A COMPARATIVE STUDY OF SINGLE PHOTOTHERAPY PLUS WHITE CURTAINS AND SINGLE PHOTOTHERAPY IN TERM NEWBORNS WITH HYPERBILIRUBINAEMIA

by

DR. STANISLAUS DJOKOMULJANTO

Dissertation Submitted In Partial Fulfillment Of The Requirements For The Degree Of Master Of Medicine

(Paediatrics)

UNIVERSITI SAINS MALAYSIA

UNIVERSITI SAINS MALAYSIA 2008

ACKNOWLEDGEMENTS

First of all, I would like to express my special thanks and deepest gratitude to my supervisor, Associate Professor Dr. Van Rostenberghe Hans Luc Aster and my cosupervisor and my personal supervisor, Associate Professor Dr. Nik Zainal Abidin Nik Ismail and Dr. Noraida Ramli for their continuing guidance, criticisms and encouragement. Also a special thanks to Professor Dr. Quah Bang Seng and Dr. Tg Norbanee Tg Hamzah for advice in statistical analysis of the results. A special acknowledgement to Dr. Noorizan Hj. Abd. Majid, Head Department of Paediatrics, Hospital Universiti Sains Malaysia for her advice, support and permission to carry out this study in Hospital Universiti Sains Malaysia.

I would like to thank all my lectures, colleagues and staff from NICU (ward 1 Nilam) and the special care nursery (ward 1 Timur Belakang) in Hospital Universiti Sains Malaysia for their advice, help and co-operation throughout this study.

I would like to thank also my beloved wife Ir. Afrisiana Iskandar Putri and my children, Zoya Marie Adyasa, Audrey Devina Adyasa and Lukas Alden Adyasa for their everlasting love, support and understanding. All of their love would always be my inspiration forever and ever in my life. ТО

MY FAMILY

MY WIFE:

Ir. AFRISIANA ISKANDAR PUTRI

OUR CHILDREN:

ZOYA MARIE ADYASA

AUDREY DEVINA ADYASA

LUKAS ALDEN ADYASA

ACHIEVEMENTS and PUBLICATION

PUBLICATION

Arch.Dis.Child. Fetal Neonatal Ed. 2006;91;439-442: originally published online 28 Jul 2006 doi:10.1136/adc.2006.095687 (appendix 1)

This study has been presented during the

13th Annual Congress of the Perinatal Society of Malaysia (PSM)

16th – 19th March 2006, Crowne Plaza Riverside, Kuching, Sarawak (appendix 2) and won the PSM Young Investigator Award 2006 (appendix 3)

This paper was also presented during the

National Conference on Medical Sciences

21st – 22nd May 2006, Universiti Sains Malaysia, Kubang Kerian, Kelantan

TABLES OF CONTENTS

.

Acknowledgements		ii
Achievements and p	publication	iv
Tables of contents		v
List of Tables		vii
List of figures		viii
Abbreviations		x
Abstract		
English		xi
Bahasa Mela	yu	xiii
1. INTRODUCTIO	N	1
1.1 Backgrou	and	1
1.2 Epidemic	ology of neonatal jaundice	3
1.3 Etiology		5
1.4 Metabolis	sm of bilirubin	7
1.4.1	Bilirubin production	7
1.4.2	Transport of bilirubin	9
1.4.3	Uptake, conjugation and excretion of bilirubin	9
1.5 Clinical as	ssessment of jaundice	12
1.6 Treatment	t	13
1.6.1	Phototherapy	13

	1.6.2	Principle of phototherapy	19
	1.6.3	Modification of phototherapy unit	20
2. O]	BJECTIVES		22
	2.1 General o	bjectives	22
	2.2 Specific of	objectives	22
	2.3 Null hypo	othesis	22
3. M	ETHODOLOG	SY	23
	3.1 Study des	sign	23
	3.2 Subjects		23
	3.3 Methods		25
	3.4 Sample si	ze	27
×	3.5 Randomis	sation	28
	3.6 Statistical	analysis	29
4. RI	ESULTS		35
5. DI	SCUSSION		44
	5.1 Discussio	n regarding the individual outcomes of this study	44
	5.2 Potential	implication of this study	46
6. C(ONCLUSION		48
REF	ERENCES		49
APPI	ENDICES		52
	Appendix 1 Pu	iblication of the article	52
	Appendix 2 At	ostract of free paper presentation 13 th annual PSM congress	57
	Appendix 3 Ce	ertificate PSM Investigator Award 2006	58
	Appendix 4 Flo	ow chart of the study	59
	Appendix 5 Bo	brang maklumat dan keizinan and form for baseline data	60

