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PENGESANAN RETAKAN MIKRO DAN PENGURANGAN 

HINGAR DALAM PAKEJ LITAR BERSEPADU 

 

ABSTRAK 

Peningkatan penggunaan produk elektronik pada kebelakangan ini telah 

mengakibatkan peningkatan pengeluaran litar bersepadu (IC) untuk memenuhi keperluan 

pengguna. Oleh itu, ia adalah amat penting bahawa setiap IC diperiksa untuk kecacatan 

yang mampu menjejaskan tahap kualitinya. Ini memastikan bahawa tiada IC yang cacat 

digunakan dalam pembuatan produk elektronik yang boleh menjejaskan prestasi dan 

jangka hayat produk. Antara kecacatan yang terbabit ialah retakan mikro pada pakej IC. 

Pemprosesan imej digunakan untuk mengesan kewujudan retakan mikro pada pakej IC 

dan kaedah yang digunakan untuk mencapai matlamat ini ialah menerusi lingkaran 

dengan pelbagai inti dengan tatarajah yang berlainan. Kaedah ini memakan masa yang 

banyak kerana banyak tatarajah yang perlu ditala dan ia juga mudah terjejas dengan 

gangguan bunyi dari imej yang mengurangkan ketepatan pengesanan retakan mikro. 

Algoritma yang lebih baik diperlukan untuk meningkatkan prestasi pengesanan dari segi 

masa dan ketepatan. Tiga algoritma telah diuji dan dinilai dari segi pengesanan retakan 

mikro dan pengurangan gangguan bunyi dalam imej iaitu pengambangan berdasarkan 

kemungkinan, penyamaan histogram, dan resapan tak isotropi Perona-Malik yang diubah 

suai. Untuk algoritma yang pertama, kaedah pengambangan berdasarkan kemungkinan 

dibahagikan kepada dua bahagian iaitu (i) bahagian peruasan retakan dalam imej di mana 

bahagian retakan dalam imej akan dianalisa untuk mendapatkan nilai yang sesuai untuk 

pengambangan, dan (ii) bahagian pengurangan hingar dalam imej di mana imej tersebut 

akan dikenakan morfologi penutupan. Bagi algoritma yang kedua, kaedah penyamaan 

histogram, ia dibahagikan kepada tiga bahagian iaitu (i) peningkatan kontras imej 

menerusi penyamaan histogram, (ii) bahagian peruasan retakan dalam imej mengambil 

nilai piksel imej yang telah dikenakan penyamaan histogram dan ditolakkan dengan nilai 

piksel imej sebelum proses penyamaan histogram bagi setiap saluran dan gabungkan imej 

dari setiap saluran yang terhasil untuk menjadi satu imej baru, dan (iii) bahagian 

pengurangan hingar dalam imej menggunakan morfologi pembukaan. Dalam algoritma 

yang ketiga, kaedah resapan tak isotropi Perona-Malik yang diubah suai dibahagikan 

kepada tiga bahagian, iaitu (i) bahagian penonjolan retakan dalam imej yang akan 

memisahkan imej kepada saluran merah, biru, dan hijau dan meningkatkan ciri-ciri 
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retakan menggunakan resapan tak isotropi Perona-Malik yang diubah suai, (ii) peruasan 

imej retakan yang mengambil nilai piksel imej yang telah diresap dan ditolakkan dengan 

nilai piksel imej yang belum diresap bagi setiap saluran dan gabungkan imej dari setiap 

saluran yang terhasil untuk menjadi satu imej baru, dan (iii) bahagian pengurangan hingar 

dalam imej di mana imej tersebut akan dikenakan morfologi pembukaan dan seterusnya 

penapisan median. Imej yang diproses menerusi kaedah resapan tak isotropi Perona-

Malik yang diubah suai tersebut mempunyai hingar yang lebih kurang daripada kaedah 

pengambangan berdasarkan kemungkinan dan kaedah penyamaan histogram. Kaedah 

tersebut juga telah mengesan retakan yang wujud dalam tiga sampel daripada lima 

sampel yang diuji. Kaedah resapan tak isotropi Perona-Malik yang diubah suai telah 

dibuktikan mempunyai prestasi yang lebih baik secara relatifnya jika dibandingkan 

dengan dua lagi kaedah yang diuji.  
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MICROCRACK DETECTION AND NOISE REDUCTION IN 

INTEGRATED CIRCUIT PACKAGES 

 

ABSTRACT 

The rise in consumption of electronic products in the recent years have 

subsequently led to an increase in manufacturing of integrated circuits (ICs) to meet 

consumers’ demands. Thus, it is vital that each IC is inspected for defects that 

compromises its quality and usability. This ensures that no defective ICs are used in 

conjunction with the manufacturing of electronic products which may severely impact 

the end product’s performance and lifespan. One of the common defects is microcrack 

on the IC’s package. Image processing is used to detect the presence of microcracks on 

the IC and the method currently employed to achieve this is by convolution with multiple 

kernels with different configurations. However, this method is time consuming due to 

the multiple configurations needed to be tuned and is also susceptible to image noise 

which lowers the accuracy of the detected microcracks. Therefore, a better algorithm is 

desired to improve the detection performance in terms of time and accuracy. Three 

algorithms are tested and evaluated in terms of microcrack detection and noise reduction 

which are probability based thresholding, histogram equalization, and modified Perona-

