyWolf30, 35

GreyWolf40 and GreyWolf50 (System A)

Figure 4.4 Graph of cost value against iterations for GreyWolf30, 36

GreyWolf40 and GreyWolf50 (System B)

Figure 4.5 Graph of cost value against iterations for GreyWolf30, 38

GreyWolf40 and GreyWolf50 (System C)

Figure 4.6 Graph of cost value against iterations for Dragonfly30, 40

Dragonfly40 and Dragonfly50 (System A)

Figure 4.7 Graph of cost value against iterations for Dragonfly30, 41

Dragonfly40 and Dragonfly50 (System B)

Figure 4.8 Graph of cost value against iteration for Dragonfly30, 43

Dragonfly40 and Dragonfly50 (System C)

Figure 4.9 Graph of average cost value against iterations using System A, 46

(a) ρ=0.5 and (b) ρ=1.5

Figure 4.10 Graph of average cost value against iterations using System B, 47

x

(a) ρ=0.5 and (b) ρ=1.5

Figure 4.11 Graph of average cost value against iterations using System C, 48

(a) ρ=0.5 and (b) ρ=1.5

Figure 4.12 Graph of standard deviation of cost value against iterations 50

using System A, (a) ρ=0.5 and (b) ρ=1.5

Figure 4.13 Graph of standard deviation of cost value against iterations 51

using System B, (a) ρ=0.5 and (b) ρ=1.5

Figure 4.14 Graph of standard deviation of cost value against iterations 52

using System C, (a) ρ=0.5 and (b) ρ=1.5

Figure 4.15 Step response of System A with Grey Wolf Algorithm and 55

Dragonfly Algorithm for (a) ρ = 0.5 and (b) ρ = 1.5

Figure 4.16 Step response of System B with Grey Wolf Algorithm and 58

Dragonfly Algorithm for (a) ρ = 0.5 and (b) ρ = 1.5

Figure 4.17 Step response of System C with Grey Wolf Algorithm and 61

Dragonfly Algorithm for (a) ρ = 0.5 and (b) ρ = 1.5

xi

LIST OF SYMBOLS AND ABBREVATIONS

SYMBOLS

Kp Proportional Gain

Ki Integral Gain

Kd Differential Gain

Mp Peak Overshoot

ess steady-state error

Tr Rising time

Ts Settling time

ABREVATIONS

ABM Agent Based Modelling

CSO Cat Swarm Optimisation

DA Dragonfly Algorithm

DF Dragonfly

FOPID Fractional Order Proportional-Integral-Differential

GW Grey Wolf

GWO Grey Wolf Optimizer

PID Proportional-Integral-Differential

SI Swarm Intelligence

xii

PENGOPTIMUMAM PENGENDALIAN PID MENGGUNAKAN

PENGOPTIMUM SERIGALA PUTIH DAN ALGORITMA PEPATUNG

ABSTRAK

Optimisasi adalah satu cara untuk mencari keseimbangan dalam reka bentuk yang

perlu ditoleransi antara faktor yang tertentu seperti kecerdasan dan kos. Dalam bidang

kejuruteraan, salah satu optimisasi yang biasa dijumpai adalah optimisasi pengawal

kadaran-kamiran-bezaan (PID). Optimisasi pengawal berkadar-integral-berbeza (PID)

adalah susah kerana terdapat tiga parameter yang hendak dikawal, parameter kadaran,

Kp, parameter kamiran, Ki, dan parameter bezaan, Kd. Dalam kajian ini, kepintaran

berkumpulan digunakan untuk menyelesaikan masalah optimisasi. Algoritma serigala

kelabu dan algoritma pepatung dipilih. Tiga sistem pangkal dipilih. Sistem pertama

adalah berdasarkan sistem bola dan gelung, dan sistem kedua pula berdasarkan sistem

servo motor arus terus. Sistem yang terakhir berdasarkan sistem motor berberus arus

terus. Fungsi objektif untuk kajian ini adalah fungsi kos. Kriteria untuk fungsi kos adalah

Mp, puncak lanjakan, ess,ralat keadaan mantap,Ts, masa penetapan and masa kenaikan,

Tr. Walau bagaimanapun, untuk mengunakan algoritma sepenuhnya, parameter algoritma

perlu ditetapkan sebaiknya. Dalam kajian ini, nombor agen pencarian untuk kedua-dua

algoritma. Kriteria berhenti juga perlu ditetapkan. Dalam kajian ini, nombor maksima

kitaran untuk kedua-dua algoritma. Keputusan yang dijangkan adalah kedua-dua

algoritma dapat mengoptimumkan pengawal berkadar-integral-berbeza (PID). Namun

begitu, prestasi untuk setiap sistem dijangkan berbeza daripada algoritma yang berbeza.

xiii

OPTIMISATION OF PID CONTROLLER USING GREY WOLF OPTIMIZER

AND DRAGONFLY ALGORITHM

ABSTRACT

 Optimisation is a method to find a balance performance when the design has to

compromise between a certain factors, which affects fitness and cost. In engineering field,

one of the common optimisation problem is optimisation of PID controller. Optimisation

is difficult to optimise as there are three parameters that need to be tuned, Kp, Integral

parameter, Ki, and derivative parameter, Kd. In this research, swarming intelligence is

used to solve optimisation problem. Grey Wolf Optimizer and Dragonfly Algorithm were

chosen. Three plant system were used in this study. First system is based on the ball and

hoop system and second system is based on the DC servo motor. Last system is based on

the brushed DC motor. Objective function in this research, cost function was chosen. The

criteria of the cost function are low peak overshoot, Mp, low steady-state error, ess, low

settling time, Ts, and low rise time, Tr. However, to fully utilize the algorithm, the

parameter of the algorithm need to be set properly. In this case, the right number of the

search agents for both algorithm. The stopping criteria also need to be identified. In this

study, maximum number of iterations is the stopping criteria. The expected result is the

algorithms are able to optimise the PID controller. However, the performance of system

is expected to be different from different algorithm.