LIST OF TABLES

Table 1.1	Important factors in the epidemiology of neonatal jaundice	4
Table 1.2	Causes of indirect hyperbilirubinaemia	6
Table 1.3	Correlation between levels of serum bilirubin with the area of skin that in Jaundiced	12
Table 1.4	Recommended levels of bilirubin for management of neonatal jaundice in healthy term newborns	16
Table 3.1	Inclusion and exclusion criteria	24
Table 3.2	Light intensities measured during a pre-study evaluation of different materials	30
Table 4.1	Baseline data of the babies included in the study	36

vii

LIST OF FIGURES

Figure 1.1	Formation of biliverdin and unconjugated bilirubin from heme	8
Figure 1.2	Bilirubin metabolism	11
Figure 1.3	Sister Jean Ward	17
Figure 1.4	The first phototherapy unit with artificial light apparatus	18
Figure 1.5	Mechanism of phototherapy	19
Figure 3.1	Set up for intervention group using the white reflecting curtain	
	hanging on the both of the phototherapy	31
Figure 3.2	The Phototherapy Lamp (Phoenix Phototherapy)	32
Figure 3.3	Light intensity meter Minolta	33
Figure 3.4	Underpad produced by local Pharmaniaga Logistic, Syah Alam	34

Figure 4.1 Mean decrease of serum bilirubin after 4 hour of phototherapy (SD) 37

Figure 4.2	The median duration of phototherapy in hour	38
Figure 4.3	Cumulative proportion of duration phototherapy according to type of intervention	39
Figure 4.4	Mean (SD) duration of hospital stay in days	40
Figure 4.5	Mean (standard deviation (SD) of light intensity in (μ W/cm ² /nm) in both group	41
Figure 4.6	The mean (SD) serum bilirubin levels 24 hours after stopping the phototherapy (µmol/L)	42

ABBREVIATIONS

- NADPH Nicotinamide Adenine Dinucleotide Phosphate-Oxidase
- UDPGT Uridyl Diphosphate Glucuronyl Transferase
- RBC Red Blood Cell
- G6PD Glucose 6 Phosphate Dehydrogenase
- ET Exchange Tranfusion

ABSTRACT

English

Objective

To determine whether the addition of low-cost reflecting curtain to a standard phototherapy unit could increase effectiveness of phototherapy for neonatal jaundice.

<u>Design</u>

Randomized controlled clinical trial.

Setting

Level one nursery of the Hospital Universiti Sains Malaysia, Kelantan, Malaysia.

Patients

Term newborns with uncomplicated neonatal jaundice presenting in the first week of life.

Intervention

Phototherapy with white curtains hanging from the sides of phototherapy unit (study group, n=50) was compared with single phototherapy without curtains (control group, n=47).

xi

Main outcome measures

The primary outcome was the mean difference in total serum bilirubin measured at baseline and after 4 hours of phototherapy. The secondary outcome was the duration of phototherapy.

Results

The mean (standard deviation) decrease in total serum bilirubin levels after 4 hours of phototherapy was significantly (p<0.001) higher in the study group [27.62 (25.24) μ ml/L] than in the control group [4.04 (24.27) μ ml/L]. Cox proportional hazard regression analysis indicated that the median duration of phototherapy was significantly shorter in the study group (12 hours) than in the control group (34 hours; χ^2 change 45.2; p<0.001; hazards ratio 0.20; 95% confidence interval 0.12 to 0.32). No difference in adverse events was noted in terms of hyperthermia or hypothermia, weight loss, rash, loose stools or feeding intolerance.

Conclusion

Hanging white curtains around phototherapy units significantly increase the efficacy of phototherapy in the treatment of neonatal jaundice without evidence of increased adverse effects.

Bahasa Malaysia

<u>Tujuan</u>

Untuk menentukan sama ada penggunaan langsir putih yang murah pada unit fototerapi yang biasa digunakan boleh meningkatkan keberkesanan rawatan jaundis neonatal.

<u>Model</u>

Bahan kes diambil secara rambang (randomized controlled clinical trial).

<u>Tempat</u>

Unit rawatan rapi neonatal dan nursery Hospital Universiti Sains Malaysia, Kelantan. Malaysia.

