

Hardware and Software Partitioning using Genetic

Algorithm in Image Processing Application

LOO FANG HEAN

UNIVERSITI SAINS MALAYSIA

2018

Hardware and Software Partitioning using Genetic

Algorithm in Image Processing Application

by

LOO FANG HEAN

Thesis submitted in fulfillment of the

requirements for the degree of

Bachelor of Engineering (Electronic Engineering)

JUNE 2018

 ii

ACKNOWLEDGEMENTS

This dissertation is dedicated to everyone in the field of Genetic Algorithm in

embedded system who embarks the journey of expanding the collection of knowledge

and passion for Genetic Algorithm in embedded system.

 Firstly, I would like to dedicate my appreciation and thank to my final year project

and research supervisor, Assc. Prof. Dr Zaini Abdul Halim, for her patient guidance and

advices throughout the entire period of my final year project. Her continuous support and

precious advices are one of the factors in deciding the completion of my project and are

highly appreciated. I feel proud and grateful to be one of the students who is under her

supervision.

 Next, I would like to thank the PhD student, Mr. Tan Earn Tzeh (one of the PhD

student under the same supervisor as mine), for his precious advices and support for my

final year project. He is always willing to share his precious experiences and knowledge

to me.

 Additionally, I want to thank all my course mates who study together with me

throughout four years in my university life. They are always willing to spend their

precious time with me, sitting together to exchange knowledge, discussing about the

problems faced during the time of doing final year project and sometime brainstorming

together to solve the problems.

 Lastly, I would like to thank my family for giving me the loves and supports.

Without their supports either financial or morale, I would not have successfully complete

my final year project and thesis.

