
HARDWARE SOFTWARE PARTITIONING USING

PARTICLE SWARM OPTIMIZATION (PSO) IN IMAGE

PROCESSING APPLICATION

TAN JIA ZHENG

UNIVERSITI SAINS MALAYSAI

2018

HARDWARE SOFTWARE PARTITIONING USING

PARTICLE SWARM OPTIMIZATION IN IMAGE

PROCESSING APPLICATION

By

TAN JIA ZHENG

Thesis submitted in fulfilment of the requirements

for the degree of

Bachelor of Engineering (Electronic Engineering)

JUNE 2018

i

ACKNOWLEDGEMENT

Firstly, I want to thank my final year project and research supervisor Assoc. Prof.

Dr. Zaini Abdul Halim for her patient guidance and advices throughout the time of doing

my final year project. Her continuous support and precious advices are one of the factors

in successful completion of my project and are highly appreciated. I feel proud to be one

of the students of my supervisor.

 Besides, I would also like to thank the PhD student, Tan Earn Tzeh for his precious

advices and support for my final year project. He is always willing to share his

experiences and knowledges to me and giving me advices about the final year project and

research.

 In addition, I want to thank my precious course mates that study together for four

years in my university life. They are always willing to spend their time with me, sitting

together exchanging knowledges, discussing about the problems faced during the time of

doing final year project.

 Lastly, I would like to thank my family for giving me the love and support.

Without their support, I would not have successfully completed my final year project and

thesis.

