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Abstrak

Kajian ini menerangkan pembentukan dan penggunaan kaedah grid-pelbagai untuk
masalah konduksi haba 2D. Satu kaedah grid-pelbagai (MG) pada asasnya adalah penyelesai
matriks yang digunakan dengan kaedah pengiraan lain untuk menyelesaikan persamaan
pembezaan separa (PDE) seperti kaedah unsur terhingga (FEM), kaedah unsur sempadan (BEM),
terhingga berbeza kaedah (FDM) dan lain-lain. penggubalan antara FEM dan MG digunakan untuk
menguji prestasi gabungan ini melalui penyelesaian. penyelesaian melibatkan separa persamaan
pembezaan (PDE) persamaan Poisson 2D masalah pengaliran haba dan penyelesaian yang
diselesaikan dengan menggunakan Matlab. Persamaan Poisson telah diuji dengan pelbagai jenis
sumber haba dan kesilapan L2 norma dan Hl norma telah dikira untuk mengesahkan dan
membuktikan penumpuan penyelesaian. Penyelesaian FEM dan FEM-MG dibandingkan dan
FEM-MG mengandungi dua jenis pelicinan Gauss-Siedel dan berturut-turut lebih bersantai (SOR).
Hasil kajian menunjukkan bahawa kesilapan L2 dan HI norma dalam FEM-MG kecil berbanding

FEM dengan konvensional sistem linear penyelesai.



Abstract

This research describes the formulation and application of the multigrid method for the 2D
heat conduction problem. A Multigrid method (MG) is essentially a matrix solver which is used
with another computational method for solving partial differential equation (PDE) such as finite
element method (FEM), boundary element method (BEM), finite different method (FDM) etc. The
formulation between FEM and MG is used to test the performance of this combination through the
solution. The solution involves partial differential equation (PDE) of Poisson equation of 2D heat
conduction problem and the solutions solved by using Matlab. The Poisson equation was tested
with various types of heat source and the error L2 norm and HI norm were computed to validate
and prove the convergence of the solution. The solution of FEM and FEM-MG were compared
and FEM-MG contains two types of smoother Gauss-Siedel and Successive Over Relaxation
(SOR). The result shows that the error of L2 and HI norm in FEM-MG smaller compare to FEM

with conventional linear system solver.

\
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Introduction

l MATHEMATICS l

SOLVER

ENGINEERING COMPUTER

Figure 1.1: Interaction between MATHEMATICS, ENGINEERING, and COMPUTER.

Now a day, the simulation analysis widely developed every year. Whereby the combination
of mathematics, engineering and computer knowledge were used. Simulation analysis is the
other method besides experimental analysis to use in analysis problem which is dealing with
the real problem for examples structural analysis, fluid flow analysis, fluid-structure interaction
and more. The data collected from simulation need to be verified before it can be used by
comparing the data between experimental and analytical solution. Simulation analysis contains
several computational methods such as Finite Element Method (FEM), Finite Difference
Method (FDM), Smooth Particles Hydrodynamic (SPH) and more. These methods are the way
to solve the solution compare to analytical and experimental. The numbers and types of mesh
or iteration are important to get the accurate result but for fine mesh or higher iteration need
higher time to get the result of the solution [1]. Therefore the best choice of the mesh or
iteration is important.

Multigrid method (MG) is the one of the numerical method to solve partial differential
equation (PDE) and the idea of MG technique is using hierarchy discretization to solve the
solution. The MG involve interpolation between finest grid and coarsest grid and the step

involves are relaxation, prolongation and restriction. Relaxation step is where the first v-cycle



was relaxed before the calculated variables transferring (restricting) to the next-coarser grid
and after the interpolating and adding the correction at the second v-cycle stage. Prolongation

step is the reverse step of restriction where coarsest grid to finest grid [2].

Finest grid

A @ Relaxation

Coarsest grid \ Restriction
/ Prolongation

Figure 1.2: Multigrid V-cycle steps.

Multigrid provide a small error compare to other method because it such a hybrid method
which combine with other method such as finite element or finite different and have the
smoothing element such as Gauss-Siedel. The function of the smoothing element is to reduce
high frequency occur during the cycle interpolation but there is an effect on the low frequency
components [3]. There are smoothing properties such as the error after few steps are being able
to smooth by using classical iterative method Gauss-Seidel (GS) and the convergence rate is
good in first few steps and decrease considerably afterward [4][5]. The multigrid method with
line Gauss-Seidel relaxation is found to work very well in solving fourth-order 2D Poisson
equation and special multigrid methods are developed to solve the resulting sparse linear
systems efficiently [3]. Coarse Grid principles are smooth function on a fine grid can be
approximated satisfactorily on a grid with less discretization points, whereas oscillating
function would disappear[6]. Furthermore, a coarse grid is less expensive compare to fine grid

and to approximate the low frequency error components on a coarse grid.
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Figure 1.3: Grid in 2D with cell-centered coarsening. Small (blue) circles denote fine grid points, big
(red) circles coarse grid points [7].