iii

TABLE OF CONTENT

 Page

ACKNOWLEDGEMENTS .. ii

TABLE OF CONTENT ... iii

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

LIST OF ABBREVIATIONS .. xiii

ABSTRACT .. xv

ABSTRAK ... xvi

CHAPTER 1 INTRODUCTION .. 1

1.1 Research Background 1

1.2 Problem statement 4

1.3 Research objectives 5

1.4 Scope of project 6

1.5 Thesis Outline 7

CHAPTER 2 LITERATURE REVIEW ... 8

2.1 Overview 8

2.2 Processor (CPU) 8

2.3 Field Programmable Gate Array (FPGA) 8

2.4 CPU-FPGA Hybrid Platform 9

2.5 Hard Processor VS Soft Processor 9

2.6 Hardware Software Partitioning 10

iv

2.7 Genetic Algorithm (GA) 11

2.8 Image Processing 15

2.9 Related Works 17

2.10 Chapter Summary 26

CHAPTER 3 METHODOLOGY ... 27

3.1 Overview 27

3.2 Nodes of Genetic Algorithm (GA) assignment 28

3.2.1 Image initialization 28

3.2.2 Process of cropping the image 29

3.2.3 Conversion of RGB image to Grayscale image 30

3.2.4 Conversion of grayscale image to binary image 30

3.2.5 Removal of car plate character 31

3.2.6 Subtraction of removed plate character image from binary image 31

3.2.7 Removal of noise vertically 32

3.2.8 Removal of noise horizontally 33

3.2.9 Horizontal Profiling and Y-coordinates extraction 33

3.2.10 Process of cropping the image with upper row and lower row Y-coordinates

 34

3.2.11 Vertical Profiling and X-coordinate extraction 34

3.2.12 Extraction of the car plate 35

3.3 Data collection in both FPGA and HPS for each node 35

3.3.1 Data collection in FPGA for each node 36

v

3.3.2 Data collection in HPS for each node 42

3.4 Formulation of Hardware-Software Partitioning 45

3.5 Partitioning approach using Genetic Algorithm 46

3.6 Chapter summary 48

CHAPTER 4 RESULTS AND DISCUSSION ... 49

4.1 Overview 49

4.2 Accuracy of image processing algorithm developed 49

4.3 Performance of FPGA 56

4.4 Performance of HPS 58

4.5 Comparison of execution time 60

4.6 Hardware-Software Partitioning using Genetic Algorithm 61

4.7 Performance Comparison between HW/SW Partitioned and Non-Partitioned

solution 75

4.8 Summary 77

CHAPTER 5 CONCLUSION .. 78

5.1 Conclusion 78

5.2 Future Work 79

References ... 80

Appendices .. 85

Appendix A: Coding in MATLAB for Genetic Algorithm 85

Appendix A.1: main 85

Appendix A.2: Cost Function 88

vi

Appendix A.3: Roulette Wheel Selection 88

Appendix A.4: Tournament Selection 88

Appendix A.5: Crossover 89

Appendix A.6: Mutation 89

Appendix B: Pseudocode for the FPGA simulation coding 90

Appendix B.1: tb_main module 90

Appendix B.2: main module 90

Appendix B.3: ram module 90

Appendix B.4: multiplexor module 90

Appendix B.5: loadRGB 90

Appendix B.5: cropRGB 90

Appendix B.6: convertGrayscale 91

Appendix B.7: convertBinary 91

Appendix B.8: removePlate 91

Appendix B.9: subtract 91

Appendix B.10: removenoiseV 92

Appendix B.11: removenoiseH 92

Appendix B.12: profileH 92

Appendix B.13: cropH 93

Appendix B.14: profileV 93

Appendix B.15: cropPlate 93

Appendix C: Coding for FPGA simulation in ModelSim 94

vii

Appendix D: Pseudocode for the HPS coding 118

Appendix E: Coding for HPS 120

Appendix F: Coding in Visual Studio 2017 126

viii

LIST OF TABLES

 Page

Table 3.1: Nodes assignment 28

Table 4.1: Resource consumed by each node in FPGA 56

Table 4.2: Execution time of each node in FPGA 57

Table 4.3: Execution time of each node for 10 runs in HPS 58

Table 4.4: Average Execution time of each node in HPS 59

Table 4.5: Result of First test case for Genetic Algorithm 62

Table 4.6: Result of Second test case for Genetic Algorithm 63

Table 4.7: Result of third test case for Genetic Algorithm 64

Table 4.8: Result of fourth test case for Genetic Algorithm 65

Table 4.9: Result of fifth test case for Genetic Algorithm 66

Table 4.10: Result of sixth test case for Genetic Algorithm 67

Table 4.11: Result of seventh test case for Genetic Algorithm 68

Table 4.12: Result of eighth test case for Genetic Algorithm 69

Table 4.13: Result of ninth test case for Genetic Algorithm 70

Table 4.14: Result of tenth test case for Genetic Algorithm 71

Table 4.15: Summary of 10 test cases of different GA parameters combination where

Maximum Resource Limit, Q=341 72

Table 4.16: Summary of 10 test cases of different GA parameters combination where

Maximum Resource Limit, Q=681 72

Table 4.17: Summary of 10 test cases of different GA parameters combination where

Maximum Resource Limit, Q=1022 72

Table 4.18: Performance Comparison between HW/SW Partitioned solution with

HW/SW Non-Partitioned solution 75

ix

LIST OF FIGURES

 Page

Figure 1.1: Altera DE1-SoC board [3] 3

Figure 2.1: FPGA fabric structure [14] 9

Figure 2.2: Population, Chromosome and Genes [20] 12

Figure 2.3: Visual Representation of Roulette Wheel Selection in GA [22] 13

Figure 2.4: Visual Representation of Tournament Selection in GA [22] 13

Figure 2.5: Visual representation of One-point crossover in GA [22] 14

Figure 2.6: Visual representation of multi-point crossover in GA [22] 14

Figure 2.7: Visual representation of uniform crossover in GA [22] 14

Figure 2.8: Visual representation of uniform crossover in GA [22] 15

Figure 2.9: Converting colored image into grayscale image using three methods [26] 16

Figure 2.10: Flow of morphological image processing proposed by Yoshihiro Shima [27]

 17

Figure 2.11:Flow of Plate localization proposed by Anumol Sasi et al. [28] 19

Figure 2.12: An example of Iran's national license plates with different backgrounds [29]

 20

Figure 2.13: Disorder in plate positioning due to similarity with the body color of the

vehicle [29] 20

Figure 2.14: Flow of the plate extraction proposed by Rajesh Kannan Megalingam et al.

[30] 21

Figure 2.15: Sample population mentioned by M.C. Bhuvaneswari and M. Jagadeeswari

for Hardware Software partitioning problem [9] 24

Figure 2.16: Algorithm for GA implementation mentioned by Li Luo et al. [31] 25

Figure 3.1: Research Methodology Overview 27

x

Figure 3.2 RGB image of Malaysia car in rear view 29

Figure 3.3: Crop RGB image 29

Figure 3.4: Grayscale image 30

Figure 3.5: Binary image 31

Figure 3.6: Image of removed car plate character 31

Figure 3.7: Image generated when binary image subtract image of the removed plate

character 32

Figure 3.8: Image of removed noise vertically 32

Figure 3.9: Image of removed noise horizontally 33

Figure 3.10:Conceptual illustration on horizontal profiling and ‘Y1’ & ’Y2’ coordinates

extraction 34

Figure 3.11 Image region from row ‘Y1’ until row ‘Y2’ of the image in Figure 3.9 34

Figure 3.12: Conceptual illustration on vertical profiling and ‘X1’ & ’X2’ coordinates

extraction 35

Figure 3.13: Extracted car plate 35

Figure 3.14: Step to compile Verilog code in Quartus Prime 17.1 36

Figure 3.15: Resource consumption in compilation report 37

Figure 3.16: Schematic diagram of the combined Verilog code for simulation in

ModelSim 38

Figure 3.17: Step to initiate the simulation of Verilog code in ModelSim 39

Figure 3.18: Step to add wave 39

Figure 3.19: Final Step to start the simulation 40

Figure 3.20: Clock2 and Clock1 of first node 41

Figure 3.21: Clock2 and Clock1 of node 2 42

xi

Figure 3.22: Compilation of C code with makefile using Altera Embedded Command

Shell. 42

Figure 3.23: Identifying the IP address of Altera DE1-SoC in Linux System 43

Figure 3.24: Loading Compiled file into SD-card from Windows to Linux using Altera

Embedded Command Shell in Windows 43

Figure 3.25: C code executed in HPS of Altera DE1-SoC using Linux OS 44

Figure 3.26: GA algorithm framework 47

Figure 3.27: Pseudocode of uniform crossover 48

Figure 4.1: Source image, cropped image, grayscale image, and binary image of test case

type 1 50

Figure 4.2: Removed-plate image, Subtracted image, RemoveNoise(Vertical) image, and

RemoveNoise(Horizontal) image of test case type 1 50

Figure 4.3:Pre-extracted plate image, and extracted plate image of test case type 1 51