ii

TABLE OF CONTENTS

Table of Contents

ACKNOWLEDGEMENT i

TABLE OF CONTENTS ii

LIST OF TABLES v

LIST OF FIGURES vi

LIST OF ABBREVIATION viii

ABSTRAK ix

ABSTRACT x

CHAPTER ONE - INTRODUCTION 1

1.1 Research Background 1

1.2 Problem Statement 4

1.3 Objectives of Research 4

1.4 Scope of Research 5

1.5 Thesis Organization 6

CHAPTER TWO – LITERATURE REVIEW 7

2.1 Overview 7

2.2 Particle Swarm Optimization 7

2.3 Processor (CPU) 8

2.4 Field Programmable Gate Array (FPGA) 8

2.5 Hardware-Software Partitioning Algorithm 9

2.6 Recognition of vehicle’s plate number 11

2.7 Chapter Summary 13

CHAPTER THREE - METHODOLOGY 14

3.1 Overview 14

3.2 Determination of the nodes 15

3.3 Obtaining Data from Altera board 21

iii

3.3.1 Execution time in HPS 21

3.3.2 Measurement of Resources in FPGA 25

3.3.3 Execution Time in FPGA 26

3.4 Formulation of Hardware-Software Partitioning 29

3.5 Partitioning approach using PSO algorithm 30

3.6 Summary 32

CHAPTER FOUR – RESULT AND DISCUSSION 33

4.1 Overview 33

4.2 Accuracy of image processing algorithm developed 33

4.3 Execution time and resources utilization in FPGA 36

4.4 Execution time in HPS 38

4.5 Comparison of execution time between HPS and FPGA 39

4.6 Hardware-Software partitioning using PSO algorithm 40

4.6.4 Test Case 1 40

4.6.4 Test Case 2 43

4.6.3 Test Case 3 44

4.6.4 Test Case 4 46

4.6.5 Test Case 5 47

4.6.6 Test Case 6 48

4.6.7 Summary from all test case 49

4.7 Performance Comparison 50

4.8 Summary 52

CHAPTER FIVE - CONCLUSION 53

5.1 Conclusion 53

5.2 Future Work 54

REFERENCES 55

APPENDICES 57

Appendix A: Results in Visual Studio 57

iv

Appendix A.1: Result for test case 1 57

Appendix A.2: Result for test case 2 57

Appendix A.3: Result for test case 3 58

Appendix A.4: Result for test case 4 59

Appendix A.5: Result for test case 5 59

Appendix B: Coding in MATLAB for PSO algorithm 60

Appendix B.1: Main 60

Appendix B.2: Cost Function 60

Appendix B.3: BPSO algorithm 61

Appendix B.4: DrawConvergenceCurves 62

Appendix C: Coding for FPGA simulation in ModelSim 63

Appendix D: Coding for HPS 90

Appendix E: Coding in Visual Studio 2017 96

v

LIST OF TABLES

 Page

Table 3.1: Nodes assignment .. 15

Table 3.2: Conceptual illustration on horizontal profiling ... 19

Table 3.3: Conceptual illustration on vertical profiling .. 20

Table 4.1: Image before and after image processing .. 33

Table 4.2: Resources used in each node in FPGA .. 36

Table 4.3: Execution time for each node .. 36

Table 4.4: Time and resources used in FPGA .. 37

Table 4.5: Execution time for HPS ... 38

Table 4.6: Average Execution time for each node .. 38

Table 4.7: Execution time for each node in HPS and FPGA .. 39

Table 4.8: Result for test case one ... 40

Table 4.9: Result of the total resources used .. 41

Table 4.10: Result for test case two .. 43

Table 4.11: Result for test case three .. 44

Table 4.12: Result for test case four ... 46

Table 4.13: Result for test case five .. 47

Table 4.14: Result for test case six ... 48

Table 4.15: Result of the partitioning ... 50

Table 4.16: Comparison between HW/SW partitioning and pure hardware 51

Table 4.17: Comparison between HW/SW partitioning and pure software 51

vi

LIST OF FIGURES

Page

Figure 2.1: Modification of a searching points by PSO ... 8

Figure 2.2: Flow chart to extract car plate region ... 12

Figure 3.1: Project Implementation Flow ... 14

Figure 3.2: Image of vehicle ... 15

Figure 3.3: Image after crop ... 16

Figure 3.4: Grayscale image ... 16

Figure 3.5: Binary image .. 17

Figure 3.6: Image of removed car plate's characters .. 17

Figure 3.7: Image after subtraction ... 18

Figure 3.8: Image after removed noise vertically ... 18

Figure 3.9: Image of removed noise horizontally ... 19

Figure 3.10: Image after cropped in row .. 20

Figure 3.11: Image of vehicle’s plate number .. 20

Figure 3.12: Flow Chart for Software ... 22

Figure 3.13: Internet IP address of the board .. 22

Figure 3.14: SoC EDS Command Shell.. 23

Figure 3.15: Files in the directory ... 23

Figure 3.16: Command to copy file into SD card ... 24

Figure 3.17: Execute the C file ... 24

Figure 3.18: Step to compile Verilog code Quartus Software .. 25

Figure 3.19: Compilation Report .. 26

Figure 3.20: Simulation in ModelSim .. 27

vii

Figure 3.21: Add the project file to generate wave form .. 27

Figure 3.22: Run the project ... 28

Figure 3.23: Number of clock in node 1, C1 .. 28

Figure 3.24: Number of clock in node 2, C2 .. 29

Figure 3.25: PSO algorithm framework ... 30

Figure 4.1: Graph of execution time against node .. 39

Figure 4.2: Convergence graph for (a) C=1022, (b) C=681, (c) C=341 42

Figure 4.3: Convergence graph for C=1022 ... 45

Figure 4.4: Convergence graph for C=681 ... 45

Figure 4.5: Convergence graph for C=341 ... 46

Figure A.1: Result for each node for test case 1………………………………..………57

Figure A.2: Result for each node for test case 2………………………………..………57

Figure A.3: Result for each node for test case 3………………………………..………58

Figure A.4: Result for each node for test case 4………………………………..………59

Figure A.5: Result for each node for test case 5………………………………..………59

viii

LIST OF ABBREVIATION

ALU Arithmetic Logic Unit

ARM Advanced RISC Machines

CPU Central Processing Unit

FPGA Field Programmable Gate Array

GA Genetic Algorithm

GUI Graphical User Interface

HDL Hardware Description Language

HGAPSO Hybrid GA and PSO

HPS Hard Processor System

HW Hardware

ILP Integer Linear Programming

IPSO Improved Particle Swarm Optimization

PSO Particle Swarm Optimization

SoC System on Chip

SW Software

ix

PEMBAHAGIAN PERISIAN PERKAKASAN MENGGUNAKAN OPTIMIZASI

PERTIMBANGAN SWARM (PSO) DALAM PEMPROSESAN PENGECUAN IMAGE

ABSTRAK

Dalam projek ini, pengenalan plat kereta akan dilaksanakan dalam pembahagian

perisian perkakasan dengan menggunakan algoritma PSO. Rangka kerja untuk

pembahagian perisian perkakasan menggunakan algoritma PSO dalam MATLAB

dibangunkan. Prestasi antara penyelesaian dalam pembahagian perisian perkakasan dan

penyelesaian tanpa pembahagian disiasat. Formula pemprosesan imej disahkan di Visual