<u>Pesakit</u>

Bayi yang lahir cukup bulan dan tanpa komplikasi yang mengalami jaundis neonatal pada minggu pertama kelahiran.

<u>Kaedah</u>

Kajian dijalankan dengan membandingkan antara fototerapi dengan langsir putih (kumpulan kajian, n=50) dan tanpa langsir (kumpulan control,n=47).

<u>Hasil Kajian</u>

Keputusan pertama adalah membezakan purata paras bilirubin dalam darah pada bayi yang diambil pada awal penggunaan fototerapi dimulakan dan selepas 4 jam penggunaan fototerapi. Keputusan kedua adalah jangka masa penggunaan fototerapi.

<u>Keputusan</u>

Paras (purata) bilirubin dalam darah menurun selepas 4 jam penggunaan fototerapi secara nyata sekali (p<0.001) lebih banyak dalam kumpulan kajian [27.62 (25.24) μ ml/L] berbanding dengan kumpulan kontrol [4.04 (24.27) μ ml/L]. Analisa cox proportional hazards regression menunjukkan bahawa jangka masa penggunaan fototerapi pada kumpulan kajian adalah lebih pendek iaitu 12 jam berbanding dengan kumpulan kontrol iaitu 34 jam; χ^2 change 45.2; p<0.001; hazards ratio 0.20; 95% confidence interval 0.21 to 0.32). Kajian ini tidak menunjukkan perbezaan dalam kesan sampingan fototerapi pada bayi seperti hipertermia atau hipotermia, penurunan berat badan, ruam pada kulit, cirit birit atau tidak hadam susu.

<u>Kesimpulan</u>

Penggunaan langsir putih pada unit fototerapi telah memberi kesan yang nyata dalam meningkatkan rawatan jaundis neonatal bayi baru lahir tanpa kesan sampingan.

INTRODUCTION

1. INTRODUCTION

1.1 BACKGROUND

Jaundice is defined as yellowish discoloration of the sclerae and /or skin which is due to increased serum levels of bilirubin. It has been described as early as 1000 years ago in a Chinese textbook (Thor WR Hansen, 2002).

Hyperbilirubinaemia is a very common condition in neonates affecting 60 - 80% of the newborn babies during the first week of life (Agrawal R, 2002). It is the commonest morbidity in the neonatal period and 5 - 10% of all newborns require a diagnostic work-up and therapeutic intervention for pathological jaundice (Agrawal et al., 2001).

Unconjugated bilirubin is a lipid soluble substance that can cross the blood brain barrier, accumulate in the basal nuclei (kernicterus) and lead to brain damage (bilirubin encephalopathy). The most severe sequelae include lifelong athetoid cerebral palsy, severe sensorineural hearing loss, dental dysplasia and death (Kliegman, 2000).

These sequelae can be prevented by adequate therapy. If bilirubin levels are increasing, treatment for jaundice involves treatment of the underlying causes, phototherapy and/or exchange transfusion (Boyd, 2004). Intravenous immunoglobulin is an added new therapy in treating isoimmune haemolytic jaundice (Alcock and Liley, 2002).

Phototherapy has been used widespread and is proven to be effective in lowering serum bilirubin levels. The efficacy of phototherapy depends on the type of light-source, the wavelength and intensity of the light and the area of skin exposed (Thor WR Hansen, 2002).

Special blue light bulbs are most commonly used and have been proven to be more effective than fiber-optic lights. Blue light has an optimal wave length for photoisomerization of bilirubin. It is widely used throughout the world. Green light penetrates deeper into the skin but is not more effective than blue light and it makes the babies look sick. White light is also used. Decreasing the distance between infants and lamps can make it more effective (Thor WR Hansen, 2002).

Double phototherapy is more effective than single phototherapy. An increase in light intensity renders phototherapy more effective. Usually 2 or 3 phototherapy units are used to increase light intensity. If hanging low cost white curtains around the phototherapy unit could be shown to be more effective than single phototherapy only, that would be very significant, especially for developing countries, having only a limited number of phototherapy units (American Academy of Pediatrics, 2004).

Before elaborating further on phototherapy and potential modifications to improve its effectiveness, there will be a brief description of the epidemiology and etiology of neonatal jaundice. The bilirubin metabolism and the clinical assessment of jaundiced babies will also be discussed briefly.