Figure 4.4: Source image, cropped image, grayscale image, and binary image of test case

type 2 51

Figure 4.5: Removed-plate image, Subtracted image, RemoveNoise(Vertical) image, and

RemoveNoise(Horizontal) image of test case type 2 51

Figure 4.6: Pre-extracted plate image, and extracted plate image of test case type 2 52

Figure 4.7: Source image, cropped image, grayscale image, and binary image of test case

type 3 52

Figure 4.8: Removed-plate image, Subtracted image, RemoveNoise(Vertical) image, and

RemoveNoise(Horizontal) image of test case type 3 52

Figure 4.9: Pre-extracted plate image, and extracted plate image of test case type 3 53

Figure 4.10: Source image and Cropped image of test case type 4 53

Figure 4.11: Grayscale image and Binary image of test case type 4 53

xii

Figure 4.12: Removed-plate image, Subtracted image, RemoveNoise(Vertical) image,

and RemoveNoise(Horizontal) image of test case type 4 54

Figure 4.13: Source image, cropped image, grayscale image, and binary image of test case

type 5 54

Figure 4.14: Removed-plate image, Subtracted image, RemoveNoise(Vertical) image,

and RemoveNoise(Horizontal) image of test case type 5 55

Figure 4.15: Chart of execution time against node 60

xiii

LIST OF ABBREVIATIONS

ACO Ant Colony Optimization

AI Artificial Intelligence

ALU Arithmetic Logic Unit

ARM Advanced RISC Machine

CNN Convolutional Neural Network

CPU Central Processing Unit

DAG Directed Acyclic Graph

FPGA Field Programmable Gate Array

GA Genetic Algorithm

HDL Hardware Description Language

HPS Hard Processor System

HSCD Hardware-Software Co-Design

HW Hardware

ILP Integer Linear Programming

MOPSO-CD Multi-Objective Particle Swarm Optimization

 using Crowding Distance strategy

NSGA-II Nondominated Sorting Genetic Algorithm

PE Processing Engines

RAM Random Access Memory

RGB Red, Green, Blue

SA Simulated Annealing

SoC System-on-Chip

SOPC System on a Programmable Chip

xiv

SVM Support Vector Machine

SW Software

WSGA Weighted Sum Genetic Algorithm

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

xv

HARDWARE AND SOFTWARE PARTITIONING USING GENETIC

ALGORITHM IN IMAGE PROCESSING APPLICATION

ABSTRACT

In this project, HW-SW Partitioning is used as a process to map each task of image

processing application to be executed either in software (Hard Processor System, HPS)

or hardware (Field Programmable Gate Array, FPGA). The framework for HW-SW

Partitioning using Genetic Algorithm (GA) is developed in MATLAB. Total ten different

combinations of GA parameters are used to test the developed framework. The GA

parameters such as population size, crossover percentage and mutation percentage are

varied to get the optimum combination of GA parameters. Three different HW/SW

Partitioned Solutions are generated and the HW resources spent by first, second, and third

solutions must not exceed the constraint value, Q = 341, Q = 681, and Q = 1022

respectively. The HW resource spent in HW/SW Partitioned Solution 1 (Q = 341) is 77.97%

lesser than pure hardware solution. It is 4.65% faster than pure hardware solution and

26.6% faster than pure software solution. The HW resource spent in HW/SW Partitioned

Solution 2 (Q = 681) is 50.29% lesser than pure hardware solution. It is 8.51% faster than

pure hardware solution and 29.61% faster than pure software solution. The HW resource

spent in HW/SW Partitioned Solution 3 (Q = 1022) is 45.01% lesser than pure hardware

solution. It is 10.09% faster than pure hardware solution and 30.83% faster than pure

software solution. Future work of this project is to implement the HW-SW partitioned

solution in Altera DE1-SoC.

xvi

PEMBAHAGIAN PERISIAN PERKAKASAN DENGAN

MENGGUNAKAN ALGORITMA GENETIK DALAM PEMPROSESAN

IMEJ

ABSTRAK

Dalam projek ini, pembahagian perkakasan (HW)-perisian (SW) digunakan sebagai suatu

proses yang menentukan setiap tugas aplikasi pemprosesan imej sama ada akan dalam

perisian (HPS) atau dalam perkakasan (FPGA). Rangka kerja untuk Pembahagian HW-

SW menggunakan Algoritma Genetik (GA) dibangunkan dalam MATLAB. Sejumlah

sepuluh kombinasi parameter GA yang berlainan telah digunakan untuk menguji rangka

kerja yang dibangunkan. Parameter GA seperti saiz populasi, peratusan crossover dan

peratusan mutasi telah diubah untuk mendapatkan kombinasi parameter GA yang paling

optimum. Tiga penyelesaian untuk pembahagian HW-SW yang berbeza telah dihasilkan

dan sumber HW yang digunakan oleh penyelesaian pertama, kedua dan ketiga tidak boleh

melebihi nilai kekangan, Q = 341, Q = 681, dan Q = 1022. Sumber HW yang diperlukan

dalam penyelesaian pertama (Q = 341) adalah 77.97% lebih rendah daripada penyelesaian

yang menggunakan HW sahaja. Penyelesaian ini adalah 4.65% lebih cepat daripada

penyelesaian yang menggunakan HW sahaja dan 26.6% lebih cepat daripada

penyelesaian yang menggunakan SW sahaja. Sumber HW yang diperlukan dalam

penyelesaian kedua (Q = 681) adalah 50.29% lebih rendah daripada penyelesaian yang