Studio. Kemudian pengekodan ditulis dalam Verilog untuk perkakasan dan bahasa C

untuk perisian untuk mendapatkan masa pelaksanaan dan penggunaan sumber. Kemudian

data akan diproses di MATLAB menggunakan algoritma PSO untuk menentukan hasil

optimum dalam pembahagian. Parameter algoritma PSO seperti bilangan lelaran dan

bilangan zarah diubah untuk mendapatkan nilai optimum bagi parameter. Tiga kekangan

yang berbeza, C=1022, C=681 dan C=341 akan diambil kira untuk menghasilkan

penyelesaian yang optimum. Penyelesaian untuk C=1022 menggunakan 55% daripada

jumlah sumber perkakasan (1362) dalam perkakasan tulen. Ia adalah 1.11 kali lebih cepat

daripada perkakasan tulen dan 1.45 kali lebih cepat daripada perisian tulen. Penyelesaian

untuk C=681 menggunakan 49.7% daripada jumlah sumber perkakasan dalam

perkakasan tulen dan ia adalah 1.09 kali lebih cepat daripada perkakasan tulen dan 1.42

kali lebih cepat daripada perisian tulen. Penyelesaian untuk C=341 menggunakan 22.03%

daripada jumlah sumber perkakasan dalam perkakasan murni dan ia adalah 1.05 kali lebih

cepat daripada perkakasan murni dan 1.36 kali lebih cepat daripada perisian tulen.

Prestasi dalam pembahagian perisian perkakasan adalah lebih tinggi atau lebih baik

berbanding perkakasan tulen dan perisian tulen. Pembahagian perisian perkakasan

mempunyai kelajuan pemprosesan yang cepat dan kurang menggunakan sumber

perkakasan. Kerja masa depan projek ini adalah untuk melaksanakan penyelesaian

partition perisian perkakasan di Altera DE1-SoC.

x

HARDWARE SOFTWARE PARTITIONING USING PARTICLE

SWARM OPTIMIZATION (PSO) IN IMAGE PROCESSING

APPLICATION

ABSTRACT

In this project, car plate identification will be implemented in hardware-software

partitioning by using PSO algorithm. The framework for hardware-software partitioning

using PSO algorithm in MATLAB is developed. The performance between the solution

in hardware-software partitioning and the solution without partitioning is investigated.

The image processing’s formulas are verified in Visual Studio. Then the coding is written

in Verilog for hardware and C language for software to obtain the execution time and

resources consumption. Then the data will be processed in MATLAB using PSO

algorithm to determine the optimal result in partitioning. The PSO algorithm parameters

such as the number of iteration and number of particles are varied to obtain the optimum

value for the parameters. Three different constraints value, C=1022, C=681 and C=341

are take into consideration to generate an optimum solution. The solution for C=1022 use

55% of the total hardware resources (1362) in pure hardware. It is 1.11 times faster than

pure hardware and 1.45 times faster than pure software. The solution for C=681 use 49.7%

of the total hardware resources in pure hardware and it is 1.09 times faster than pure

hardware and 1.42 times faster than pure software. The solution for C=341 use 22.03%

of the total hardware resources in pure hardware and it is 1.05 times faster than pure

hardware and 1.36 times faster than pure software. Performance in hardware-software

partitioning is higher or better compare to pure hardware and pure software. Hardware-

software partitioning has fast in processing speed and use less in hardware resources.

Future work of this project is to implement the hardware-software partitioning solution

in Altera DE1-SoC.

1

CHAPTER 1

INTRODUCTION

1.1 Research Background

Image processing is a method that analyse and processes the digital data inside the

digital image. For mathematical analysis, a digital image may be defined as a two

dimensional function f(x,y) where x and y are the coordinates in the image and the

function f(x,y) is the intensity of the image at the x and y coordinates. In digital image, it

has a finite number of elements which has its own particular coordinate and intensity.

These elements are called pixels. Pixel is the most widely used term to denote the

elements of a digital image. There are various image processing techniques which are

image preprocessing, image enhancement, image segmentation, feature extraction and

image classification [1].

Image processing can be time and resources consuming task. Image with high

resolution will consume a lot of time and resources when the image goes through

processing steps. Therefore, there are many methods are proposed in order to reduce time

and resource consumption. For example, color processing and contrast enhancement will

make the image clearer and can be processed easily [2] [3].

Vehicle’s plate recognition is one of the application in image processing [4].

Vehicle’s plate recognition system allow user read the plate number faster. By using this

system, police are able to check whether vehicle plate is registered or not. In this project,

image of the vehicle is captured and will go through image processing steps until it

extracts the plate’s number [5]. From the original vehicle’s image until it extracts the

plate’s number, it goes through many steps and these steps are the nodes that will be

implemented in hardware software partitioning. There are various type of method to

extract the plate number [6] such as finding the plate’s colour, finding the shape of plate

CHAPTER ONE

2

and finding the area with white characters. These methods are able to extract the car’s

plate but the processing steps are different to process until extract the car plate.