1

CHAPTER 1

INTRODUCTION

1.1 Research Background

 Search algorithm is an algorithm that used to achieve a certain objective in

problem domain [1]. The appropriate search algorithm is chosen depending on the

problem domain. The problem can be optimisation, classification or satisfaction

problem. Optimisation problem is the problem of searching the finest solution from all

possible solutions. The problems can be split into two categories depending on the

variables either it is continuous or discrete. The discrete optimization is searching for an

object such as an integer, permutation or graph from a finite while the continuous

optimization is usually involving constrained problems and multimodal problems.

Essentially, the aim of objective optimisation is to minimise or to maximise the value of

a function [2].

 For this comparative study, meta-heuristic algorithm which is part of stochastic

optimisation algorithms was studied. The algorithm used in this research was Grey Wolf

Optimizer (GWO) and Dragonfly Algorithm (DA). It is one of the subclass of meta-

heuristics, Swarm Intelligence (SI) methods [3]. For the example, one of the swarm

intelligence is Cat Swarm Optimization. Cat Swarm Optimization (CSO) is actually an

algorithm influenced based on the natural behaviour of the cat. Cats is one of the animal

that seen to spend their time in resting but actually they have high alertness and curiosity

about their surroundings and moving objects in their environment. This behaviour helps

cats in tracking and hunting them down. While resting, they actually conserve their

energy. According to Chu and Tsai, there are 2 main mode of the cats, which are seeking

mode and tracing mode. During seeking mode, the cat is resting while keeping an eye on

its environment. They decide to move when they sense a prey or danger. If the cat decides

to move, it does that slowly and cautiously. The second mode is tracing mode. The tracing

mode simulates the cat chasing a prey. After finding a prey while seeking mode, the cat

decides its movement speed and direction based on the prey‘s position and speed. This

algorithm is terminated if the cat hunt down a prey [4].

2

 The performance of the algorithm is measured in terms of optimising Proportional

–Integral- Derivative (PID) controller. Especially in the industry, Proportional-Integral-

Derivative (PID) controller is one of the common controller that have been used.

Proportional-Integral-Derivative (PID) controller consists of a few tuning parameters that

need to be optimised [5].The tuning parameters are Proportional gain (Kp), Integral gain

(Ki) and Derivative gain (Kd). The summation of proportional, integral and derivative

terms as shown in Equation 1.1 is the output of the PID controller.

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
+ 𝐾𝑑

𝑑

𝑑𝑡
𝑒(𝑡) 1.1

Tuning a Proportional-Integral-Derivative (PID) controller is quite a hassle even

though it only has 3 parameters. These parameters need to tune properly as it will the

transient response of the system. For example, overshoot (Mp), rise time (Tr), steady state

error (ess) and settling time (Ts) in the step response of a closed-loop time system. The

selection of the parameters is important so that it meets the design requirements [6].

There is a lot of methods that have been proposed to optimise PID controller such as

manual tuning, Ziegler- Nichols and Tyreus Luyben method. However, these methods

also have certain limitation. For example, manual tuning requires personal experience

and, some trial and error. Ziegler-Nichols adjusts the controller for one fourth of

amplitude damping response, which overshoots and fluctuate a bit, leaves the controller

with very little sturdiness, which can lead to loop instability [7].

Since there are some shortcomings of the mentioned above methods, meta-

heuristic optimization techniques is another option. The algorithms inspired from the

behaviour of animals such as spider, ant and bees [8]. The reason why they are preferable

because meta-heuristics are simple. They are related to simple concept such as physical

phenomena, animals’ behaviours or evolutionary concepts. The directness of them allow

scientists to learn, stimulate, propose, combine, improve and apply them. Second, they

are so flexible that they can be apply to different problem. Third, they are suitable for real

problems with fancy and unexplored derivative information. Finally, they are good for

avoiding to local optima and optimizing hard real-time problem [8].

 The effectiveness of the algorithm was compared by thoroughly analysing the

minimisation of objective function. In this study, the objective is to reduce the cost

function. The algorithm must be able to find the optimal solution in order to reduce cost

function. Minimal overshoot, fast rise time and settling time and smaller steady state

3

error. These criteria is known as cost function [9]. It will be used to evaluate the solutions

in order to find the best solutions among the feasible solutions.