menggunakan HW sahaja. Penyelesaian ini adalah 8.51% lebih cepat daripada

penyelesaian yang menggunakan HW sahaja dan 29.61% lebih cepat daripada

penyelesaian yang menggunakan SW sahaja. Sumber HW yang dibelanjakan dalam

penyelesaian ketiga (Q = 1022) adalah 45.01% lebih rendah daripada penyelesaian yang

menggunakan HW sahaja. Penyelesaian ini adalah 10.09% lebih cepat daripada

penyelesaian yang menggunakan HW sahaja dan 30.83% lebih cepat daripada

penyelesaian yang menggunakan SW sahaja. Kerja masa depan projek ini adalah untuk

melaksanakan penyelesaian HW-SW yang dipartisi dalam Altera DE1-SoC.

 1

CHAPTER 1

INTRODUCTION

1.1 Research Background

Image processing is a method that analyzes digital data available inside an image

in order to extract some useful information [1]. The main purpose of image processing is

to distinguish the object in an image, seek for image of interest, create a better image, etc.

Generally, image processing can be applied in many fields such as Automobile Industry,

Electronic Industry, Medical, Robotics, etc.

 Image processing can be a resource-consuming task. When the image that is

undergoing processing is having high resolution, the process time and the resource

consumption will be high. Therefore, this research is done to look for a solution that can

provide low process time and at optimum level of resource.

 Car plate identification is one of the applications in image processing. It may be

implemented for security purposes, staff parking lot authentication, paying for toll, paying

for parking fees, etc. With this system, a company can allow their staff to access the staff

parking lot without using manpower to open the gate or allow the access to staff. This

system will be more efficient than the ticket system that is currently used in a carpark of

any mall. Besides, this system may replace the current toll system in Malaysia which is

smart tag/ Touch N Go. With this system, the toll fees can be charged directly to car

owner. The car owner who has cleared the toll debt is only allowed to change the road tax

sticker.

Embedded System-On-Chip (SoC) incorporating Field Programmable Gate Array

(FPGA) (Hardware) and Microprocessor/ Hard Processor System (HPS) (Software) are

getting famous. Several SoC platforms with both Hardware and Software are being

available commercially, which inclusive of Atmel’s FPLSLIC family [2], Altera’s low-

cost CycloneTM II FPGA family [3], and Xilinx’s Virtex II Pro [4].

2

 A hybrid Microprocessor-FPGA embedded SoC platform has both processor and

FPGA. However, most users are using either one of it for applications at the early stage

of hybrid embedded SoC being available in market. FPGA provides parallel processing

ability which has higher data processing rate than Microprocessor. However, FPGA

consumes more resources to have similar performance as Microprocessor. This causes

the application that uses FPGA only to have higher cost compared to the similar

application implemented in Microprocessor [5-8]. Thus, using FPGA only for that

application or using Microprocessor only for that application is not an effective solution.

An optimal combination of hardware and software should be used in the application.

 To have the combination, hardware-software partitioning technique needs to be

implemented in the application. Hardware-software partitioning partitions several tasks

to be implemented in hardware and implement the remaining tasks in software [6]. There

are several algorithms used in Hardware-software partitioning such as Integer Linear

Programming (ILP), Simulated Annealing (SA), Genetic Algorithm (GA) [9], etc.

 GA is one of the methods available in Artificial Intelligence (AI). GA is used to

solve both constrained and unconstrained optimization [10]. The process involved in GA

is related to biological evolution where this algorithm will repeatedly modify the gene in

the chromosome of an individual in the population. The gene mentioned can be

represented in binary as a string of ‘0’s and ‘1’s [11].

 In this project, Altera DE1-SoC platform as shown in Figure 1.1 will be used. This

platform consists of FPGA and ARM Cortex A9 [3]. The image processing application is

car plate identification. Instead of using only ARM Cortex A9 processor or only FPGA

to perform the image processing, both ARM processor and FPGA will be used together

to perform the image processing. The algorithm used to perform the hardware-software

partitioning is Genetic Algorithm (GA). To use hardware-software partitioning, the task

3

required in the image processing is split into several smaller tasks that represented by

genes which also known as nodes, performance of each node on FPGA and processor will

be evaluated and analyzed based on the execution time and resource utilization.

Figure 1.1: Altera DE1-SoC board [3]

4

1.2 Problem statement

Image processing is very famous in many applications such as face recognition,

object detection, etc. However, these applications require a processing unit to process

high resolution image to produce a better result. To perform image processing, majorities

are using Central Processing Unit (CPU) to perform image processing on high resolution

image where this method requires high processing time [12]. However, there are some

people using FPGA to perform image processing. Although this method provides a

shorter processing time, but the resource consumption is much higher [5-8]. Therefore, a

better solution that capable to perform image processing faster and consume lower

resources is needed to be explored.

 Due to the mentioned reasons, an alternative approach to perform image

processing based on Hardware-Software partitioning using GA will be investigated in this

project. The image processing application is car plate identification.

5

1.3 Research objectives

The main goal of the project is to perform Hardware-Software Partitioning using GA

algorithm for the image processing application. To achieve the goal, several specific

objectives have to be fulfilled:

1. To develop a framework for Hardware-Software Partitioning using Genetic

Algorithm for car plate identification using image processing method.