There are two type of processor which are hard processor and soft processor. For hard

processor, it is Hard Processor System (HPS) and the processor is fabricated on silicon

and it is fix such as Advanced RISC Machines (ARM) processor. For soft processor, the

processor is designed using register through Field Programmable Gate Array (FPGA),

and it is flexible such as Nios. In embedded System-On-Chip (SoC) that platform that is

incorporating FPGA and HPS are used. Normally the HPS is used for Graphical User

Interface (GUI) and FGA is used for processing for calculation such as algorithm. In HPS,

application is done through software using C language. In FPGA, application is done

through hardware. Normally, Hardware Description Language (HDL) is used such as

Verilog or VHDL.

 Altera DE1 SoC is one of the embedded system platforms which has HPS (software)

and FPGA (hardware). This is beneficial since application specific hardware is usually

much faster in processing speed than software, but it is also expensive. On the other hand,

software is cheaper and easily to maintain but its performance is slow [7]. It shows a good

trade-off between cost and performance can be achieved if both software and hardware

are used for embedded system application. In order to obtain effective solution, hardware

software partitioning should be used in the application.

Nowadays embedded systems becomes more complicated with more tasks should be

executed by the system. Hence hardware-software partitioning is proposed to distribute

the task either to implement in hardware or software. Some tasks will be implemented in

hardware and some tasks will be implemented in software [8]. There are many algorithms

that can be implemented in hardware software partitioning such as Integer Linear

3

Programming (ILP), Simulated Annealing (SA), Genetic Algorithm (GA) and Particle

Swarm Optimization (PSO) [9].

PSO is a numerical search algorithm which used to find optimal solution from

constrained requirement. The PSO algorithm was introduced by Kennedy and Eberhart

[10]. PSO algorithm was inspired by the social behavior of bird flocking or fish schooling.

In the original concept of PSO, particles fly through the search space influenced by two

factors [11]: one is the individual’s best position ever found; the other is the group’s best

position. PSO shares many similarities with evolutionary computation techniques such as

Genetic Algorithm (GA). The system is initialized with a population of random solutions

and searches for optima by updating generations. In PSO, the potential solutions called

particles, it hold the best solution and will repeatedly update it to an optimal solution.

Compared to GA, the advantages of PSO are easy to implement and there are few

parameters to adjust. [12].

 In this project, Altera DE1 SoC platform is used. This platform consists of FPGA

and ARM Cortex A9 [13]. Vehicle’s plate recognition is the image processing application

that will be studied using this platform. In image processing, the task is split into smaller

tasks that is known as nodes. Each node will be simulated in the platform to perform

hardware-software partitioning. Each node with have its own execution time and

resources utilization. By using PSO algorithm, near-optimal result will be determined and

the result is analyzed [14] .

4

1.2 Problem Statement

Image processing mostly done in CPU (software). When image processing fully

implemented in CPU, the execution time to do the image processing will be longer [15].

However when it is implemented in hardware or FPGA, more resources will be

consumed. Comparing between CPU (software) and FPGA (hardware) for image

processing application, software used more time compared to hardware and hardware

used more resources than software [16] [17]. In order to trade-off between the execution

time and resources, therefore hardware software partitioning is the best solution [18].

1.3 Objectives of Research

The main goal of the project is to perform hardware-software partitioning using PSO

algorithm for image processing application. To achieve it, several specific objectives

have to be fulfilled:

1. To develop a framework for hardware-software partitioning using PSO algorithm for

car plate identification using image processing method.

2. To investigate the performance of the hardware-software partitioning in term of

processing speed and resources consumption for car plate identification.

5

1.4 Scope of Research

In this project, PSO algorithm will be implemented in HPS and FPGA of Altera DE1-

SoC board. The function of each nodes will be identified in Visual Studio. These

functions will be implemented in processor by using C programming language and will

be implemented in FPGA by using Verilog Hardware Description Language. Data such

as execution time and resources utilization for each task in FPGA and data such as

execution time for each task in HPS are collected and tabulated.

With the help of MATLAB, the framework for hardware-software partitioning is

developed. There are two parameters are varied which are number of iteration and number

of particles. PSO algorithm is used to generate the best solution in hardware-software

partitioning. Three different constraint are applied to PSO algorithm which are C=1022,

C=681 and C=341 where the C is the maximum hardware resources constraint. Solutions

are that generated from PSO algorithm cannot exceed the limit, C and with minimum

execution time.

6

1.5 Thesis Organization

This thesis consists of 5 chapters. Chapter 1 is introduction that discusses about research

background, main motivation of doing this research, problem statement, objective of the

research and scope of the project.

Chapter 2 is literature review that reviews about the previous related work done

on implementation of Particle Swarm Optimization in hardware software partitioning.

Some basic knowledge related to the project is also being discussed.