1.2 Problem Statement

 In the engineering world, the optimisation problem is always a challenge to the

engineer to solve it as the size and complexity are also increased. However, as the

technology is developing, more algorithms are developed such as Genetic Algorithm,

Simulated Annealing and Ant Colony Optimizer. Lately, nature-inspired metaheuristics

is getting a lot attention. Many recent metaheuristics are being developed. These

metaheuristics depend on how the nature phenomenon simulated. Nonetheless, these

approaches are not very accurate and they not always returning an optimal result. As they

are simulating the nature phenomenon, the simulation is not perfect as they are bound to

the rules of Agent Based Modelling (ABM). Recent years, new algorithms are developed

to compensate these drawbacks. In order to review the performance of selected algorithm,

parameters of PID controller are used to test the algorithms in real world application.

1.3 Objectives of research

 The aim of this research to study the performance of Grey Wolf Optimiser (GWO)

and Dragonfly Algorithm (DA) for tuning the parameters Kp ,Ki and Kd of PID controller.

Below are the objectives to be achieved from this study:

 To optimise PID controller using Grey Wolf Optimiser (GWO)

 To optimise PID controller using Dragonfly Algorithm (DA)

 To compare the performance of Grey Wolf Optimizer and Dragonfly Algorithm

4

1.4 Scope of research

 This study solely focus on optimising the parameters of PID controller to achieve

optimum result. Proportional-Integral-Derivative (PID) controller consists of a few

tuning parameters that need to be optimised. The tuning parameters are Proportional gain

(Kp), Integral gain (Ki) and Derivative gain (Kd). But, tuning a Proportional-Integral-

Derivative (PID) controller is a difficult problem even though it only has 3 parameters.

The PID controller parameters must be properly chosen because the selection of

parameter will be affecting the transient response of the system. For example, overshoot

(Mp), rise time (Tr), steady state error (ess) and settling time (Ts) in the step response of a

closed-loop time system.

 The objective of this optimisation is to reduce the cost function of the PID

controller. The best possible results of PID controller parameters depend on cost function.

The cost function is the transient response of the system. The criteria are minimal peak

overshoot, Mp, steady state error, ess, rise time , Tr, and settling time, Ts [7].

1.5 Thesis Outline

 This thesis consists of five chapters which include Introduction, Literature

Review, Methodology, Result and Discussion, Conclusion and Future Work. Chapter 1

mainly explain about the project overview, problem statement and objectives of this

study. Next, chapter 2 consists of basic concept of optimisation, optimisation algorithms

and categories of optimisation methods such as heuristics and meta-heuristic methods.

This part elaborates the development and implantation of Grey Wolf Optimiser (GWO)

Algorithm in optimisation PID controller. In addition, explained the impact of controller

parameters to optimize the cost and time by utilizing GWO. Chapter 3 presents about the

methodology, design and implementation of GWO in this problem. Also, includes the set

of variables and control parameters used as well procedures in order to design solution

via MATLAB. Chapter 4 simply presents the results of simulations and analyses the

optimum solution for this system. Besides, this section discuss about the minimisation of

cost function as objective function. Chapter 5 presents the conclusion that can be drawn

based on the carried out results. Finally, considerate the future work which related to this

study.

5

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, several research papers related to search algorithm, concept of

optimisation, metaheuristic and swarming intelligence are reviewed in section 2.2 until

section 2.4.1. Those two algorithms that used in this research, Grey Wolf Algorithm

(GWO) and Dragonfly Algorithm (DA) are briefly explained in section 2.4.2 and 2.4.3.

Section 2.6 is the summary of chapter 2.

2.2 Search Algorithm

 Search algorithm is an algorithm that used to find a target or more within a search

space. It is also called as “Storage and Retrieval Information” or “Table Look-up”. The

search process is mimic the process of gathering information in a computer memory in a

way that it can be obtained instantly. The data can be saved for next call or deleted for

computational purposes. The saved data need to be organized for a fast retrieval. A very

simple search algorithm is a way to find the data that has been saved with a given clue.

The problem is to find a precise one in the given search space. The search space is usually

the space that contains potential candidate for solution. Each candidate or data is unique.

The data will be tested for identification purpose. After the search is done, the result can

be only successful or unsuccessful [10]. A very simple and famous search algorithm is

Brute Force Algorithm. Brute Force Algorithm is basically sequential searching. It start

the search at the very beginning, and go on until a suitable solution is found. This

searching procedure is an obvious way to search something. The problem is if the search

space or number of candidates is very large, it take long time and waste of computational

power. However, it is a useful algorithm as it is a base for search algorithms[11].

6

2.3 Concept of Optimisation

 Optimisation is one of the important process in engineering world. Optimisation

is a method to find a balance performance when the design has to compromise between

a certain factors, which affects fitness and cost [12]. Practically, optimisation must be

able to produce low cost design without sacrifice the fitness. So, criterion must be set in

order to define the optimised solution. The criterion is also called as objective function.

The objective can be either minimise cost function or maximise fitness function [13].

Objective function is important in order to compare all possible solutions. The best

solutions will be selected. This is why sometimes optimisation has more than one

objective function, which is also known as multiobjective function. Cost function is a

function of error, which usually is difference between desired output and actual output

[9]. Fitness function is usually a function to determine the degree of achieving the

intended target. Cost function and fitness function are reciprocals of each other. The

algorithm that used for optimisation is called optimisation algorithm [14].