Multigrid iteration also known as V-cycle [8] and being summarized in figure 1-4 below show

the algorithm of multigrid method

Algorithm 1 Recursive V-cycle: u,(lkﬂ) = Vh(u,(lk),Ah,fh, vy, ;)

: if coarsest level then

: solve A"u* = f" exactly or by many smoothing iterations
:else

: ﬁ,(lk) =S (u,(lk),Ah, ) //pre-smoothing

crh = fh— 4hg ™ //compute residual

;v = IHr" //restrict residual

N ou A WN R

cefl = Vh(O,AH,u,(lk), rH,v,,v,) //recursion

8: e = Ile!! //interpolate error

9: ﬁflk) = ﬁ,(lk) + e™ //coarse grid correction

10: ul¥™ = 572(@®, A", f) //post-smoothing

11: end if

Figure 1.4: Algorithm for multigrid [7].

The focus of this study is combination of multigrid and finite element method and to test
the finite element multigrid (FEM-MG) with two types of smoother Gauss-Seidel and
Successive Over Relaxation (SOR) compare with finite element method (FEM) using Matlab.

The error between FEM-MG Gauss-Seidel, FEM-MG SOR and FEM were investigated to



check which one is better. The graphical user interface was created to reduce human effort and

make the result easily manipulated by the user.

2 Methodology
2.1 Theory

2.1.1 Finite element method

By referring [9] chapter 10,
Step 1: Choose element types.

For quadrilateral element (square) with nodal temperature t;, t;, ty and t;,.

Cem s Ym) (> Vi)
m k
tm tk
t; _tj
[ J
X, i) i, y5)

Figure 2.1: Basic quadrilateral element with nodal temperatures.

Step 2: Select the temperature function.

The temperature function is given by



2.1)

Nodal t;, t;, t) and t,,, can moving in 2 dimensional spaces x and y direction. So, for every nodal

with divide into two components x and y.

(Lix )
tiy
t; tjx
t: t]
ty=9.¢=1,."¢
(7% Ciex
tm tky
tmx
Ktmyj

For linear displacement function

te(x,y) = a; + a,x + azy + asxy
ty(x,y) = as + agx + a;y + agxy

The general temperature function {T'}, which stores the function of ¢, and t,,

{T} _ {a1 + a,x + asy + a4xy}
~ las + agx + a;y + agxy

(2.2)

(2.3)

(2.4)

(2.5)



To obtain values of a’s, substitute nodal ¢;, t;, ty and t,,, into t, and t, equation 3.3 and 3.2

ti, = te(xp,yi) = ag + apx; + azy; + aux;y;

t = te(x,7;) = a1 + ax%; + azy; + auxy;

th, = tx(Xi Vi) = aq + apx + azyi + asXy Yy 26)
tmy = tx(om, Yim) = a1 + A + A3V + QX Ym
ti, = ty(x;,yi) = as + agx; + a;y; + agx;y;
ti, = ty(x,9)) = as + agx; + azy; + agx;y;
by, = ty(Xg, Yk) = as + agxy + a7y + agxy Yy @7

tmy = ty(xm' Ym) = as + QX + A7V + QgXnYim

The a’s at beginning can be solve with the first four

From equation above t,(x, y) and t, (x, y) by eliminate a’s the equations 3.9 and 3.10 obtained

t; 1 x ¥y x)il(d
tj _ 1 % ¥y xy|)a
L 1 X Yy XY ||% (2.8)
tm 1 Xm Ym XmYm a4

1
te(x,y) = [(b ~ D=+ b+ =), (2.9)

+ (b +xX)(h+ Yty + (b —x)(h + y)tmx]



1
ty(,y) = = | (b =D (h =Nty + b+ D= )G,

+ (b + )R+ Pty + (b = ) (h + V)t |

These equations 3.9, can be expressed equivalently in terms of the shape function and unknown

nodal temperatures as

{T} = [N]{6} (2.10)

The shapes functions can be obtained by rearrange equation 3.1 are given by

[N] = {T}{e}! @1

Where the shapes functions are given by

_(b-x)(h—y)
N; = 4bh
_(b+x)(h—y)
N; = 4bh
b+ (h+y) (2.12)
k= 4bh
_(b=x)(h+y)
N = 4bh

Step 3: Define the Temperature Gradient/Temperature and Heat Flux/Temperature Gradient

Relationships

(g} = g;g (2.13)



dN; AN, N, ON,1[t

(g} = dx O0x Ox  Ox tj
T |ON; ON; ON, ONp|)tx

dy ody 9y 0y l\im

Rearrange equation 3.13, [B] can be obtained by substitutes equations 3.11 into {g}.