Chapter 3 is methodology. It discusses about the project implementation flow, the

function of each nodes in image processing, design flow for hardware and software and

implementation of PSO algorithm in hardware and software. Besides that, the

performance of each nodes in terms of execution time and resources utilization is also

being discussed.

Chapter 4 presents the result and analysis of the data that obtained in Chapter 3.

The performance of each nodes in hardware and software in terms of execution time and

resources utilization will be presented. Analysis of the results is discussed in this chapter.

Chapter 5 is conclusion that presents the summary of the work and results of the

project. Future works of this project is also included.

7

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

Recently, there are many research on implementation of PSO algorithm for hardware

software partitioning. Various type of method in implementation have been studied in this

past few years. In this chapter, some fundamental knowledge that related to the project

has been discussed. Besides that, previous work done on implementation of PSO

algorithm in hardware software partitioning on embedded system also has been reviewed

in this chapter.

2.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is evolutionary algorithms that based on swarm

intelligence. In PSO, each particle is assumed to memorize the best position. The best

position that has ever been found by the whole swarm termed global best and by each

particles know as personal best. In order to find the global optimum of the optimization

problem, particles need to learn from the global best (gbest) and personal best (pbest)

[19].

Figure 2.1 shows that the concept of searching the best point by the PSO algorithm.

The current search point and the current velocity vectors are called xk and vk respectively.

The modified values for the particles position and velocity vectors are estimated based on

the interaction with other particles and the last best position of the particles itself [20]. In

PSO algorithm, particles are update its position based on its current velocity to obtain best

position. This process will continues until the optimum result is found.

CHAPTER TWO

8

Figure 2.1: Modification of a searching points by PSO

2.3 Processor (CPU)

Processor or Central Processing Unit (CPU) is a component of a computer system. It

carries out the instructions of a computer program by performing the logical control,

input/output (I/O) operations and basic arithmetic specific instructions. CPU contains

arithmetic logic unit (ALU) that can performs arithmetic and logic operations, register

that store the result of ALU and control unit that control the fetching and execution of

instruction [21].

2.4 Field Programmable Gate Array (FPGA)

FPGA is an integrated circuit designed to be configured by customer or a designer

after manufacturing. The FPGA is generally specify using a hardware description

language (HDL). FPGA contains an array of programmable logic blocks and allow the

block to be configured [22]. One of the important features of the FPGAs is the ability of

parallel processing which is different to processor that runs program in sequential manner.

Flexibility is another feature of FPGA since the functionality of the FPGA can be changed

every time the device is powered up. Change can be made by downloading new

configuration file into the device [23].

9

2.5 Hardware-Software Partitioning Algorithm

M.B.Abdelhalim, A. E. Salama and S. E.-D. Habib [24] had presented the hardware

software partitioning using PSO technique. PSO offers a reasonable coverage of the

design when it is compared to Genetic Algorithm (GA), which is another evolutionary

technique. In the comparison to solve the partitioning problem, the results show that the

8% improvement in the result quality in favour of PSO compared to GA. Another

advantage of PSO is its performance in term of speed. They also found out that the PSO

is outperforms than GA in term of cost function and the execution times. Besides that,

they also tested several type of combination of PSO and GA. The best result obtained

from the combination of PSO followed by another PSO. They propose to name this

successive PSO algorithm as the Re-excited PSO algorithm. In this research, PSO is a

good algorithm in solving hardware software partitioning.

 Alakananda Bhattacharya, Amit Konar, et al. [25] presented hardware software

partitioning problem in embedded system design using PSO algorithm. They provided an

alternative approach to solve this problem using PSO algorithm. They analyzed the

proposed scheme with Integer Linear Programming (ILP). Optimal solutions is obtained

from the Integer Linear Programming. Computer system and embedded system include

both hardware and software components. Usually, application specific hardware is much

faster than software and also better in power consumption, but expensive at the same time.

For software, it is cheaper but slow and consumes much power when implemented.

Traditionally, hardware software partitioning was accomplished manually.

However, when it comes to high complexity in embedded system, researchers prefer

automatic approach to solve the problem. They compared the PSO with the GA, ACO

and ILP. From the result, ILP works most efficiently with many thousand nodes and

yields optimal solution whereas the PSO give nearest optimal solution on an average. In

10

further observation, PSO based algorithm outperforms GA, ACO and ILP in terms of run

time for the given partitioning problem.

 Peter Arato and Sandor Juhasz [26] presented about hardware software

partitioning in embedded system design. They mentioned that the most important steps

in design of embedded system is hardware software partitioning which deciding which

components of the system should be implemented in hardware and which ones in software.