Malik’s anisotropic diffusion methods. The first algorithm, probability based 

thresholding method consists of two stages, (i) image crack segmentation where the crack 

regions are analysed to obtain a suitable thresholding value, and (ii) image denoising 

where morphological closing is performed on the image. For the second algorithm, 

histogram equalization method has three stages, (i) image contrast enhancement through 

histogram equalization, (ii) image crack segmentation which subtracts the histogram 

equalized image with the image before histogram equalization process before merging 

the images using bitwise operation, and (iii) image denoising using morphological 

opening. The third algorithm, modified Perona-Malik’s anisotropic diffusion method 

consists of three stages, (i) image crack enhancement which separates the image into its 

red, green, and blue channels and enhances the crack features using modified Perona-

Malik’s anisotropic diffusion, (ii) image crack segmentation which subtracts the diffused 

image with the pre-diffused image before summing the grey values of the images together, 

and (iii) image denoising using morphological opening and median filter. Images 

processed using modified Perona-Malik’s anisotropic diffusion method produces images 
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with less noise compared to probability based thresholding method and histogram 

equalization method. The method has detected cracks present in three samples out of the 

five samples tested. The modified Perona-Malik’s anisotropic diffusion method is thus 

proven to produce relatively better performance compared to the other tested methods. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Research Background 

As more electronic based applications require the usage of ICs, the size of ICs 

have subsequently increased. The increase in size requires more space but the package 

dimensions that houses the ICs have been maintained or even reduced to become smaller 

and thinner. Widespread usage of ICs have also resulted in an expectation of lower 

manufacturing cost for the chips. To fulfil the needs for a lower cost, plastic packaging 

is used to house the ICs which are inexpensive packaging solutions (Hong and Lai, 2011). 

However, the restriction of IC package dimensions have resulted in an increase in 

mechanical stresses and may cause cracking in the development stage and popcorn effect 

which stresses the plastic packaging during fabrication resulting in external package 

cracks (Hong and Lai, 2011).  These cracked packages will be rejected as the 

compromised mechanical integrity of an IC package may cause it to fail prematurely or 

immediately with no indication of degradation in electrical performance (Ma et al., 2007). 

 
Figure 1.1: Image of crack on IC package (Retrieved from 

http://www.mcdry.asia/html/main1.html Copyright 2007 by ERC Co., Ltd.) 

 

Figure 1.1 illustrates an example of an IC package with a crack on the plastic 

package. These cracks are undesirable and a method that utilizes a software approach to 

detect it is desired. 

 

 

 

http://www.mcdry.asia/html/main1.html
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1.2 Problem Statement 

In general, a method is needed to detect the presence of microcracks on IC 

packages. There have been several researches done in microcrack detections with some 

employing different image acquisition techniques only while some also use image 

acquisition with image processing and others are non-imaging based (Abdelhamid et al., 

2014; Trautmann et al., 2012). Imaging based image acquisition produces an image of 

the surface being inspected and an image that is sharp and clear is desired to ensure that 

the detection of microcracks (if any) is accurate. Optical transmission which involves the 

usage of a camera and a light source (Abdelhamid et al., 2014; Ke et al., 2010) and 

luminescence imaging which captures light emissions from nonthermal energy sources 

are examples of imaging based image acquisition (Abdelhamid et al., 2014; Teo and 

Abdullah, 2016). Non-imaging based crack detections involves mechanical bending such 

as twist-test to detect the presence of cracks (Trautmann et al., 2012) or via ultrasonic 

inspections (Abdelhamid et al., 2014; Ma et al., 2007). However, all images used in this 

project are captured via optical transmission. Non-imaging methods become unsuitable 

as it requires specialized hardware to detect the cracks. 

After image acquisition, image processing is needed to obtain the microcrack 

features. Some of the methods that can be used to achieve this are the usage of 

percolation-based image processing (Yamaguchi et al., 2008), thermography (Cheng and 

Tian, 2011; El-amiri et al., 2016; Liu et al., 2013; Noethen et al., 2010; Zhao et al., 2017), 

machine learning (Choudhary and Dey, 2012; Gaith et al., 2015; Kim et al., 2001; Maazi 

et al., 2008; Saar and Talvik, 2010), and edge detection techniques that utilizes histogram 

equalization (Ke et al., 2010; Parveen and Sathik, 2009; Qiu et al., 2012; Zhuang et al., 

2004), anisotropic diffusion filters (Anwar and Abdullah, 2014; Oliveira and Correia, 

2010; Tang and Gu, 2013; Tsai et al., 2010), and probability based thresholding (Wu et 

al., 2011). However, these researches are based on cracks on solar cells, silicon wafer 

cells, concrete surfaces such as walls and bridges, and pavements. Researches on 

implementation of image processing methods for crack detection of IC packages is 

limited.  
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1.3 Objectives 

The objectives of this research are as follows: 

1) To investigate a suitable method that reduces noise in acquired image without 

losing significant features for microcrack detection 

2) To analyse a method that can detect microcracks on IC packages 

3) To evaluate the performance of tested methods in microcrack detection 

 

1.4 Scope of Project 

This project focuses on the image processing application in crack detection. It will focus 

on the image processing portions with crack segmentation and noise reduction as the 

main concern.  

 This research will be conducted using OpenCV imaging library version 2.4.13.4 

and will be developed in a C++ environment using Microsoft Visual Studio 2017. The 

imaging library contains a variety image processing functions that will be useful in the 

image processing areas of the project. 

 Image acquisition is not a concern in this project and all images used are provided 

by ViTrox Corporation Sdn. Bhd. The provided images are coloured images with the 

image file type of TIFF (.tiff).  

 

1.5 Thesis Outline 

The thesis is arranged into five chapters in the following order: Introduction, 

Literature Review, Methodology, Results and Discussion, and Conclusion. In Chapter 1, 

the research background, problem statement, objectives, and scope of the project are 

defined and explained.  