2.4 Metaheuristic

 One of the solution to optimisation problem is metaheuristic. Metaheuristic is a

high level heuristic invented to find a solution to an optimisation problem. Metaheuristic

is surprisingly useful for solving optimisation problem that without complete information

or enough computational power. Lately, nature-inspired metaheuristics are getting a lot

of attention. Nature-inspired metaheuristic are inspired by system of nature. There are a

few reasons why metaheuristics are worth getting attention [8]. First, they are simple.

Mostly they are inspired by simple concept that can be easily understand. The inspirations

are usually related to physical phenomena, animals’ behaviour or evolutionary concepts

[15]. The simplicity allow the computer scientists to simulate the phenomena using

software. Second, mostly metaheuristics are flexible as they are easily can be apply to

any structure. They are not bound to any special conditions to make them work since

problems usually will be assumed as black boxes problems. Third, they have derivation-

free mechanism. They mostly start the solutions randomly without enough information

regarding the solution. Finally, they have abilities to avoid or trap in local optima

7

compared to the other optimisation methods. This is due to stochastic nature of

metaheuristics which let them to avoid local solutions and search the entire search space

[5].

2.4.1 Swarming Intelligence

 Swarm is defined by a huge quantity of alike, simple agents communicating

locally among themselves, and their habitat, with no central control to let a global

beautiful behaviour to combine. Swarm-based algorithms usually is inspired by nature.

These algorithms are capable of generating low cost, fast and robust solutions to certain

problems. The agents of swarming intelligence usually are insects, birds or swarm

individuals. They are modelled using Agent Based Modelling (ABM) to simulate the

interaction the swarming behaviour with limited capabilities [16]. The interaction can be

categorised into two, direct and indirect. Indirect interaction usually occurs when the

agent communicating each other through visually or audio [5]. For example, in Bees

Colony Algorithm, the bees communicate each other through dance. Indirect interaction

happens when the agent change the environment and other agent react to that new

environment such in Ant Colony Optimisation, the ants release pheromone to indicate the

trails from food sources to their colony. As for Lion Optimization, it was based on the

special lifestyle of lions and their cooperation characteristics [17]. Swarm Intelligence

have been successfully applied in different type of problems such as optimisation

problems, optimal routes, scheduling and structural optimisation [8]. Although Swarming

Intelligences have a lot of potential, it also has a few limitations. First, it is advisable to

not apply swarming intelligence in time critical applications as it consumes a lot of time

to apply. Second, the tuning parameters are unpredictable and might react differently

based on problem domain. Third, it is possible for the intelligence to stagnate. They

might trap in a same solution or local solution no matter what tuning parameters are [11].

8

2.4.2 Grey Wolf Optimizer (GWO)

Grey Wolf Optimizer is a nature-inspired metaheuristic proposed by Seyedali

Mirjalili [18]. Grey Wolf Optimizer is basically an algorithm influenced based on the

social behaviour of grey wolves, group hunting in addition to the social hierarchy of

wolves in the pack. Based on the figure 2.1, the pack is dominated by alphas, followed

by beta, delta and omega. The alpha wolves are the leader and responsible for making

decisions for the pack. The betas are subordinate wolves that advice alpha in decision

making. The omega plays the role of scapegoat and must submit to all the other dominant

wolves. In order to model the social hierarchy of wolves, the fittest solution is considered

as alpha followed by beta, delta and omega respectively.

Figure 2.1: Hierarchy of grey wolf (dominance decreases from top to bottom) [18]

From the figure 2.2, the main phases of grey wolves hunting are searching for

prey, encircling prey and attacking prey. In the first phase, they will move in the pack

and search for suitable prey. They usually preferred ungulates, large hoofed animals such

as deer and elk. As they found their prey, they may trail their pray before moving into the

next phase, encircling prey. In this phase, they will encircle prey. They will encircle the

prey for a few times to adjust their position accordingly to prey in order to estimate the

position of the prey. They will constantly update their position randomly around the prey.

Lastly, the final phase, attacking prey. They will finish hunt by attacking the prey when

it stops moving. The prey position is the best solution. Figure 2.3 shows the pseudo code

of Grey Wolf Optimizer.

9

Figure 2.2: Hunting behaviour of grey wolves [18]

Grey Wolf Optimizer starts the algorithm by initializing the population of grey

wolf. Then, the basic parameter of the algorithm (refer Section 3.31) will be initialized.

The fitness of each search agent will be calculated. The best agent will be set as alpha,

followed by beta and delta. The search agent will start to move according to hunting

behaviour. For every iteration, the search agent will be updating the position. The fitness

of each agents will be calculated again. The fitness by alpha, beta and delta will be

updated. This operation will be repeated until the algorithm meets the maximum number

of iterations.