They have made it possible to investigate the complexity of the problem. They presented

two algorithm which are ILP and GA. ILP can handle up to thousands of nodes and yield

optimal result. For GA, it gives near optimal solutions on average. Therefore the hardware

software partitioning is important in embedded system. It can help to save a lot of

execution time and resources utilization used for complex system.

 Jia Wei Tang, Yuan Wen Hau and MN Marsono [27] had done a research on

hardware software partitioning in embedded system on chip application. For chip

application, partitioning is very important in order to get faster execution time and save

resources. From the result they obtained, they found that to have an efficient HW/SW

partitioning, it has trade off in the throughput and area.

 James Kennedy and Russell Eberhart [28] presented in Particle Swarm

Optimization. They presented a concept for the optimization of nonlinear functions using

PSO method. PSO developed by the authors comprises a very simple concept and can be

implemented in a few lines of computer code. It requires mathematical operators and trade

off in terms of memory requirements and speed. From the research, PSO is an extremely

simple algorithm that able for optimizing a wide range of function.

 Nie Ru and Yue Jianhua [11] proposed a hybrid method algorithm combining GA

and PSO based hybrid algorithm. It can solve local minimum problem in PSO and has

higher efficiency of search. Researchers also did analysis on GA, PSO, improved PSO

11

(IPSO), hybrid GA and PSO (HGAPSO) in their research. From the simulation results, it

is found that the IPSO is more efficient than standard PSO and HGAPSO. It is a simple

and effective model to handle different kinds of nonlinear optimization problems.

 Soren Ebbesen, Pascal Kiwitz and Lino GuzzeHa [10] presented about Generic

Particle Swarm Optimization Matlab function. They mentioned that the PSO is a

numerical search algorithm which is used to find parameter that minimize a given

objective or fitness function. Matlab is widely used software for numerical computing.

PSO is inspired by the coordinated motion of animal living in a groups. The common

goal of all groups’ members is to find the most favourable location within a specified

search space. In this research, researcher proposed this method to solve optimization

problems based on the fitness function of the system. Therefore, PSO algorithm is one of

the methods to solve hardware software partitioning in MATLAB.

2.6 Recognition of vehicle’s plate number

 Ragini Bhat and Bijender Mehandia [29] proposed recognition of vehicle’s

number plate using MATLAB. They clearly mentioned the steps to recognise the plate

number from an image of vehicle. The steps are input image, Grayscale image, and binary

gradient image with sobel edge detector, dilate image, binary image with filled holes,

remove connected object, extraction of number plate area and finally is the image of the

number plate of vehicle. This is one of the methods to perform image processing to

recognize the vehicle’s plate number.

12

Rajesh Kannan Megalingam, Prasanth krishana, et al [5] proposed a method to

extract the car plate region. The steps are shown in Figure 2.2. Researchers have

successfully tested the method to extract the plate region for many types of vehicle.

Results show that the successful rate for plate extraction is 91%.

Figure 2.2: Flow chart to extract car plate region

From Figure 2.2, it shows the six steps to extract the car plate region. The RGB image

is the image of vehicle. Then the RGB image is cropped by scale image. After that, image

is converted to binary image which is in 2 dimensional (D). Forth step is the remove the

plate region then subtract the image from the original binary image. Final step is remove

the noise in the plate region. Therefore, the extraction of car plate region is successfully

complete. This research was done the steps using MATLAB. Image of vehicles with

different plate dimension were capture and tested.

13

2.7 Chapter Summary

In overall, there were many researchers did research on the implementation of

algorithm in hardware software partitioning. They made comparison in algorithm for

hardware-software partitioning. Besides that, researchers also made enhancement on the

algorithm to improve the performance. However, there is still lack of implementation of

PSO algorithm in Hardware software partitioning on hybrid platform like Altera De1-

SoC that consist of hard processor and FPGA. It would be better to compare the hardware

and software performance in hybrid platform like Altera DE1 SoC and perform the

combination of the Hardware and software in one system.

14

CHAPTER 3

METHEDOLOGY

3.1 Overview

In this project, all nodes’ function and formulas will be implemented in Visual Studio.

The nodes are the steps that must be carried out in image processing, starts from image

of a vehicle until the extraction of the vehicle’s plate number. After that, the nodes’

function is run on FPGA using Verilog and on HPS using C language. Platform that is

being used is Altera DE1-SoC which consist both FPGA and HPS. The execution time

and resources utilization used of each node is determined. Then, these FPGA’s data and

HPS’s data are analyzed in MATLAB by using PSO algorithm. Finally, all results are

compared to each other in term of execution time and resources used. Figure 3.1 shows

the overall project implementation flow.