In Chapter 2, a literature review of digital image processing and crack detection 

methods is presented. The concepts of digital image processing on contrast enhancement, 

noise filtering, and edge detection are reviewed in this chapter. Five existing methods on 

crack detection are discussed and a comparison of their advantages and disadvantages is 

evaluated. 

In Chapter 3, the methodology of this project to achieve the objectives from 

Chapter 2 is presented. Three methods are tested and the overall flow of each method is 

presented. An explanation about the implementation of the techniques will be provided. 

Explanation about the data samples and analysis of the project are presented as well. 
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In Chapter 4, the results from the methods presented in Chapter 3 are presented 

and evaluated. Three different sets of results from three different methods are presented. 

A discussion of their performance and effectiveness will be included as well.  

In Chapter 5, the conclusion of the work presented in this project is presented 

along with suggestion for future works.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

Image processing is a method that analyses and processes image to extract 

features in that image. It can also be used to enhance an image in terms of contrast or 

noise reduction. There are many applications to image processing and in this project, the 

focus will be towards crack detection in IC packages.  

In Section 2.2, the focus will be on image processing where the concepts of digital 

image, contrast enhancement, noise filter, and edge detection will be presented. This is 

followed by a review of applications of crack detections using image processing in 

Section 2.3 where five different methods in crack detections are reviewed. A summary 

of this chapter is presented in Section 2.4. 

 

2.2 Image Processing 

Image processing is used to manipulate an image for the purpose of enhancing an image 

or extracting certain features from an image. In general, these operations are performed 

on digital images.  

 

2.2.1 Digital Image 

An image is visualized by a computer as a matrix of numbers where each elements of the 

matrix corresponds to the pixel intensity or values of the image at the spatial domain. 

The image can be expressed in several different formats namely the red, green, blue 

(RGB), greyscale, and binary format (i.e. the common format), and hue, saturation, and 

lightness/value (HSL/HSV) colour spaces (i.e. the uncommon format). A typical RGB 

image is visualized as a 3-dimensional matrix where the red, green, and blue colour 

spaces have their own n x m matrices where n and m are the size of the image in terms of 

length and height. The elements contained in these matrices will correspond to the value 

of red, green, and blue in the image and the combination of these three colours produces 

the coloured images. A conversion of coloured images to greyscale will convert the 

image into a 2-dimensional n x m matrix instead. An example of a RGB colour image 

and its corresponding greyscale image is shown in Figure 2.1. 
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 (a)                                           (b) 

Figure 2.1: Example of an image in (a) RGB colour space (b) greyscale (Dawson-

Howe, 2014) 

 

 

2.2.2 Contrast Enhancement 

Contrast enhancement aims to improve the image’s quality by enhancing the features of 

an image in terms of brightness. An example of an image with poor contrast and 

improved contrast is as shown in Figure 2.2.  

 
(a)                                  (b) 

Figure 2.2: Example of image (a)Original image with low contrast (b)Image with 

improved contrast after histogram equalization (Gonzalez and Woods, 2002) 

 

Two types of contrast enhancement are explored in this project which are histogram 

equalization and contrast limiting adaptive histogram equalization (CLAHE).  

 

2.2.3 Noise Filter 

Noise filtering is done to remove pixels from the image that have obscure useful 

information in an image. These noise pixels typically occur due to sensor noise or 

electronic noise. Some examples on the types of noise are shown in Figure 2.3. 
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(a)                                                                                             (b) 

 
(c)                                                                                             

Figure 2.3: (a)Original image (b)Original image with influence of Gaussian noise 

(c)Original image with salt and pepper noise (Dawson-Howe, 2014) 

 

Noise are typically removed using noise filters. Some examples of noise filters are 

median filter, Gaussian filter, and mean filter. These filters are masks of n x n sizes which 

are applied onto the image which modifies the value of pixel at the mask’s centre. 

 

2.2.4 Edge Detection 

Edge detection is used to identify regions where edges appear. This usually occurs in 

regions where there are sharp changes in gradient or regions where image brightness 

changes abruptly. Edge detection is typically classified into two categories which are first 

derivative and second derivative (Dawson-Howe, 2014). For first derivatives, it 

calculates a local maximum at the edge which is where rate of change is the highest while 

the second derivative results in a value that changes from positive to negative at the edge 

(Dawson-Howe, 2014).  

An example of a first derivative edge detection is Roberts operator as shown in 

Figure 2.4. The edges present in Figure 2.4 (a) are detected by Roberts operator and this 

is useful to obtain features in an image that occurs at places where there are changes in 

gradient. 
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(a)                                     (b) 

Figure 2.4: (a)Original greyscale image (b)Image after being applied with Roberts 

operator (Dawson-Howe, 2014) 

 

 

2.3 Crack Detection using Image Processing 

Image processing in crack detections are widely applied in crack detections for roads, 

pavements, bridges and walls. Some of the methods used by these detection techniques 

include anisotropic diffusion, histogram equalizations, probability based distribution, 

and percolation methods. However, none of these methods employ crack detection on IC 

packages which have smaller cracks in general.  

The current method being used to obtain the microcrack features involves 

convolving the image with several different configured kernels to detect the microcracks. 

However, this method is slow and consumes a lot of time due to the multiple 

configurations needed to be tuned for the kernels. Another drawback of this method is 

that it is more susceptible to image noise thus causing it to be inaccurate as it may detect 

image noise as cracks.1 

 

2.3.1 Crack Detection 

For crack detection in general, there are three approaches that can be used to detect cracks, 

namely image processing, the image acquisition, and integration of both methods. 