10

Figure 2.3: Pseudo code of Grey Wolf Optimizer [19]

2.4.3 Dragonfly Algorithm (DA)

 Dragonfly algorithm is another algorithm that designed by Seyedali Mirjalili [20]

. Dragonfly is basically an algorithm inspired from the static and dynamic swarming

behaviours of dragonflies. The modelling is designed based on the action, finding for the

foods and by passing enemies when swarming dynamically or statically. Based on the

figure 2.4, the former is called static swarm (feeding) while latter is called dynamic

swarm (migration). In static swarming, dragonflies make small- scaled groups and fly

and back and forth over a narrow are to hunt the preys. Local movements and abrupt

changes in the flying path are the major characteristic of static swarm. In dynamic swarm,

a huge quantity of dragonflies make the swarm for migrating in one direction over

expanded distances. These two behaviours are very alike to two main phases of

Initialize the grey wolf population

Initialize a, A , and C

Calculate the fitness of each search agent

 Xa = the best search agent

 XB = the second-best search agent

Xd = the third search agent

while (t < Max number of iterations)

 for each search agent

 Update the position search agent

 end for

 Update a, A and C

 Calculate the fitness of all search agents

 Update Xa , XB and Xd

 t=t+1

end while

return Xa

11

optimization, which are exploration and exploitation. In exploration, dragonflies make

small groups and fly over different areas in a static swarm. In exploitation phases,

dragonflies fly in large group and fly along one direction.

Figure 2.4: Static versus dynamic dragonfly swarm [20]

From the figure 2.5, the behaviour of swarms is following three basic principles;

separation, alignment and cohesion. Separation refers to the static collision prevention of

the individuals from the others in the neighbourhood. Alignment signifies velocity

matching of individuals to that of other individuals in neighbourhood. Cohesion refers to

the percentage leaning of individuals towards the centre of the mass of the

neighbourhood. The nature of any animal is survival, so all individuals will be attracted

to food sources and distracted outward enemies [21]. Figure 2.6 shows the pseudo code

of Dragonfly Algorithm.

12

Figure 2.5: Primitive pattern of behaviour of dragonflies in a swarm [20]

The algorithm starts with initializing the dragonflies’ population and step vectors.

For every iteration, the fitness of each dragonfly. The position of the food source and

enemy will be updated. Update the dragonfly algorithm parameter (refer Section 3.4.1).

Calculate the score of each primitive pattern of behaviour. If the number of dragonfly in

a neighbourhood is more than one, update vector position and velocity. If the number of

dragonfly in a neighbourhood is less than one, perform update vector position. Each

dragonfly update the position. This operation will be repeated until the algorithm meets

the maximum number of iterations.

13

Figure 2.6: Pseudo code of Dragonfly Algorithm (DA) [20]

2.5 Related research work on PID controller tuning

 Optimization of PID controller using swarming intelligence have been done and

numerous related research paper regarding it. They have been applied in different kinds

of subject areas and systems. Various research papers were deeply reviewed to enhance

the understanding of concept of optimization. Different algorithm has different

advantages and drawbacks on certain types of problems.

Initialize the dragonflies population Xi (i = 1,2,…n)

Initialize step vectors ∆𝑋𝑖 (i = 1,2,….n)

while the end condition is not satisfied

 Calculate the objective values of all dragonflies

 Update the food source and enemy

 Update w, s, a, c, f and e

 Calculate S, A, C, F, and E using Eqs. (3.1) to (3.5)

 Update neighbouring radius

 If a dragonfly has at least one neighbouring dragonfly

 Update velocity vector using Eq. (3.6)

 Update position vector using Eq. (3.7)

 else

 Update position vector using Eq. (3.8)

 end if

 Check and correct the new positions based on the boundaries of variables

end while

14

2.5.1 Optimization PID controller using GWO algorithm for speed control in

DC motor

 A research proposed by Kaushik Ranjan Das [22]. The project is conducted to

study the performance of a PID controller used in DC motor speed control, which

optimizes by a nature inspired metaheuristic, GWO. Adaptive PID controller design to

adopt a second order DC motor system. The optimization algorithm used in this study is

Grey Wolf Optimizer to optimize the controller. Using MATLAB, the best set of PID

parameters is obtained from the optimization with a step input to the DC motor to get the

transient response specifications. The transient response specification such as rise time,

settling time, maximum overshoot and steady state error, was recorded. These results are

compared with other results from the other conventional techniques. The other techniques

were Ziegler Nichols (ZN), Particle Swarm Optimization (PSO) and Artificial Bee

Colony (ABC). Compared to the other techniques, GWO was able to give the best results

for the rise time, settling time and peak overshoot, which the values are the minimum

compare others. But, steady state error for GWO is higher than PSO and ZN.

2.5.2 Optimization of Fractional Order PID (FOPID) based temperature

control of bioreactor

 A project proposed by Dharmendra Tiwari. The project is focused on precise

temperature control of bioreactor. The control of the process is difficult because of its

highly nonlinear and dynamic nature. The proposed solution is using Fractional Order

PID (FOPID) controller for the temperature control of bio reactor. Three algorithm were

used to evaluate the design parameters, which are Dragonfly Algorithm, Genetic

Algorithm and Simulated Annealing (SA). The performance of the design of each

algorithm were evaluated [23]. The transient responses from each algorithm are observed.

The result is DA converges significantly faster as compared to GA and SA. DA also

minimizes the cost function slightly better compared to the other two algorithms [24].

The performance of FOPID designed by DA is better than the others two algorithms. The

FOPID gave minimum value of set point tracking and disturbance rejection. The

15

conclusion from this project that FOPID is better solved by DA rather than Genetic

Algorithm and Simulated Annealing. Dragonfly algorithm is more robust and efficient.

2.6 Chapter Summary

 In this chapter, it can be summarised that engineering problems especially

optimisation problem need right optimisation technique to obtain optimum results.