Figure 3.1: Project Implementation Flow

CHAPTER THREE

15

3.2 Determination of the nodes

In this steps, the image of the vehicle will be processed until the image of vehicle’s

plate number is shown. This process is carried out in the Visual Studio. The nodes are

assigned according to the flow of the image processing steps in identifying the car plate.

The nodes and its task are tabulated in Table 3.1.

Table 3.1: Nodes assignment

Node Task

1 Load image

2 Crop image

3 Convert image to Grayscale image

4 Convert Grayscale image to binary image

5 Remove car plate character

6 Subtract between images

7 Remove noise vertically

8 Remove noise horizontally

9 Horizontal profiling and Y-coordinates extraction

10 Crop the image with Y-coordinates

11 Vertical Profiling and X-coordinate extraction

12 Extract the plate

Table 3.1 shows that the twelve steps to process the image of the vehicle. In node

1, the 640*480 RGB image is loaded into Visual Studio (OpenCV). 3-Dimensional array

of 640 columns and 480 rows with depth of 3 is being created and loaded, where the first

layer is defined as Red Channel, second layer is defined as Green Channel and the third layer

of the array is defined as Blue Channel. The Image is shown in figure 3.2.

Figure 3.2: Image of vehicle

16

In node 2, the image is cropped from the size of 640*480 pixels to 280*360 pixels.

It removes unwanted boundary regions by removing first and last 60 rows from the image

and first and last 180 columns from the image. The cropped image is shown in figure 3.3

Figure 3.3: Image after crop

Figure 3.3 shows that the image after crop. Any picture will go through this steps

in order to fix a size to reduce processing time.

In node 3, the conversion of RGB (Red, Green, Blue) to Grayscale image is

processed. In every pixel, 3 channels of colour RGB are converted into single channel of

colour is ranged from 0 to 255. The formula for conversion of the RGB to Grayscale is

expressed as Equation (3.1).

Gray= (R+G+B)/3 (3.1)

Equation (3.1) is applied for every pixel. A grayscale image can be imagined as 2-

Dimensional array. The grayscale image is shown in Figure 3.4.

Figure 3.4: Grayscale image

17

 In node 4, grayscale image is converted to binary image. Every pixel in grayscale image

is compared with a threshold value of 150. If pixel value in grayscale image is larger than the

threshold value, then the pixel is changed to 255 which represented bit ‘1’ and also represented

white colour pixel. Otherwise, the pixel value is changed to 0 which represented it ‘0’ and also

represented block colour pixel. The binary image is shown in Figure 3.5.

Figure 3.5: Binary image

In node 5, the car plate’s characters is removed. The binary image is processed

row by row to find continuous connecting white pixels. If the continuous connecting

white pixel is less than 30 pixels, then the connecting white pixels turn into black pixels.

Otherwise, the connecting white pixels remain unchanged. The image of removed car

plate’s characters is shown in Figure 3.6.

Figure 3.6: Image of removed car plate's characters

18

In node 6, Subtraction between images is carried out. Subtract the image of

removed plate’s character (Figure 3.6) from the binary image (Figure 3.5) will give a

result as shown in Figure 3.7

Figure 3.7: Image after subtraction

In node 7, noise in the image is removed vertically. The image from figure 3.7 is

analyzed column by column to find continuous connecting white pixels. If the connecting

white pixels is less than 3 pixels, then it is converted to black pixels. Otherwise, it remain

unchanged. After the noise in vertical is removed, the result is shown in Figure 3.8.

Figure 3.8: Image after removed noise vertically

In node 8, noise in the image is removed horizontally. The image from figure 3.78

is analyzed row by row to find continuous connecting white pixels. If the connecting

white pixels is less than 3 pixels, then it is converted to black pixels. Otherwise, it remain

unchanged. After the noise in horizontal is removed, the result is shown in Figure 3.9.

19

Figure 3.9: Image of removed noise horizontally

In node 9, image of removed noise is then processed through horizontal profiling

and Y-coordinate extraction. Total number of white pixel in a row is calculated. The step

is repeated from the top row until end of the row. If the total number of white pixel is

larger than 50, the row is labelled as logic ‘1’ else logic ‘0’. Then, the image is checked

from top row to end of the row. When the row logic is changed from 0 to 1, the row

number with logic ‘1’ is stored in a variable ‘Y1’. When the row logic is changed from 0

to 1, the row number with logic ‘0’ is stored in a variable ‘Y2’. The ‘Y1’ and ‘Y2’ is the

row number for the plate. The concept is illustrated as shown in Table 3.2.