Typically image processing methods are purely software based where algorithms are 

used to enhance or extract the desired features. On image acquisition, this typically deals 

with hardware where different imaging techniques as stated in the paper (Abdelhamid et 

al., 2014) may be used such as photoluminescence or electroluminescence imaging  that 

                                                 
1 The information pertaining to the convolution method to obtain crack features was provided by ViTrox 

Corporation Berhad’s Machine Vision Systems - Standard (MVS-S) Department 



9 

 

obtains images from photon emissions. Another image acquisition method would be 

thermography which images the material under test with heat profiles (Cheng and Tian, 

2011; El-amiri et al., 2016; Liu et al., 2013; Noethen et al., 2010). SAM is also an image 

acquisition method which uses ultrasonic waves to quantify defects and anomalies (Ma 

et al., 2007; Sirivathanant et al., 2007). A mixture of both methods would process the 

acquired image further to interpret the detected features. 

 

2.3.2 State-of-the-art Crack Detection Methods 

Several methods have been used on the aspect of crack detection. The following sections 

explains five methods that have been conducted to detect cracks using image processing 

based solutions, hardware solutions, and an integration of both. 

 

2.3.2.1 Percolation Theory 

Tomoyuki and Shuji (2006), and Tomoyuki et al. (2008) used a percolation model to 

detect cracks on concrete structures. The percolation model is modelled based on liquid 

permeation and can describe the spread of epidemics, forest fires, and distribution of oil 

in oil fields (Stauffer and Aharony, 1994; Yamaguchi et al., 2008). In crack detection, 

this method attempts to reconstruct the crack features in the image from a focal pixel in 

the image. One of the methods proposed by them is seeding the image to obtain arbitrary 

pixels as focal pixels and percolate until a termination condition is reached in which the 

process repeats itself with another arbitrary pixel not bounded within the previously 

percolated regions (Yamaguchi and Hashimoto, 2006). Another method employs fast 

template matching and active search which serves to reduce computational burden by 

determining whether the focal pixel is a background pixel or crack pixel before beginning 

percolation (Yamaguchi et al., 2008). A similar approach was used by Praveen and 

Reshmi S (2014) to detect cracks on concrete wall surfaces while Yasuhiro et al. (2017) 

used it to detect cracks on road pavements. On the other hand, Bo et al. (2013) uses a 

percolation mask which utilizes canny edge detector to determine regions of pixels to be 

percolated to reduce computational burden which is employed in solar cells crack 

detection. All of the approaches (Feng et al., 2013; Kawasaki et al., 2017; Sekhar and 

Bhooshan, 2014) implements the same percolation process which is summarized in 

Figure 2.5.  
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Figure 2.5: Flowchart for percolation process 

 

 Set parameters for local window 

The percolation process first defines a local window of size N x N with a maximum 

window size after percolation of M x M. (Yamaguchi et al., 2008; Yamaguchi and 

Hashimoto, 2006) The pixel located at the center of the N x N window is known as the 

focal pixel or initial pixel, ps. ps belongs to the percolated region defined as Dp. 

(Yamaguchi et al., 2008; Yamaguchi and Hashimoto, 2006)  

 

 Update percolation threshold, T 

Initially, T will be set to the brightness value, I of ps. (Yamaguchi et al., 2008; Yamaguchi 

and Hashimoto, 2006) During the subsequent iterations of percolation, the threshold will 

be updated according to Equation (2.1). (Yamaguchi et al., 2008; Yamaguchi and 

Hashimoto, 2006) 

𝑇 = max (max𝑝∈𝐷𝑝
(𝐼(𝑝)) , 𝑇) + 𝑤          (2.1) 

where 
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𝑤 is acceleration parameter to accelerate percolation. 

 

 Percolate neighbourhood pixels based on threshold T 

From the position of pixel ps, the brightness for eight neighbouring pixels are evaluated 

to determine whether they are within the threshold or exceeding it. Any neighbouring 

pixels with brightness value less than threshold will be included into the region Dp. If no 

pixels have a brightness value below the threshold, the pixel with the lowest brightness 

value will be included instead (Yamaguchi et al., 2008; Yamaguchi and Hashimoto, 

2006). 

 

 Check if window size is maximum  

During each iteration, the size of windows, Dp increases and the size is checked against 

the boundary of the local window, N x N (Yamaguchi et al., 2008; Yamaguchi and 

Hashimoto, 2006). If the boundary has been reached but it has not reach the maximum 

boundary M x M, the iteration continues by incrementing the size of boundary by 2, i.e 

N + 2 (Yamaguchi et al., 2008; Yamaguchi and Hashimoto, 2006). This process is 

repeated until the maximum boundary is reached in which then the process is terminated 

(Yamaguchi et al., 2008; Yamaguchi and Hashimoto, 2006). 

 Figure 2.6 shows the resultant image after it has undergone the percolation 

process. Figure 2.6(a) is the resultant image when the focal pixel is a background pixel 

and Figure 2.6(b) is the resultant image when the focal pixel is a crack pixel.  
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Figure 2.6: Output from percolation process (a) Background (b) Crack pixels 

(Tomoyuki et al., 2008) 

 

2.3.2.2 Thermography 

Thermography is a method of obtaining images that are produced by infrared radiation 

and is a non-destructive testing (NDT) method in diagnostics (Gao et al., 2016). In crack 

detection, several papers discuss the usage of different types of thermography for crack 

detection.  