2. To investigate the performance of the Hardware-Software Partitioning in

terms of processing speed and resource consumption for car plate

identification.

6

1.4 Scope of project

In this research/project, the main objective is implementing Genetic Algorithm to

perform the Hardware-Software Partitioning but the C code for HPS and the Verilog code

for FPGA are not the main focus. GA is used to identify the best combination of the nodes

to be executed in hybrid HPS-FPGA platform such as Altera DE1-SoC. This means that

GA will decide which node to be executed in FPGA and which node to be executed in

ARM processor (HPS). The nodes mentioned are referred as the tasks involved in the

image processing application which is car plate identification. To achieve the objective,

image processing tasks/nodes have to be identified and verified through Microsoft Visual

Studio 2017 with the help of OpenCV 3.4.0.

 The code used for image processing application in Microsoft Visual Studio is

converted into Verilog code and C code. The Verilog code and C code will be

implemented in FPGA and ARM processor of Altera DE1-SoC respectively. Data such

as processing time and resources used for each task/node in FPGA are collected from

Quartus Prime 17.1 and ModelSim 16.0 respectively. Data such as processing time used

for each task/node in ARM processor is collected from the terminal in the Linux Ubuntu

Desktop with Linux Kernel 4.5.

 With the help of MATLAB, the framework for HW-SW Partitioning using GA is

developed and only three GA parameters are varied which are population size, crossover

percentage, and mutation percentage. The selection method is fixed at “Roulette-Wheel”

method. The number of iterations and mutation rate are fixed at 100 and 0.02 respectively.

The tabulated data will be processed by the developed Genetic Algorithm to create the

best HW-SW Partitioned solution. Three different constraints are applied to GA which

are Q = 341, Q = 681, and Q = 1022 where Q is the maximum hardware resource

constraint. In other words, three different HW-SW Partitioned solutions will be generated

7

by GA and the hardware resources spent by first, second and third solutions cannot exceed

Q = 341, Q = 681, and Q = 1022 respectively.

1.5 Thesis Outline

Overall, this report consists of five main chapters that describe the full details from

introduction to conclusion of this project. Chapter 1 is the introduction which briefly

describes the project background, problem statement, objectives and scope.

 Chapter 2 is about the literature review of the past works done related to this

project. Summary of the past studies on hardware performance for image processing,

software performance for image processing, different algorithms for Hardware Software

partitioning and different image processing techniques for car plate detection are

presented in this chapter.

 In Chapter 3, methodology and the project implementation will be discussed in

detail. Flowcharts, image processing techniques and car plate identification algorithms

used are elaborated. The implementation of the project will also be discussed in this

chapter. List of devices and system operation are explained in detail.

 Chapter 4 presents the result and discussion for this project. The performance of

the image processing nodes in ARM processor and FPGA in terms of execution time and

resource utilization will be presented. The performance of Hardware-Software Partitioned

solution is compared Hardware-Software Non-Partitioned solution such as pure hardware

implementation solution and pure software implementation solution. The result is

analyzed and discussed.

 Finally, chapter 5 presents the conclusion of this project. Summary on the project

implementation and future works of this project are included.

8

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

Recently, researchers have started to research on Hardware Implementation or

Software Implementation or Hybrid Hardware-Software Implementation for image

processing application in portable embedded platform. In this chapter, some fundamental

knowledge relevant to this project has been discussed. Besides, previous work done on

the image processing algorithm used in identifying car plate, algorithms to perform

hardware/software partitioning and implementation of image processing on embedded

platform like FPGA or microprocessor have been reviewed in this chapter as well.

2.2 Processor (CPU)

Processor which is also known as Central Processing Unit (CPU) is an electronic

circuitry that executes the instructions of a program in sequential flow by performing

arithmetic, logic and control operations. These are done by arithmetic logic unit (ALU),

register and control unit. ALU in CPU performs arithmetic and logic operation, register

in CPU stores the results generated by ALU, and control unit of CPU controls the flow of

fetching and execution of instruction [13].

2.3 Field Programmable Gate Array (FPGA)

FPGA allows user to design the circuit. User can configure or design the circuit

using Verilog code or VHSIC Hardware Description Language (VHDL) where VHSIC

is known as Very High Speed Integrated Circuit. FPGA contains an array of

programmable logic blocks and reconfigurable interconnects that allow the logic blocks

to be wired together and Figure 2.1 shows the FPGA fabric structure that consists of logic

blocks, I/O blocks and programmable interconnect.

9

Figure 2.1: FPGA fabric structure [14]

FPGA can be configured into something as simple as an AND gate or it can be

configured into something as complex as a multi-core processor. FPGA store the

configuration in Random Access Memory (RAM) but not flash memory, therefore, the

configuration is lost when FPGA lose the power supply. FPGA can achieve parallel

processing because it allows user to configure circuit at gate level [15-16].

2.4 CPU-FPGA Hybrid Platform

Altera DE1-SoC is one of the CPU-FPGA hybrid embedded platforms that consists

of both ARM-based Hard Processor System (HPS) and FPGA together with a high-

bandwidth interconnect between HPS and FPGA. The HPS consists of 800MHz Dual-

core ARM Cortex-A9 embedded core, peripherals and memory interfaces. This board

consists of Ethernet networking, video capability that can display images through VGA

port and DDR3 memory [17]. With this hybrid platform, user can implement design in

HPS only by using software or implement in FPGA by using Hardware Description

Language (HDL) or implement in both HPS and FPGA by using hardware-software co-

design method.