[B] = {g}He}™

dN;, ON. AN, 0N,
[ J |

Ox Ox 0x 0x
dN; aN,- ON, ON,,

dy dy dy Oy

[B] =

{ti 4 te tw}

1 [~h=») 0 (h—y) 0
[B] = 1bh 0 —(b —x) 0 —(b +x)
-b-x) —(h—-y) —-(b+x) (h—y)
(h+y) 0 —(h+y) 0
0 (b + x) 0 (b—x)

(b+x) (h+y) (b-x) —(h+y)

The heat flux/temperature gradient relationship is now

(o} = -0}

Where material property matrix is

K 0
D — XX ]
[DT=| o K,,

Step 4 Derive the element conduction Matrix and Equations.

1 [ oo av- s

For heat conduction problem and assuming constant thickness in the element,

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)



kel = || o113 av
\%4

= tA[B]"[D][B]
—(h—y) 0 —(b —x)
0 —b-—x) —(h-y)
(h—y) 0 —(b +x)
_i 0 —b+x) (h—y) |[Kux 0 ]
~ 16b2hZ| (h+y) 0 (b+x) (L0 Ky
0 b+x) (h+y) (2.21)
—(h+7y) 0 (b—x)
0 (b—x) —(h+y)l
[—(h - ) 0 (h—y) 0
0 —(b —x) 0 —(b +x)
—(b—-x) —(h-y) —-(b+x) (h—y)
(h+vy) 0 —(h+y) 0
0 (b+x) 0 (b—x)
b+x) (h+y) b-x) —(h+y)
For heat source {fQ}
(f,) = Qﬂj[N]TdV (2.22)
|4
{fo} = 1K1} (2.23)

2.1.2 Finite Element-Multigrid

The variables K stiffness matrix and f, load vector matrix from 2.1.1 where used at figure 1.4:

algorithm for multigrid and for square element the value b and h are equal size.

u}(1k+1) _ Vh(uf(lk)’Kh' th, vy, 172)



1: if coarsest level then

2:solve Khuh = f Qh exactly or by many smoothing iterations
3:else

4: 7% = s, k", £,") lipre-smoothing

5.7t = fo" — k"a® Jicompute residual

6: it = Iflr" [Irestrict residual

7:e" = V,(0, K", u® v, v,, v, ) lirecursion

8: e = Ile! [[interpolate error

9: 1 = 7l® + em Jicoarse grid correction

10: ul** = s¥2(@®, AR, £ Jipost-smoothing

11: end if

10



2.2 Case study

25
Y
|
1 |
o : >
-1 Q 1 X2
1

Figure 2.2: Dimension of problem (square)

. 2 2 %u 0%u 9%u
The heat equation V*u = —f(x,y) where V-u are equal to K, T K +K,, s but for 2

Yy dy?

. . 2%u . . 2 02
dimensional cases the d—;: is equal to zero. Therefore the V?u will become K, —+ K, -

0
— and
dx? Y dy?

2 2
the equation is K, % + K,y 371; = —f(x,y). Whereby f(x,y) is the source of heat that supply

to the equation. Assume the type of material is constant in x and y direction, K., = K, =K

2
which is thermal conductivity equal to 1 W /(unit - °C) then the full equation is equal to ZTZ +

— = —f(x,y). All boundaries west, east, south, north were fixed at zero.

The solution will apply various type of heat source:

Case 1: fl,y) = —[2x(x—1) + 2y(y — 1)]
Case 2: fo,y) = —[2x = 2]
Case 3: flx,y) = —[4 — 2y — 2x]

11



2.3 Implementation
The performance of the FEM-MG was test by using Matlab 2014b code by Hardik
Kothari [10] where the codes were summarize in figure 2.3 below. The graphical user
interface (GUI) was constructed. The Matlab was running at personal laptop and computer

at CAD lab School of Mechanical Engineering, Engineering Campus, Universiti Sains

Malaysia.
azzsembleFastCuad.m ain.m
F )
&
[ makelocallnterpolationhatrx m ] [ makeQuadGrid.m J

[ makelocall aplacianhatrmCuadm J enforcingBoundaryCondnm

[ makeSource.m ] . ]
multignid methodm |4
[ )
[ exactsolhm 1
-J { aszemblelnterpolationOperator.m

[ errorMNorm m ]

[ boundaryPomtCoarsel evelm }

[ makeParentChildFelm
[ gauss_seidelm }—

[ updated InterpolationOperator.m J

[ coarze level cyclem

Figure 2.3: Flow chart of Matlab script and function of Multigrid-FEM solver [10].