In papers by Cheng and Tian (2011), Liu et al. (2013), Noethen et al. (2010), and 

Zhao et al. (2017), variations of eddy current (EC) thermography is used for crack 

detection. In paper by Liu et al. (2013), eddy current thermography is deployed via 

induction coils which are used to generate continuous alternating magnetic fields which 

causes eddy current to flow and rapidly heats up the material under inspection in a short 

amount of time. A thermographic camera with high resolution and frequency is then used 

to capture the temperature distribution and cracks are said to be present when there is a 

disturbance in the induced current flow which affects the temperature profile around the 

crack area (Liu et al., 2013).  

In papers by Cheng and Tian (2011), Noethen et al. (2010), and Zhao et al. (2017), 

pulsed EC thermography is used instead which differs by heating the material under 

inspection in pulses. The advantages of using pulsed EC thermography as opposed to 
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continuous EC thermography lies in the fact that pulsed methods can operate in multi 

frequency levels while continuous methods operate in a narrow frequency bandwidth. In 

pulsed modes, it consumes significantly less energy compared to continuous modes 

operating at the same intensity. The presence of cracks is also identified by changes in 

temperature profiles around crack regions similarly with continuous EC thermography. 

However, Jian et al. (2017) proposed an additional procedure that collects magnetic flux 

using ferrite core and injects it into the sample along with eddy current. Anomalies are 

detected if there is a change in temperature and magnetic field which makes it more 

sensitive to presence of defects. 

 Another thermography approach was proposed by El-amiri et al. (2016) which is 

known as pulsed thermography. Unlike pulsed EC thermography, there are no EC present 

in this setup. The material under test is heated up using lamps, flashes, or lasers (El-amiri 

et al., 2016). Similarly to EC thermography, defects are characterised by the changes in 

temperature profiles (El-amiri et al., 2016).  

 Although both thermography and EC thermography is able to detect cracks and 

defects, EC thermography is much more efficient for geometrically complex materials 

and shows more crack indication in addition of being faster in revealing anomalies 

compared to conventional thermography (Gao et al., 2016). However, EC thermography 

only works in conductive materials (Gao et al., 2016). 

 

2.3.2.3 Machine Learning 

Machine learning methods such as neural networks have been used to identify crack 

features after training a model with inputs such as features extracted from cracks. It is 

essentially a data modelling system that can represent the linear or nonlinear relationships 

between inputs and outputs (Maazi et al., 2008).  

 Choudhary and Dey (2012), Gaith et al. (2015), Kim et al. (2001), Maazi et al. 

(2008), and Saar and Talvik (2010) have adapted neural networks to identify cracks by 

providing different types of inputs for the neural network with different results. Maazi et 

al. (2008) had trained a neural network using backpropagation method with 12 sample 

images that contains flaws and another 12 sample images with no flaws. The images with 

flaws consists of different types of flaws present in dielectric materials. 

 A similar approach was used by Kim et al. (2001) to identify the presence of 

cracks, delaminations, and cracks and delaminations in semiconductor devices using a 
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backpropagation neural network. Two different approaches were used for the inputs of 

the neural network. The first approach uses Kohonen’s self organizing map as a 

dimensionality reduction for the image and the second uses image processing consisting 

of image filtering, binarization, and edge detection. The dimensionality reduction via 

image processing is concluded to be much faster and accurate compared to self 

organizing map. 

 Cloudhary and Dey (2012) compared fuzzy logic and neural network techniques 

to detect cracks on concrete surfaces. Edge detection is performed on the images of 

concrete surfaces to be used as inputs for the neural network and fuzzy logic model. The 

fuzzy logic model used trapezoidal membership functions with the parameters area and 

ratio of objects in the image used as input variables while the output is the class of the 

object (noise or crack). However, two approaches were used for neural networks which 

are image based and object based. In image based approach, the neural network is given 

the area and ratio of objects in an image and getting a binary output depending on whether 

there are cracks in the image. The second approach using object involves feeding the 

neural network with the area and ratio of one object at a time to obtain a single binary 

output which classifies it as either noise or crack. From their research, the object 

approach outperforms the image approach while both outperforms the fuzzy logic models. 

 Saar and Talvik (2010) also used a neural network that takes five input images. 

The first input are sub-images of the entire original image that may or may not contain 

crack features. The second and third inputs are median and maximum values of the 

summation of image matrix values column- and row-wise which corresponds to overall 

number of smaller defects and length of cracks respectively. The fourth and fifth inputs 

are binary images convolved with two 11 x 11 matrix where one has a horizontal line in 

the middle and the other vertical line in the middle to suppress noise. The resultant model 

is used to identify cracks on asphalt pavements. 

 Another approach utilizes measurements of natural frequencies to be used with 

neural networks to predict the presence of cracks (Gaith et al., 2015). The neural network 

is trained using data obtained from ANSYS software which uses finite element 

techniques to generate data for both cracked and uncracked beams. This method 

measures natural frequencies obtained when subjecting cantilever beams to three 

different vibration modes which is then fed into the neural network for analysis. 
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2.3.2.4 Edge Detection Techniques 

Edge detection techniques are methods that target regions of the image where there is a 

sudden change in intensity of pixel values. Section 2.3.2.4.1 to Section 2.3.2.4.4 explains 

different edge detection techniques which are anisotropic diffusion, probability based 

thresholding, and histogram equalization respectively. 

 

 Anisotropic Diffusion 

Perona and Malik (1990) proposed a nonlinear method to reduce noise without affecting 

edges compared to conventional linear methods such as Gaussian (Tang and Gu, 2013) 

and low-pass filtering. The traditional Perona-Malik anisotropic diffusion filter 

smoothens each pixel according to the gradient magnitude (Tang, 2009; Tsai et al., 2010). 