Optimisation problems need to be optimised with respect to objective function either

fitness function or cost function. Based on objective function, it will be used to measure

the performance of the system that need to be optimised. The right optimisation algorithm

able to give an optimum results. Metaheuristics is one of the preferred optimisation

technique as they are simple, flexible, free-derivation mechanism and ability to avoid

local optima. One of the metaheuristics subclass is nature-inspired metaheuristic. One of

the branch of the nature-inspired metaheuristic is swarming intelligence. Swarming

intelligence is preferable because it is low cost, fast and robust to certain problems. The

swarming algorithms used in this study are Grey Wolf Optimizer and Dragonfly

Algorithm. The concept and idea of these algorithms were explained briefly. Based on

the concepts of optimisation, these algorithms is applied to optimise and tune PID

controller parameters.

16

CHAPTER 3

METHODOLOGY

3.1 Introduction

 This chapter presents the optimisation of tuning PID controller parameters by

implementing Grey Wolf Optimizer (GWO) and Dragonfly Algorithm (DA). In this

section, the variables and parameters set in the algorithm is included as well as procedures

to create basic design using MATLAB. The methods to evaluate the performance of the

algorithms are also included.

3.2 Closed-Loop System and Optimisation Problem Design

 Optimisation problems usually associated to specific domain of problems.

Choosing a right method for optimisation is essential as different method give different

output. Aside from method of optimisation, there are still a few factors that need to be

considered as they also can affect the performance. They are parameter settings,

robustness of objective function and scalability of constraints.

3.2.1 System Plant

 The closed-loop plant response of the PID controller was modelled in MATLAB

R2017b and executed using workstation powered by Intel Core i7 8700K, Base Clock @

3.70 GHz. A closed-loop response system was designed so that the step response can be

compared with that of the closed-loop system that optimised with Grey Wolf Optimizer

and Dragonfly Algorithm. A plant transfer function is needed to design the closed- loop

system. Three different plant transfer function were chosen from research papers.

According to Pareek et al. [5], Gp1 (System A) was used while one from a research paper,

Gp2 (system B) by Wadhwani and Verma [7]. Another one, Gp3 (System C) from a

17

research paper by A.A.M Zahir and S.S.N. Alhady [25]. The System A is based on the

ball and hoop system [5]. The System B is based on the DC servo motor. The last system,

System C is represent the brushed DC motor for cart follower system [25].The plant

transfer functions, System A, System B and System C are representing as Equation 3.1,

Equation 3.2 and Equation 3.3 respectively. The transfer function of PID controller, Gc

(s) in Laplace form is represented by Equation 3.4 since PID controller is integrated in

this design.

𝐺𝑝1(𝑠) =
1

𝑠4+6𝑠3+11𝑠2+6𝑠
 (3.1)

𝐺𝑝2(𝑠) =
0.01

0.005𝑠3+0.06𝑠2+0.1001𝑠
 (3.2)

𝐺𝑝3(𝑠) =
104.9

𝑠2+103.5𝑠+2617
 (3.3)

𝐺𝑐(𝑠) = 𝐾𝑝 + 𝐾𝑑𝑠 +
𝐾𝑖

𝑠
 (3.4)

The general transfer function, T(s) of the systems are as follows:

𝑇(𝑠) =
𝐺𝑝(𝑠)𝐺𝑐(𝑠)

1+𝐺𝑝(𝑠)𝐺𝑐(𝑠)𝐻(𝑠)
 (3.5)

Hence the transfer function of system A and system B are represented by Equation 3.6,

Equation 3.7 and Equation 3.8.

𝑇1(𝑠) =
𝐾𝑑𝑠2+𝐾𝑝𝑠+𝐾𝑖

𝑠4+6𝑠3+(11+𝐾𝑑)𝑠2+(6+𝐾𝑝)𝑠+𝐾𝑖
 (3.7)

𝑇2(𝑠) =
0.01𝐾𝑑𝑠2+0.01𝐾𝑝𝑠+0.01𝐾𝑖

0.005𝑠3+(0.06+0.01𝐾𝑑)𝑠2+(0.1001+0.01𝐾𝑝)𝑠+0.01𝐾𝑖
 (3.8)

𝑇2(𝑠) =
104.9𝐾𝑑𝑠2+104.9𝐾𝑝𝑠+104.9𝐾𝑖

(1+104.9𝐾𝑑)𝑠2+(103.5+104.9𝐾𝑝)𝑠+(2617+104.9𝐾𝑖)
 (3.9)

Where H(s) is a unity feedback.

 The block diagram of PID controller is shown as figure 3.1. The system was

constructed using Simulink. The input of this system is step input. The output was

observed using scope.

18

Figure 3.1 Closed-loop system with PID controller

 In order to find the step response of the system, the PID controller parameters

were set up. All of these parameters were selected using PID Tuner App, which one of

the available application from Control System Toolbox, MATLAB. This app

automatically tune those three parameter as it was fed by plant transfer function. This

process was repeated for three times as for each system. The PID Tuner App implemented

Ziegler Nichols auto-tune method [26]. This method is tuning PID parameters rapidly

until it reaches the optimum result. For this study, the lower limit and upper limit were

not set as need to identify the range of parameter for each system [27]. Table 3.1 shows

the values of Kp, Ki, and Kd parameters. For system A, the highest value is 6.844, so the

upper boundary was set to 10. For system B, the highest value is 18.625, so the upper

boundary was set to 50. For system C, the highest value is 1662, however the upper

boundary was set to 1500 because computational power and time of execution need to be

considered. The dynamic performance specification for each system will be discussed

in Section 4.2.1.