Table 3.2: Conceptual illustration on horizontal profiling

Row number Number of white pixels Logic

1 10 0

2 8 0

3 9 0

4 3 0

5 65 1

Plate

Location

Y1

6 80 1

7 75 1

8 55 1

9 4 0 Y2

10 12 0

 In node 10, the image is cropped according to the Y-coordinate. Image from

Figure 3.9 is crop into smaller size from Y1 to Y2. The result is shown in Figure 3.10.

20

Figure 3.10: Image after cropped in row

 In node 11, image in Figure 3.10 is further process in vertical profiling and X-

coordinate extraction. Total number of white pixels is calculated in each column from left

to right. If the total number of white pixel is larger than 20, the row is labelled as logic

‘1’ else logic ‘0’. Then, the image is checked from top row to end of the row. When the

row logic is changed from 0 to 1, the row number with logic ‘1’ is stored in a variable

‘X1’. When the row logic is changed from 0 to 1, the row number with logic ‘0’ is stored

in a variable ‘X2’. The ‘X1’ and ‘X2’ is the row number for the plate. The concept is

illustrated as shown in Table 3.3.

Table 3.3: Conceptual illustration on vertical profiling

Column number 1 2 3 4 5 6 7 8 9 10

Number of white pixel 2 7 8 21 30 25 27 40 5 2

Logic 0 0 0 1 1 1 1 1 0 0

 Plate Region

X1 X2

 In node 12, extraction of car plate is carried out. The car plate is extracted from

the binary image as shown in Figure 3.5. The image is crop based on the X-coordinate

and Y-coordinate which are X1 to X2 and Y1 and Y2. The extracted car plate is shown

in Figure 3.11.

Figure 3.11: Image of vehicle’s plate number

21

3.3 Obtaining Data from Altera board

From the previous step, all the steps formulas are verified through image processing

in Visual Studio. After that, each node is implemented in both HPS and FPGA. C

programming language is used to implement the functions into HPS. For implementation

in FPGA, Verilog Hardware Description Language is used. The data such as execution

time and resources utilization are collected from both HPS and FPGA.

3.3.1 Execution time in HPS

After the node and its formula are determined through image processing in Visual

Studio, the formula is written in C language. To measure the time taken for each node, a

library called ‘time.h’ is utilized. Therefore the time taken for each node can be calculated.

In C programming file, the number of clock cycle is taken before and after each node by

using C=clock() function.

After clock is initialized, timer start counting every 1 micro second. After the

program has been complete, the timer will stop counting. The total time required for one

node’s program is calculated by dividing total clock with clock cycle per second (1000000

clocks per second). The steps is repeated for every node. After the C programming file is

written, then the code file is then to HPS. The process can be summarized as shown in

figure 3.12.

22

Figure 3.12: Flow Chart for Software

Figure 3.12 shows the flow chart for software part from beginning until data

collection. After the code is written in C language, Linux OS is booted into SD card and

SD card is inserted into Altera Board.

After that, the IP address of the Altera DE1-Soc is identified by using command

‘ifconfig’ in Ubuntu terminal as show in Figure 3.13. It shows that the internet address is

10.122.23.54.

Figure 3.13: Internet IP address of the board

23

 After that, Altera Embedded Command Shell is used to upload the C

programming file into the board through some command as shown in Figure 3.14. It

shows the command used in the command shell. Firstly, Linux “cd” command is used to

change current directory to the project folder name “fyp”. After that, “make” command

is used to start building (compiling and linking) process.

Figure 3.14: SoC EDS Command Shell

After the building process is finished, “ls” command is used to list all the files in the

current directory. It shows that the executable file “fyp” is generated successfully as

shown in Figure 3.15.

Figure 3.15: Files in the directory

 After the file is successfully generated, the file is then copied into the SD card in

Altera board. In Altera Embedded Command Shell, command “scp fyp

ubuntu@10.122.23.54:/home/ubuntu” is used to copy the file into the folder

“home/Ubuntu”. When prompt message “Are you sure you want to continue connecting

(yes/no)”, “yes” is typed and ENTER button is pressed. Next, the password is required.

24

The password “temppwd” is key in and ENTER button is pressed. After the file

successfully copied into the SD card, it shows 100% at the bottom right as shown in

Figure 3.16.

Figure 3.16: Command to copy file into SD card

 After the file is successfully copied into SC card, “ls” command is used in the

ubuntu terminal to check whether the file is in the folder as shown in Figure 3.17. After

that, command “chmod 777 fyp” is run in order to change the file permission. Finally, the

fyp file can be executed by running the command “./fyp”. After the file is executed, the

execution time of each node is shown in blue rectangular.

Figure 3.17: Execute the C file

The result of the execution time in software is recorded and tabulated.

	Hardware software partitioning using particle swarm optimization (pso) in image processing application_Tan Jia Zheng_E3_2018_MJMS