Regions with high gradient (i.e. crack regions or edges) are relatively unaffected while a 

strong smoothing effect will occur at regions with low gradient (crack or edge free 

regions) (Anwar and Abdullah, 2014; Tang, 2009). This is achieved by convolving the 

image with an isotropic Gaussian filter for several iterations. The resultant image is the 

sum of the convolved image with the resultant image in the previous iteration. and is 

expressed as Equation (2.2) (Perona and Malik, 1990). 

𝑰𝑖,𝑗
𝑡+1 = 𝑰𝑖,𝑗

𝑡 +  𝜆[𝑐𝑁 ∙ ⋁𝑰𝑁 +  𝑐𝑆 ∙ ⋁𝑰𝑆 + 𝑐𝐸 ∙ ⋁𝑰𝐸 +  𝑐𝑊 ∙ ⋁𝑰𝑊]𝑖,𝑗
𝑡       (2.2) 

where  

⋁𝑰𝑁(𝑖,𝑗) =  𝑰(𝑖−1,𝑗) − 𝑰(𝑖,𝑗)          (2.3) 

⋁𝑰𝑆(𝑖,𝑗) =  𝑰(𝑖+1,𝑗) −  𝑰(𝑖,𝑗)          (2.4) 

⋁𝑰𝐸(𝑖,𝑗) =  𝑰(𝑖,𝑗+1) −  𝑰(𝑖,𝑗)           (2.5) 

⋁𝑰𝑊(𝑖,𝑗) =  𝑰(𝑖,𝑗−1) −  𝑰(𝑖,𝑗)          (2.6) 

𝑐𝐷 = 𝑔(∇𝑰) =  𝑒−(
|∇𝐼|

𝐾
)

2

           (2.7) 

𝑐𝐷 =  𝑔(∇𝑰) =  
1

1+(
|∇𝐼𝐷|

𝐾
)

2          (2.8) 

where 

𝑰𝑖,𝑗
𝑡  is brightness value of the image at coordinate i and j during the iteration t. 

⋁𝑰𝐷(𝑖,𝑗) is nearest-neighbour differences where the subscript D denotes the direction of 

diffusion and is given as north (N), south (S), east (E), and west (W). 

𝜆 is conduction coefficient and must lie between the values of 0 to 0.25 for stability 

purposes. 
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𝑐𝐷 is diffusion coefficients function where the subscript D denotes the direction of 

diffusion and is given as north (N), south (S), east (E), and west (W). 

∇𝑰 is brightness gradient of the image. 

𝐾 is threshold that affects the blurring of discontinuities and sharpening of edges. 

 

Equation (2.7) and Equation (2.8) are diffusion coefficient functions that favour high 

contrast edges over low contrast ones and wide regions over smaller ones respectively 

(Perona and Malik, 1990).  

 Oliveira and Correia (2010) used anisotropic diffusion to smooth random textures 

on pavement surfaces as the random textures makes it difficult to detect cracks easily 

using simple segmentation methods such as thresholding. Two smoothing models are 

tested where the first model favours high contrast edges over low contrast ones while the 

second model favours wide regions over smaller ones which is given as Equation (2.7) 

and Equation (2.8).   

 Tang and Gu (2013) used an adaptive anisotropic diffusion filter that uses a 

different brightness gradient in the diffusion coefficient functions to detect cracks in 

roads. The brightness gradient in Equation (2.7) and Equation (2.8) is replaced with a 

different operator that is sensitive to noise which may produce a weak edge, which is 

given by: 

∇𝑰 =  √|⋁𝑰𝑵(𝒊,𝒋)|
𝟐

+|⋁𝑰𝑺(𝒊,𝒋)|
𝟐

+|⋁𝑰𝑬(𝒊,𝒋)|
𝟐

+|⋁𝑰𝑾(𝒊,𝒋)|
𝟐

𝟒
         (2.9) 

Tsai et al. (2010), and Anwar and Abdullah (2014) have used a modified model 

of Perona-Malik anisotropic diffusion to detect microcracks in solar cells. The approach 

used by both researches modifies the anisotropic diffusion filter to smoothen pixels at 

crack regions while maintaining the pixel values at regions that are crack free. The 

resulting image is then subtracted with the original grey image which leaves the pixels at 

crack regions intact. 

Both researches proposed a different model for the modified Perona-Malik anisotropic 

diffusion coefficient function which is given by Equation (2.10) and Equation (2.12). 

𝑔(∇𝑰, 𝒖, 𝒗) =  
1

1+[|
∏ 𝑢𝑖𝑖
∏ 𝑣𝑗𝑗

|∙(
𝐾

|∇𝐼|
)

2
]

         (2.10) 

where 

∇𝑰 =  ∇𝑰𝒕
𝒊(𝒙, 𝒚), is the gradient of the pixel at coordinate x and y. i = 1, 2, 3, and 4 

representing the gradients of four Laplacian neighbours in the north, south, east, 
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and west directions respectively. t represents the current iteration for the 

anisotropic diffusion (Anwar and Abdullah, 2014; Tsai et al., 2010). 

𝒖 = {𝑢𝑖} and 𝑢𝑖 are pixels with defects with feature values smaller than the defect-free   

pixels (Tsai et al., 2010) 

𝒗 = {𝑣𝑖} and 𝑣𝑖 are pixels with defects with feature values greater than the defect-free   

pixels (Tsai et al., 2010) 

𝐾  is edge stopping threshold where a value of K that is too small may result in no 

smoothing effect or too much smoothing if K is too large (Anwar and Abdullah, 2014) 

𝑔(∇𝑰) =  1 −
1

1+(
|∇𝐼|

𝐾
)

2                    (2.11) 

which is then modified to Equation (2.11). Both equations perform the same function but 

Equation 2.11 is more sensitive when the threshold is low for the same gradient.  