12



The function of the creation of GUI is to reduce human effort and make the result
easy to watch and manipulate. The GUI contain the variables that need to key in by user to
formulate the result. User can choose the smoother that being generate (code) easily

without changing at the main code.

O untiseatig o =

Fie Gde View Lyt Toou Heip Create push Create Slider
ELIFLL IR LD button
Z k
& Create radio \ Create check box
= = =1
e button \
- ® .
Create edit text Create statictext
m: T [ [ — |
=
If; Createpop-up | —" = Sl «— | Createlistbox
- menu =
Create toggle i||I% \ Create table
button =
/ RliES ‘\
Create axes \ Create panel
N Create button ActiveX control
- > group
Togs igurel Curmest ot [443, W1]  Pesitions [589, 678, 560, 420]
(a) (b)
2 Multagnd FEMAg - [w] k4

File Edn  View Loyout Took Help
al=] IER L EAAEY -2 011 A0 d
- Multigrid Finite Element Solver
= - eut Parametens
® | Grid size Increment s 4
W || 0 ™ e Pioass Choose Wissh
] N -~ Grd aize 4
L . Ve Toimeanca 110
* . -
., /
i . 10
T ~ e
. ' e Lavel 10
- wens 4 Error L3 and 1 norm
S e Limerm: 502895618
\\ o Hilerm:  12368e14
o Becthes
- ‘-.\ Gaas.Siedel v

o .
A . Exct Equation
’ N = (XK1

- ™, Saobve

Crewed by
UURANMAD ACK BN ATMAN
12008
) Feul Vear Snudent
- e Sehesl of Wackanical Fngresrng
- . Eagineering Cangus.

Universt Sains Uslaysa

14300, Netstng Tabsl Pulsy Brang
MALAYS

(c)
Figure 2.4: Setup Graphical User Interface Using Matlab: (a) Workplace (b) tools (c) Design layout
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% Multigrid Firite Eement - ® ¥ g Pt Femens

HO9E DR : WBDEDA

Multigrid Finite Element Solver Multigrid Finite Element Solver
.

MGlter = B MGHor = 6

008

yedirection

05 06 O
xdirection ndicion

(d). (e)

Figure 2.5: Graphical User Interface:(d) after result (e)smoother pick

3 Result and discussion
3.1 Casel

Case 1: fOoy) = —[2x(x— 1) + 2y(y — 1)]

Based on table 3.1 below, the different of the contour hardly to be seen because the error
of the solution by MG-FEM with Gauss-Seidel smoother and MG-FEM with Successive Over
Relaxation (SOR) smoother very small and the different that can be seen located at second
Multigrid iteration where MG-FEM with SOR contain nine contour lines compare to MG-FEM
with Gauss-Seidel come out with seven contour lines. The differences occur based on the
formulation of the Gauss-Seidel and SOR at equation 3.1 and 3.2 where the value of w at SOR were

set gbetween 0 < w < 2,if w =1 the SOR equation will be Gauss-Seidel. Multigrid with Gauss-

Seidel as smoother effective on problems of practical, and on model problems powerful smoothing
characteristics cost little to implement in serial computation context [11].

Quideal- 1
Gauss-Seidel: LD b — Z aijxj(k+1) _ Z aijxj(k) (3.1

L
a..
u i<i >

14



SOR: XD = 1- w)x(

i i

k)+£ b; —

(k+1) (k) 32
z aijxj — z aijxj ( )

Jj<i Jj>i

The calculations of errors are needed to show the different for the MG-FEM with Successive Over

Relaxation smoother and MG-FEM with Gauss-Seidel smoother.