Table 3.1: Values of Kp, Ki, and Kd parameters

Parameters System A System B System C

Kp 4.818 18.220 46.99

Ki 0.335 12.697 1662

Kd 6.844 18.625 0.28

3.2.2 Theory of Cost Function as Objective Function

 This research is focussing mainly on optimising PID controller by tuning PID

parameters. In other word, the optimised PID parameters should be able to produce step

response, which closely similar the step input. In order to identify whether the PID

19

parameters are optimised or not, certain criteria were observed using cost function.

Optimised PID must be able to give minimal cost function [9].

 The search space was defined by PID controller parameters. Three PID

parameters indicate three dimensional search space. Each axis was represented by Kp, Ki,

and Kd respectively. The combination of these three parameter were indicated by a single

point, which represent the step response. The performance will be evaluated using cost

function. The cost function consists of several element which can described the

performance. The cost function is represented by Equation 3.10. The elements that can

be obtained from cost function were peak overshoot, Mp, steady-state error, ess, rise time,

Tr and settling time, Ts. This cost function was chosen because it is well defined what a

good PID controller supposed to be. Minimal peak overshoot, minimal steady-state error,

short rise time and short settling time [28].

𝐹 = (1 − 𝑒−𝜌)(𝑀𝑝 + 𝑒𝑠𝑠) + (𝑒−𝜌)(𝑇𝑠 − 𝑇𝑟) (3.10)

Where 𝜌 is the scaling factor of designer’s choice

 According to Zwe-Lee, the value of 𝜌 can be set larger than 0.7 for low overshoot

and steady-state error while for short rise time and settling time, the value of 𝜌 can be set

less than 0.7 [29]. For this study, two values of 𝜌 were chosen, which are 0.5 and 1.5.

3.3 Grey Wolf Optimizer

3.3.1 Idealization of Grey Wolf Optimizer

 To simulate the grey wolf behaviour, the behaviours need to be expressed

mathematically. In order to model the encircling behaviour mathematically, equations are

as follow.

�⃗⃗� = | 𝐶 . 𝑋 𝑝(𝑡) − 𝑋 (𝑡)| (3.11)

𝑋 (𝑡 + 1) = 𝑋 𝑃(𝑡) − 𝐴 . �⃗⃗� (3.12)

Where t indicates the current iteration, 𝐴 and 𝐶 are coefficient vectors, 𝑋 𝑝 is the position

vector of the prey, and 𝑋 indicates the position vector of a grey wolf. The vectors 𝐴 and

𝐶 are calculated as follows.

20

𝐴 = 2𝑎 . 𝑟 1 − 𝑎 (3.13)

𝐶 = 2 . 𝑟 2 (3.14)

Where components of 𝑎 are linearly decreased from 2 to 0 over the course of iterations

and 𝑟1 , 𝑟2 are random vectors in [0, 1].

In order to model the hunting behaviour mathematically, alpha is assumed to have better

knowledge about the location of prey followed by beta and delta. So, the first 3 best

solutions obtained are saved and oblige the others agents. The equations are as follow.

�⃗⃗� 𝑎 = |𝐶 1. 𝑋 𝑎 − 𝑋 |, �⃗⃗� 𝐵 = |𝐶 2 . 𝑋 𝐵 − 𝑋 |, �⃗⃗� 𝑑 = |𝐶 3 . 𝑋 𝑑 − 𝑋 | (3.15)

𝑋 1 = 𝑋 𝑎 − 𝐴 1. (�⃗⃗� 𝑎), 𝑋 2 = 𝑋𝐵 − 𝐴2 . (𝐷𝐵),𝑋 3 = 𝑋 𝑑 − 𝐴 3 . (�⃗⃗� 𝑑) (3.16)

𝑋 (𝑡 + 1) =
�⃗� 1+ �⃗� 2+�⃗� 3

3
 (3.17)

Alpha, beta and delta estimate the position of the prey, and the other agents update their

position randomly around the prey.

In order to model the attacking behaviour mathematically, the value of 𝑎 in order

to mimic the grey wolves approaches the prey. 𝐴 is a random value in the interval [-2a,2a]

where a is decreased from 2 to 0 over the course of iteration. When random values of 𝐴

is between [1, 1], it indicates the wolves attack the prey.

In order to mathematically model divergence, 𝐴 is random values greater than 1

or less than 1 to oblige the agent to diverge from the prey. This forces the agents to search

globally. When 𝐴 less than 1, the wolves will attack the prey. But, if the values of 𝐴 is

larger than 1, the wolves will diverge from the prey.

Another component is 𝐶 , which contains random values in [0, 2]. This component

provides random weight for prey to emphasize (C >1) or deemphasize (C<1) the effect

21

of prey in defining the distance in equation (3.1). This is important in order to create a

more random behaviour through optimization and avoid local optima. The prey position

is the best solution. Grey Wolves Optimizer uses the basic parameters listed in table 3.2.