𝑔(∇𝑰) =  1 −
1

1+(
|∇𝐼|

ℎ
)

2          (2.12) 

h is from Equation (2.12) and is defined as an edge stopping matrix that adaptively 

generates a unique threshold for each image pixel at coordinate x and y using input image 

grey values and is given in Equation (2.12) (Anwar and Abdullah, 2014):  

ℎ(x, y) =  
255

1+𝑒−𝑏(𝑰0(𝑥,𝑦)−𝜀)         (2.13) 

where 

𝑏 is the gradient ramp in the transfer function.  

𝜀 is the threshold value where the intensity of 𝐼0(𝑥, 𝑦) is mapped to the center of the 

greyscale range. 

In comparison, both approaches achieve the same result which smoothens the 

pixels with microcracks while the defect-free pixels remains unchanged. In contrast, Tsai 

et al. (2010) approach requires a trial and error in obtaining a good K parameter while 

Anwar and Abdullah (2014) approach adaptively generates a unique threshold for each 

pixel. The adaptive approach is more robust as it adapts to the image but it is slower to 

implement compared to the trial and error method. 

 

 Probability Based Thresholding 

Huayong et al. (2011) proposed a method to detect cracks on a bridge deck as shown in 

Figure 2.8. The method attempts to capture as many crack pixels as possible against the 

background during binarization by modelling pixel density distribution with respect to 

position and frequency as shown in Figure 2.9 and Figure 2.10 respectively. It can be 
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seen that the distribution in Figure 2.10 conforms to a Normal distribution, (𝑁(𝜇, 𝜎)) 

(Wu et al., 2011). 

 
Figure 2.7: Digital image of bridge crack (Huayong et al., 2011) 

 
Figure 2.8: Pixel density distribution with respect to position (Huayong et al., 2011) 
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Figure 2.9: Pixel density distribution with respect to position (Huayong et al., 2011) 

 

From Huayong et al.’s (2011) (Wu et al., 2011) research, there is a 99.74% confidence 

that any pixels with grey values within the range of 𝜇 − 3𝜎 to 𝜇 + 3𝜎 are background 

pixels and any pixels with values outside of that range has a high possibility of being a 

crack. A grey level of 𝜇 − 3𝜎 is used as the binarization threshold to capture as many 

crack pixels as possible (Wu et al., 2011). The binarization results is shown in Figure 

2.11. 

 
Figure 2.10: Resultant binarized image using threshold 𝜇 − 3𝜎 (Huayong et al., 2011) 
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After binarization, noise removal is employed using block filter algorithm which is 

proposed by Wu et al. (2011) to remove salt and pepper noise and isolated islands which 

a groups of noise pixels. Although the same effect can be achieved by enlarging the mask 

for a median filter, the enlarged mask will also destroy the crack details extracted. A 

block filter works by creating a 3 x 3 mask and calculates the number of noise pixels 

covered by the mask. On the same pixel, a bigger mask with the size increment from the 

original 3 x 3 by 6N where N is the number of iterations this process will be performed 

is used and the number of noise pixels is calculated. In the event where the number of 

noise pixels from adjacent steps are the same, it is deduced that the pixels covered by the 

mask are isolated islands and all pixels covered by the mask is then set to the background 

value. On the other hand, if the number of noise pixel keeps increasing, then it is defined 

as part of the target crack. 

 

 Histogram Equalization 

Histogram equalization is a contrast enhancement method that produces a brighter image 

compared to the original (Yadav et al., 2016). This is achieved by redistributing the 

greyscale pixels in the image evenly (Dawson-Howe, 2014). Two methods of histogram 

equalization are reviewed here which are the conventional histogram equalization and 

contrast limited adaptive histogram equalization (CLAHE). Conventional equalization is 

automatic and requires no parameters set while CLAHE works by dividing the original 

image into a number of tiles and apply contrast enhancement on each tile before 

recombination into the original image (Yadav et al., 2016). 

Parveen and Sathik (2009) tried conventional histogram equalization and 

CLAHE to enhance the bone fracture images. From their research, it was concluded that 

CLAHE performs better in enhancing the fracture features in the X-ray bone image. 

Ke et al. (2010) used histogram equalization to enhance the image of solar wafers 

for microcrack detection. In their research, the histogram equalized image is smoothed 

and filtered for particles before subtracted with the original greyscale image to segment 

the crack and this is then followed by binarization.  

Qiu et al. (2012) used Laplace operator and histogram equalization to enhance 

the images of crack in casting billets. The Laplace operator sharpens the image while 

histogram equalization enhances the contrast for crack segmentation. 
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In Zhuang et al. (2004), an inverse histogram equalization operation was used to 

centralize the grey values to enhance the crack regions followed by binarization and 

Gauss-Laplacian transform. The Gauss-Laplacian transform combines Gauss filter with 

Laplacian operator. The former is used to smoothen the image while the latter detects 

steep edges (where there is a sharp change in brightness) (Choudhary and Dey, 2012) in 

the image (Zhuang et al., 2004). A lowpass filter is a necessary step before Laplacian as 

it is susceptible to noise (Dawson-Howe, 2014; Zhuang et al., 2004). 