2.5 Hard Processor VS Soft Processor

Hard processor is a type of processor system where all components have been fixed

and the circuit cannot be reconfigured after it is manufactured while soft processor refers

10

to a type of processor system that is created using the available resources in FPGA where

this system can be customized and reconfigured again anytime. Although soft processor

has better flexibility than hard processor in terms of reconfigurable, but soft processor has

higher power consumption and requires more resources than hard processor [5-8, 18].

2.6 Hardware Software Partitioning

Hardware-Software Partitioning is one of the most crucial design steps in

Hardware-Software Co-Design (HSCD). There are several algorithms used in Hardware-

software partitioning such as Integer Linear Programming (ILP), Simulated Annealing

(SA), Genetic Algorithm (GA) [9], etc. These algorithms are used to decide which

components of a system to be realized in hardware and which ones in software [6].

 Hardware-software partitioning provides an optimal trade-off between time

consumed and resources spent. It solves the problem arising when a system is being

implemented in hardware only which is higher resources consumption or the problem

arise when a system is being implemented in software only which is longer time

consumed [5-7].

11

2.7 Genetic Algorithm (GA)

 Today, GA is involved in solving several daily life problems. Many sales-based

company has adopted a solution that uses GA as their most effective solution to the traffic

and shipment routing problem [11]. GA is being used in robotic system [11], Encryption

and Code Breaking [19], Finance and Investment Strategies [19], Optimizing Chemical

Kinetic Analysis [19], Gene Expression Profiling [19], etc. To partition tasks into

hardware and software to get short processing time and resource consumption within

maximum resource available, GA algorithm is needed for hardware-software partitioning.

GA, a heuristic search algorithm that is inspired by Charles Darwin’s theory on the

natural evolution which is “survival of the fittest”. This algorithm reflects the process of

natural selection where the fittest individuals in a population are selected for reproduction

in order to produce better offspring in next generation. This algorithm exploits historical

information to direct the search into the region of better performance within the search

space [20-21].

 An individual is characterized by a set of parameters/variables/nodes which is

known as gene. Genes are joined into a string to form a chromosome/solution of a system.

Population is formed when a group of chromosomes exist [20]. Figure 2.2 illustrates the

definition of population, chromosomes and genes used in Genetic Algorithm. In this

project, the nodes are assigned to each task in the image processing task such as

converting color image to grayscale image, converting grayscale image to binary image,

etc. The entire application consists of many genes and is represented as chromosome.

12

Figure 2.2: Population, Chromosome and Genes [20]

 Genetic algorithm generally involves mutation, cross-over, fitness evaluation and

selection [22]. “Selection process” is a process that selects candidates in the current

population for mating process. “Cross-over process” is a process that breaks a pair of

candidates’ into parts and remixed into two new candidates. Mutation is a process where

a chromosome is randomly selected and the gene is altered from ‘0’ to ‘1’ or vice versa.

Fitness evaluation is process where it evaluates the fitness of candidates in a population/

in that generation. The higher the fitness (low execution time), the better the candidate is.

 There are three common types of “selection process” methods which are inclusive

of Roulette Wheel Selection, Tournament Selection and random selection. In selecting

the parent for cross-over using Roulette Wheel Selection, the circular wheel is divided

according to the fitness value. Based on Figure 2.3, the candidate with higher fitness value

will get higher portion in the circular wheel. The region which comes in front of the fixed

point is chosen as parent. The same process is repeated for second parent.

13

Figure 2.3: Visual Representation of Roulette Wheel Selection in GA [22]

 In selecting the parent for cross-over using Tournament Selection, K number of

candidates/chromosomes are randomly picked out of the population and the fittest

candidate among K candidates is selected as parent. Based on Figure 2.4, the candidate

with higher fitness value out of the three potential candidates is selected as parent.

Figure 2.4: Visual Representation of Tournament Selection in GA [22]

 In selecting the parent for cross-over using Random Selection, two random

parents are selected for cross-over.

14

 For cross-over process, there are three commonly used cross-over method. The

first method is known as one-point crossover. A random crossover point is selected. The

tails of two parents are swapped to get new off-springs as Figure 2.5 shown.

Figure 2.5: Visual representation of One-point crossover in GA [22]

 The second method is known as Multi-Point Crossover. This method is a

generalization of one-point crossover method wherein alternating segments are swapped

as Figure 2.6 shown.

Figure 2.6: Visual representation of multi-point crossover in GA [22]

 The third method is uniform crossover where each gene has potential to swap

between parents. It can be said that coin is being flipped for each gene to decide whether

or not it will be swapped between parents as Figure 2.7 shown.

Figure 2.7: Visual representation of uniform crossover in GA [22]

 The most common mutation method is bit flip mutation [22]. A random candidate

is selected from the population. The selected candidate will have one or more random bit

being flip. Figure 2.8 shows one candidate having one-bit flip mutation.

15

Figure 2.8: Visual representation of uniform crossover in GA [22]

 In this project, after injecting the data collected such as time and resource

consumed by each node on both FPGA and HPS, the Genetic Algorithm generates the

fittest individual/chromosome for the hardware software partitioning. For example, the

fittest individual/chromosome is “011”. Assuming “1” is the node to run in

FPGA/Hardware and “0” is the node to run in HPS/Software, then the hardware/software

partitioning is having the image processing task to be performed in “HPS-FPGA-FPGA”

if the fittest individual/chromosome generated is “011”.