Table 3.2 shows the basic parameters that exist in Grey Wolf Optimizer.

Table 3.2: Basic parameters in Grey Wolf Optimizer (GWO)

Parameters Symbols

Number of search agents (grey wolf) SearchAgents_no

Parameter for equation 2.4 C

Parameter for equation 2.3 a

Cost function fobj

Number of variables dim

Maximum number of iterations Max_iterations

Lower boundary for each variable lbn

Upper boundary for each variable ubn

Number of boundaries Boundary_no

Upper boundary ub

Lower boundary lb

 In Grey Wolf Optimizer, SearchAgents_no refer to number of grey wolf in the

population. C and a parameter refer to equation 2.4 and 2.3. fobj refer the declared cost

function. dim refer to the number of variables of the search space. Max_iterations refers

to maximum number of iterations that the GWO will be executed. lbn and ubn refer the

lower upper boundary for each variable. Boundary_no specify number of boundaries.

Figure 3.2 show the flowchart of Grey Wolf Optimizer (GWO). The flowchart show the

flow on how the Grey Wolf Optimizer (GWO) works.

22

Figure 3.2: Flowchart of Grey Wolf Optimizer (GWO)

Start

Initialize the grey wolf population and

basic parameter of GWO, a,A and C

Calculate the fitness of each search agent

Assign the top three search agent

Xa = the best search agent

XB = the second best search agent

Xd = the third search agent

Is iteration,t

larger than max

number of

iterations?

Update the position search agent

Update a, A and C

Calculate the fitness of all search agents

Update Xa , XB and Xd

Increment iteration,t

End

NO

YES

23

Refer to the flowchart (figure 3.2), the algorithm start with initialize the grey wolf

population and basic parameter of GWO, which are A and C. The fitness of each search

agent will be calculated. The top three search will be assigned as alpha, followed by beta

and delta. Alpha is the fittest solution. The rest of the search agent will be assigned as

omega. The search agents will updated the position from prey. Update a, A, and C. the

fitness of all search agents will be calculated. The position of alpha, beta and delta.

Increment the value of current iterations. The algorithm will check the stopping criteria,

which is maximum number of iteration. If the number of the maximum of the iteration is

equal to the number of current iteration, the algorithm will stop. If not, the operation will

be continued with update the position of each search agent [30].

3.3.2 Setting of Grey Wolf Optimizer

The algorithm has its own specialised control parameters that can be tuned based on the

optimisation problem. This parameters is like an interface of the algorithm. The control

parameters are listed in Table 3.3.

Table 3.3: Set of control parameters (GWO)

Description Parameters System A System B System C

Number of search agents

 (grey wolf)

SearchAgents_no 30 30 30

Number of variables dim 3 3 3

Maximum number of iterations Max_iterations 200 200 200

Upper boundary ub 10 50 1500

Lower boundary lb 0 0 0

 Based on table 3.3, the number of grey wolf was set to 30. The number of

variables, dim was set to 3 because of three PID controller parameters, Kp, Ki and Kd. The

value of upper boundary, ub for each system was set differently. For system A, upper

boundary was set to 10. For system B, it was set to 50. For system C, it was set to 1500.

The value of upper boundary was set in such way because each system is different.

Referring to the Table 3.1, the value of Kp, Ki and Kd were different for each system. The

24

value of upper boundary need to set in a way that it was bigger than these values, so the

algorithm can cover these points when executed except for System C. As for System C,

it was capped to 1500 because if the value of upper boundary is set higher than that, it

need to take more times and computational power to executed. Lower boundary for each

system was set to 0 as the value of Kp, Ki and Kd need to be positive. Max iterations was

set to 200. The reason why this value was chosen discussed in Section 4.4.

All of these values were set up by declaring all those values in the beginning of

file initialisation.m. The objective function was saved as tracklsq.m file. This file was

interfaced with the m-file of Grey Wolf Optimizer. So, the variables were directly read

by algorithm.

3.4 Dragonfly Algorithm

 3.4.1 Idealization of Dragonfly Algorithm

 To simulate the dragonfly behaviour, their behaviour need to be expressed

mathematically. From the figure 3.3, the behaviour of swarms is following three basic

principles; separation, alignment and cohesion. Separation refers to the static collision

prevention of the individuals from the others in the neighbourhood. The separation

behaviour is mathematically represented as follows:

𝑆𝑖 = ∑ 𝑋 − 𝑋𝑗
𝑁
𝑗=𝑖 (3.18)

Where X is the position of the current individual, 𝑋𝑗 presents the position j-th

neighbouring individual and N is the number of neighbouring individuals.

Alignment signifies velocity matching of individuals to that of other individuals in

neighbourhood. The alignment behaviour is mathematically represented as follows:

𝐴𝑖 =
∑ 𝑉𝑗

𝑁
𝑗=1

𝑁
− 𝑋 (3.19)

Where 𝑉𝑗 shows the velocity of the j-th neighbouring individual.

Cohesion refers to the percentage leaning of individuals towards the centre of the mass

of the neighbourhood. The cohesion behaviour is mathematically represented as follows:

	Optimization of pid controller using grey wolf optimzer and dragonfly algorithm_Nik Muhammad Aiman Nik Mohamed Hazli_E3_2018_MJMS