 

2.3.2.5 Scanning Acoustic Microscopy (SAM) 

SAM is a non-destructive failure analysis of IC packages and works by imaging the IC 

package by firing an acoustic pulse of energy to the sample and analyses the returned 

echoes (Ma et al., 2007). Any anomalies detected along the propagation paths will 

modify the amplitude and polarity of the returned ultrasonic waves. The waves are 

typically produced by a piezoelectric transducer equipped with acoustic lens to focus 

waves in a spot and moves mechanically to scan the entire sample. Both transducer and 

sample being scanned needs to be immersed in a fluid coupling system which are 

typically de-ionized water if scanning is conducted for IC packages as acoustic waves 

become attenuated quickly in air (Abdelhamid et al., 2014). There are two modes 

available in SAM which are reflective mode which focuses the ultrasonic beam on a 

plane inside the object and through transmission mode which shows the internal features 

of the object (Ma et al., 2007). 

 From that study, it is found that C-SAM where C represents the imaging in x-y 

plane at a specific depth is a good method to detect cracks, voids, delaminations, and 

regions of poor adhesion in IC packages. The different imaging methods are as shown in 

Figure 2.12.  

 
Figure 2.11: Imaging differences for different SAM scans (Ma et al., 2007) 

 



22 

 

A-SAM scans performs scanning at a specific x-y coordinate and increments in 

the z-direction which is useful to supply information about a specific point at a specific 

depth (Ma et al., 2007). B-SAM scans in the x-direction and increments in the z-direction 

which makes it suitable for observing crack propagation and location of voids in 

packages. For C-SAM scans, the scan is performed in the x-direction and increments in 

the y-direction at a specific planar depth while T-scan measures transmitted sound loss 

which is useful for detecting delaminations and popcorn cracks in IC packages. 

Abdul et al. (2000) and Abdul et al. (2003) also used SAMs to evaluate the quality 

of IC packages by correlating the simulated samples with reflection coefficients. 

 

2.4 Summary 

Table 2.1: Comparison of advantages and disadvantages of each method 

Methods Advantages Disadvantages 

Percolation  • Less susceptible to noise 

• Able to reconstruct entire 

crack feature 

• Computationally taxing and 

slow 

Machine learning • High accuracy in identifying 

crack features 

• Can be used to classify 

different types of cracks 

• Training beforehand may 

require few hundreds of images 

before getting a good model 

Thermography • Sensitive 

 

• Other defects and anomalies 

also result in disturbance in 

measurements 

• Requires specialized hardware 

• May damage sensitive IC 

packages 

Edge detection 

techniques 

• Usually less computationally 

expensive 

• Usually susceptible to noise and 

requires denoising procedures 

SAM • Sensitive 

• Widely used to detect defects 

in IC packages 

• Requires specialized hardware 

 

The methods reviewed for crack detection can be loosely classified into three 

different approaches which are image processing approach, image acquisition approach, 
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and machine learning. In image acquisition approach, it requires the usage of specialized 

hardware or tools such as thermography and SAM. For an image processing approach, 

the focus typically lies in image enhancement, segmentation, and noise reduction for 

crack detection purposes. Machine learning would focus on identifying key features of 

the desired features and train a model to identify these features. 

In the hardware approach, it is typically more sensitive compared to an image 

processing approach as any anomalies or defects in the measured material will result in 

an obvious disturbance in the measured readings. However, in the case of thermography, 

it is not suitable for crack detection in IC packages as it utilizes EM waves which may 

damage sensitive ICs. In addition, the method heats the material under testing in rapid 

succession which may shorten the lifespan of the IC. On the other hand, SAM is very 

suitable for detection of defects in IC packages including cracks but it requires 

specialized hardware to be able to do so. 

On the image processing approach, percolation-based crack detection is a good 

algorithm to detect cracks as it is less susceptible to noise but is computationally taxing 

compared to edge detection techniques. In contrast, percolation-based method does not 

implement algorithms that enhances crack features when compared to edge detection 

techniques for Perona-Malik anisotropic diffusion model and histogram equalization. In 

probability based thresholding, the algorithm only works well if the image is not 

significantly noisy or textured. Histogram equalization on the other hand enhances the 

contrast of the image which helps to differentiate the background and foreground (crack 

regions) further. Perona-Malik’s anisotropic diffusion on the other is specific and target 

edges. It is useful to reduce noise in image without blurring significant features. 

Another approach, machine learning is proven to be very good at identifying 

crack features. However, this method requires training a model beforehand which may 

require few hundreds of images to have a good performance.  
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CHAPTER 3 

METHODOLOGY 

 

3.1 Introduction 

In microcrack detection, it is necessary that the algorithm be sensitive enough to 

detect the features of the crack without too much interference from noise in the image. 

Three methods are proposed and evaluated to determine their performance in crack 

detection and noise reduction. The first method has two stages which are image crack 

segmentation and image denoising. In the second method, there are three stages which 

are image contrast enhancement, image crack segmentation, and image denoising. For 

the third method, it is separated into three stages which are image crack enhancement, 

image denoising, and image crack segmentation. The input images for the system are the 

images of IC packages with cracks and the output images for the system are the 

segmented crack regions. 

Microsoft Visual Studio 2017 with OpenCV imaging library is used to build the 

algorithm of the system. No additional hardware is required for this system as it is purely 

software based. 

 

3.2 Proposed Method 1: Probability Based Thresholding Method 

Section 3.2.1 provides an overview of probability based thresholding method. An 

explanation of the stages in this method is provided in Section 3.2.1.1 and Section 3.2.1.2.  

 

3.2.1 Method Overview 

This method performs crack detection by analyzing the histogram distribution of the 

image. By using the theory behind probability distribution for a normal distribution, 

cracks are segmented by determining the regions where pixels are most likely to belong 

to crack pixels. The flowchart of this method is as shown in Figure 3.1.  
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