2.8 Image Processing

Image processing is a process to perform some operations on an image in order to

extract some useful information from the image such as identify the number of pets in an

image, etc. Image processing is also commonly used to enhance an image. It is a type of

signal processing where the input of the system is an image and the output maybe an

image. For example, an image can be undergoing image processing to find the contours

of the objects in the image and the system outputs an image with the contours being

marked [23].

 An image is made up of many pixels. For example, a 640*480 (width*height or

column*row) image is having 640 columns and 480 rows of pixel which made up of total

307200 pixels [24]. Each pixel in a color image contains three values which are Red,

Green, Blue (RGB). These values range from 0 to 255 representing the intensity of the

color at that pixel. A colored image can be imagined as a 3-layered 3-Dimensional Array

where the row and column of each layer of the 3-Dimensional array are the height and

width of an image respectively and the height/layer of the 3 layered 3-Dimensional Array

are representing the RGB value each pixel carries [25].

16

 A colored image can be converted into a grayscale image. The fundamentals of

this conversion is converting the three values which are RGB value of each pixel into a

single value. This conversion can be said as converting a 3-Dimensional array to a 2-

Dimensional array. Therefore, each pixel only carries one grayscale value from 0 to 255

only. There are three common methods existed to convert a colored image to a grayscale

image. The first method is lightness method where grayscale value in each pixel is

calculated as Equation (2.1) [26].

 Grayscale=
Max(R,G,B)+Min (R,G,B)

2
 (2.1)

 The second method is average method where grayscale value in each pixel is

calculated as Equation (2.2) [26].

 Grayscale=
R+G+B

3
 (2.2)

 The third method is luminosity method where grayscale value in each

pixel is calculated as Equation (2.3) [26]. The output images of three methods are shown

in Figure 2.9.

 Grayscale=0.21 R + 0.72 G + 0.07 B (2.3)

Figure 2.9: Converting colored image into grayscale image using three methods [26]

17

2.9 Related Works

Yoshihiro Shima [27] proposed a method to extract car plate region out of an

image captured from the rear end at various car distances. The proposed system had

extracted the plate candidate region by using dilation morphology and scoring based on

both height-width ratio and number of connected components in the region. The proposed

system classified the candidate region into two classes which were number plate and

outlier. It used pre-trained 23-layers of Convolutional Neural Network (CNN) as image

feature extractor and two Support Vector Machine (SVM) as classifier. Yoshihiro Shima

proposed a method to extract the car plate region which is a combinational of both

morphological image processing and deep learning. For the morphological image

processing, the flow of the system is as shown in Figure 2.10.

Figure 2.10: Flow of morphological image processing proposed by Yoshihiro Shima

[27]

 For the deep learning process, Yoshihiro Shima [27] had injected 269 samples of

positive number plate images for pre-trained CNN and 370 negative training outlier

images for SVM. In the first layer of the deep learning network, the first layer learned

filters for capturing blob and edge features. For validating the results/performances,

Yoshihiro Shima had tested to extract the car plate using morphological image processing

with a success rate of 75% for 56 samples of image which is equivalent to 42 sample

18

images succeeded. Therefore, the researcher implemented combinational of both

morphological image processing and deep learning in this research. With this

combination, the success rate is increased to 89.7% for 126 samples of image where the

algorithm had correctly identified the car plate for 113 sample images.

 Anumol Sasi et al. [28] had researched an intelligent approach that is able to

detect vehicular number plates automatically using three algorithms in plate localization

for identifying the edges, in character segmentation and extraction algorithm and a

hierarchical combined classification method. The algorithm is named as Ant Colony

Optimization (ACO).

ACO algorithm has several limitations when it is used in edge detection such as

random initial ant position in image. Anumol Sasi et al. [28] had modified the ACO such

as assigning well-defined initial ant position. The character segmentation and extraction

algorithm which used the concept of Kohonen Neural Network to identify the position

and dimensions of characters was presented.

For the hierarchical combined classification method, the combination of both

inductive learning and SVM for character recognition was proposed. However, in this

paper, the image processing application is to extract the car plate from an image.

Therefore, the flow of plate extraction/localization is important to be reviewed. For the

plate localization, Anumol Sasi et al. [28] had proposed a flow as shown in Figure 2.11.

19

Figure 2.11:Flow of Plate localization proposed by Anumol Sasi et al. [28]

 In the pre-processing stage, the image had been processed to improve the contrast

and reduce the noise in the image. During this stage, the image had been converted from

RGB image to grayscale image, noise reduction by median filtering and Adaptive

Histogram Equalization. In the Morphological Opening operation, the adaptive contrast

enhanced image had been processed to remove disc shaped structural element.

The morphological opened image was then subtracted from the adaptive contrast

enhanced grayscale image to highlight the number plate region. The subtracted image had

been converted into binary image using threshold method. The edge detection method

used modified ACO algorithm. After the edge detection, the next step includes closing

operation which is obtained by performing dilation first and then followed by erosion.

Then the car plate had been extracted from the image after getting the coordinates of the

plate.