Table 3.1: Comparison Multigrid Finite Element by using Gauss-Seidel and Successive Over

Relaxation(SOR), Grid size of 44 for case 1

Multigrid Finite Element by

Multigrid Finite Element by Using

Multigrid : . g ;
. g Using Gauss-Seidel as Successive Over Relaxation (SOR) as
iteration
smoother smoother
MGlter=10 MGIter =0
1 1
09 09 0.0
08 08
0.05
o7 07
_ 06 _ 08 — 0.04
0 § ue g oo 0.03
= 04 > 0.4
03 0.3
0z 0.2
01 0.1
DD DIZ D‘A D‘E D‘E DD D‘Q D‘A DIB DIB 1
s-direction ¥-direction
MGlter=1 MGIter =1
1
09
08
o7
=4 06 =4
1 g 0s E

04

o
"

o
b

o

=]

0.4 086
x-direction

1
09
0.8
07
0.8
05
0.4
03
0.2
0.1

DD 0z 0.4 0.6 0a 1

x-direction




y-direction

MGlter =2

y-direction

MGlter=2

y-direction

0.4 08
s-direction
MGlter=3

y-direction

0.4 06
s-direction
MGlter=3

y-direction

0.4 0B 0.4 08
#-direction s-direction
MGlter= 4 MGlter = 4

y-direction

y-direction

0.4 06
x-diraction
MGlter=5

0.4 086
x-direction

y-direction

0.4 0&
s-direction
MGler=5

0.4 06
x-direction
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MGlter = B MGlter =5

»
y-direction
y-direction

0.4 06
¥-direction

0.4 06
s-direction

Error in L2 & H1 norm vs Total Number of Elements
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Figure 3.1: Error in L2 & H1 norm vs Total Number of elements for case 1

Based on figure 4.2, start at grid size of 8 by 8 which contain 64 square elements the
convergence of error of Multigrid-FEM with Gauss-Seidel smoother decrease 88.88% to grid size
of 12 by 12. After that, the error drop again by 15.39% at grid size of 24 by 24. However, the error
slightly increases by 44.45% at grid size of 32 by 32. Suddenly, the error drop again 41.96% at
grid size 48 by 48. Next, the error fluctuates and continues drop by 72.22% at grid size of 100 by
100. By comparing lines between three errors of last result (grid size 100 by 100) of L2 norm for
FEM-MG Gauss-Seidel, FEM-MG SOR and FEM, the error FEM-MG Gauss-Seidel give the

small error of 2.0190292847¢-14 compare to FEM-MG SOR, 2.3066648816e-14 and FEM,
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3.289994054 1e-14. Therefore, the Multigrid-FEM with Gauss-Seidel smoother give the best result

of the error compare to MG-FEM SOR smoother and FEM.

3.2 Case?
Case 2: flx,y) = —[2x — 2]

Based on table 3.2, the contour differences clearly marked occur at MG iteration 1 where
the size of MG-FEM Gauss-Seidel is bigger than size of contour of MG-FEM SOR but for others
iteration the differences were hardly to differentiate with each other. Therefore, the calculations
of error were needed to see the detail differences occurred. For this case the FEM-MG with SOR
computed extra one iteration compare to FEM-MG with Gauss-Seidel.

Table 3.2: Comparison Multigrid Finite Element by using Gauss-Seidel and Successive Over
Relaxation(SOR), Grid size of 44 for case 2

Multiarid Multigrid Finite Element by Multigrid Finite Element by Using
. g Using Gauss-Seidel as Successive Over Relaxation (SOR) as
iteration
smoother smoother
MGlter =0 MGlter =0
! ! 025
09 09
07 07 ”
c e c 08 0.1
0 E 05 g 05
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0.2 1 02 1 0.05

o 0.2 0.4 08 08 1 ] 0z 0.4 06 08 1
w-direction x-direction
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Figure 3.2: Error in L2 & H1 norm vs Total Number of elements for case 2

Based on figure 3.2, the FEM-MG Gauss-Seidel also give the least error compare to FEM-MG

SOR by 4626.7% differences and FEM by 1273.8% differences.

3.3 Case3

Case 3:

fx,y) = —[4—2y — 2x]

The contour plot at table 3.3, show that the differences occur at MG iteration 1 which the

size of contour for the middle which FEM-MG SOR give bigger area compare to FEM-MG Gauss-

Seidel.
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Table 3.3: Comparison Multigrid Finite Element by using Gauss-Seidel and Successive Over
Relaxation(SOR), Grid size of 44 for case 3

Multiarid Multigrid Finite Element by Multigrid Finite Element by Using
) g Using Gauss-Seidel as Successive Over Relaxation (SOR) as
iteration
smoother smoother
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Figure 3.3: Error in L2 & H1 norm vs Total Number of elements for case 3

As shown in figure 3.3, once again the FEM-MG Gauss-Seidel give the least error compare

to FEM-MG SOR by 60.63% differences and FEM by 847.39% differences.
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