 Sajed Davoodnia and Mohammad Ghasemzadeh [29] both researched and

proposed a new algorithm for locating the car plate by separating the blue channel from

20

a colored image and differentiating the blue channel from the grayscale image and

threshold the image to generate a binary image. Based on Figure 2.12, the researchers

separate the blue channel was because of the highlighted region in Figure 2.12. Candidate

area was determined using geometrical properties such as area and length to width ratio.

The researchers had done analysis using MATLAB environment to test the algorithm

with 150 images of standard size of 640*480 pixels and different ambient light conditions

and direct imaging of Iranian vehicles with national license plates. The researchers

obtained 96.66% of efficiency and accuracy for the proposed algorithm.

Figure 2.12: An example of Iran's national license plates with different backgrounds

[29]

 However, based on Figure 2.13, this algorithm has imperfection which is having

false detection on car or background with blue color and similar geometry property.

Figure 2.13: Disorder in plate positioning due to similarity with the body color of the

vehicle [29]

21

 Rajesh Kannan Megalingam et al. [30] researched and proposed a technique using

image processing only for automatic license plate recognition. The researchers used a

digital camera to capture color image with pre-defined resolution of 640*480 pixels. The

plate region is extracted by the concept of connected components in the image

(mathematical morphology). After extracting the plate region, the researchers proposed

that the extracted plate region to undergo character segmentation and followed by

character recognition. For the plate extraction, the flow is as shown in Figure 2.14.

Figure 2.14: Flow of the plate extraction proposed by Rajesh Kannan Megalingam et al.

[30]

 Based on Figure 2.14, Rajesh Kannan Megalingam et al. [30] proposed the

conversion of RGB image into grayscale image. Then the researchers proposed cropping

the 640*480 pixels of grayscale image to remove unwanted boundary regions by

removing first and last 60 rows from the image and first and last 180 columns from the

image leaving the image to have the resolution of 280*360 pixels. Then the cropped

grayscale image is converted into binary image by using threshold method. Thus, the plate

characters are displayed in white pixels. Then the proposed technique looked for the

22

connected white components of less than or equal to the alpha-numeric character size

used in the license plate and remove them from the binary image.

After removing the character, the image generated was subtracted from the binary

image. This produced an image with those components which are less than or equal to the

characters used in the license plate. Then the generated image had been processed to

reduce noise by removing very small connected white pixels from the image. Then the

researchers performed horizontal and vertical profiling (horizontal and vertical histogram)

on the image to locate the coordinate of the plate. After locating the plate coordinate, the

plate was extracted from the grayscale image.

 Shuang Dou et al. [7] had proposed a model of embedded system that is extended

such that resource contentions are taken into consideration. GA-based algorithm is

proposed on the basic of the model. From the experimental results, the GA-based

algorithm can be conveniently implemented for Hardware-Software Partitioning with

resource contentions.

In their research, the results obtained in GA-based algorithm are compared with

exhaustive search method. The application is modelled by considering a Data Flow Graph

where nodes are derived from the functional specification internally represented as

control/data flow graph, which can run either on hardware or on software. The execution

time is divided into three parts which are execution time in hardware, execution time in

software and time interfere with resource contention.

In their research, the Hardware-Software partitioning problem is modeled as

nonlinear minimization problem. GA algorithm in their research has provided a better

result as the system area is optimized with lower run time as compared to Exhaustive

Search algorithm.

23

 M.C. Bhuvaneswari and M. Jagadeeswari [9] had researched multi-objective

optimization of minimizing two objectives area and the execution time of the partition.

Performance metrics are calculated to validate and verify the efficiency of the algorithms.

In the research, the embedded system to be partitioned is modeled as Directed Acyclic

Graph (DAG). A DAG is a graph G (V, E), where V is the set of functional nodes/tasks

and the edge, E, is the data dependency between the two tasks with V ∈ {v1, v2 . . . vi}

and E ∈ {e1, e2 . . .ei}.

Each task is associated with five integer values: (1) HW-execution time, tH, which

is the time required to execute the task on the HW module; (2) HW implementation of

the task required area, CH, on the HW module; (3) SW-execution time, tS, which is the

time required to execute the task on the processor; (4) the SW implementation of the task

required memory, CS, on the software module; and (5) the communication costs, CC,

which refers to the delay in transfer of data between HW and SW tasks.

The researchers illustrated three multi-objective optimization algorithms:

Weighted Sum Genetic Algorithm (WSGA), Nondominated Sorting Genetic Algorithm

(NSGA-II), and Multi-Objective Particle Swarm Optimization using Crowding Distance

strategy (MOPSO-CD) which are applied for solving HW/SW partitioning problem. The

result of this research indicated that NSGA-II is effective in solving Hardware-Software

partitioning problem and provided good results for most benchmark circuits. Figure 2.15

is a sample population for Hardware Software partitioning problem.

24

Figure 2.15: Sample population mentioned by M.C. Bhuvaneswari and M. Jagadeeswari

for Hardware Software partitioning problem [9]

 Li Luo et al. [31] had researched GA for hardware-software partitioning on a

heterogeneous multicore System on Chip which has several different types of Processing

Engines (PE). GA is used for four task graphs to simulate the hardware/software

partitioning. Task graph is also known as Directed Acyclic Graph (DAG) with weight. 5

definitions are declared so that task graph can be used to describe the system. The GA

algorithm is implemented as shown in Figure 2.16.

	Hardware and software partitioning using genetic algorithm in image processing application_Loo Fang Hean_E3_2018_MJMS