1.2 EPIDEMIOLOGY of NEONATAL JAUNDICE

Some literature reviews mention that East Asians and native American infants have higher serum bilirubin levels than Caucasian infants (Maisels, 2000a)

East Asians have inherently higher serum bilirubin levels at birth than whites. In America, children of full East Asian parentage were more likely to be diagnosed with jaundice than were white infants. Jaundice is a problem of public health and clinical significance in countries like Malaysia (Sabeena Setia, 2002).

Potential reasons for this increased incidence in (southeast) Asians include the high incidence of G6PD deficiency and other red cell abnormalities in these populations. More recently is has been found that point mutations in the bilirubin diphosphate-glucuronosyl transferase (UGT1A1) gene, associated with Gilbert syndrome are common in East Asians (Maisels, 2000a) and also in a Malay population (Surini et al., 2006).

There is a wide range of factors that affect neonatal bilirubin levels. They are listed in table 1.1.

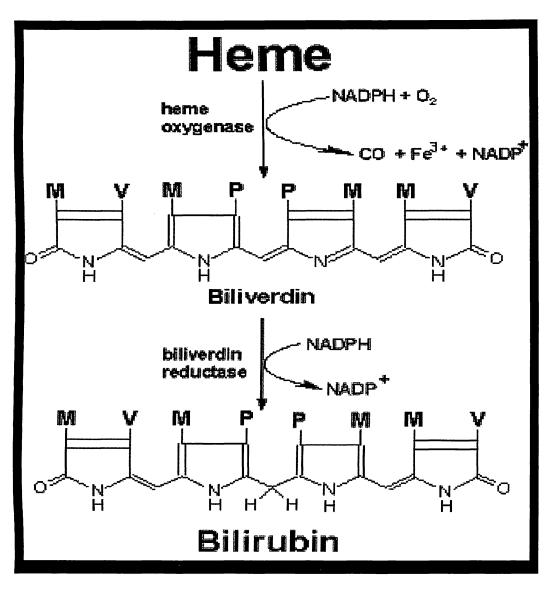
Associated factors	Effect on neonatal serum bilirubin	levels	
	Increase	Decrease	No effect
Race	East Asians Native American Greek	African Caucasian	
Genetic of familial	Previous sibling with jaundice Variant promoter of mutation of UGT1A1 gene associated with Gilbert's syndrome		
Maternal	Older mothers Diabetes Hypertension Oral contraceptive use at time of conception First-trimester bleeding Decreased plasma zinc level	Smoking	
Drugs	Oxytocin Diazepam Epidural anesthesia Promethazine	Phenobarbital Meperidine Reserpine Aspirin Chloral hydrate Heroin Phenitoin Antipyrine Alcohol	Beta-adrenergic agent
Labour and delivery	Premature rupture of membrane Forceps delivery Vacuum delivery Breech delivery		Fetal distress Low apgar score
Infants	Low Birth weight Decreasing gestation Male gender Delayed cord clamping Delayed meconium passage Breast-feeding Caloric deprivation Weight loss Low serum zinc and Mg		
Drugs to infants	Chloral hydrate, pancuronium		
Others	Altitude		

Table 1.1 Important factors in the epidemiology of neonatal jaundice (Maisels, 2000a)

1.3 ETIOLOGY

Indirect hyperbilirubinaemia in the first few days of life is caused by changes in bilirubin production and/or impaired conjugation or excretion of bilirubin. The most common causes of neonatal jaundice are listed in table 1.2.

 Table 1.2 Causes of indirect hyperbilirubinaemia (Watchko, 2000)


Increased bilirubin production or bilirubin load in the liver	
increased bin ubin production of bin ubin load in the nyer	
Hemolytic disease	
Immune mediated	
Rh alloimmunization	
ABO or other blood group incompatibilities	
Hereditary	
Red cell membrane defect	
Spherocytosis	
Ellipcytosis	
Stomatocytosis	
Pyknocytosis	
Red blood cell enzyme defect	
Glucose-6-phosphate dehydrogenase deficiency	
Pyruvate kinase deficiency	
Hemoglobinophaties	
Alpha thalassemia and beta thalassemia	
Other causes of increased production	
Sepsis	
Disseminated intravascular coagulation	
Extravasation blood	
Hematomas	
Subapponeurotic hemorrhage	
Polycythemia	
Infant of diabetic mother	
Impaired conjugation or decreased bilirubin clearance	
Inadequate or poor feeding intake	
Prematurity	
Delayed or impaired lactogenesis	
Inadequate milk transfer	
Other feeding problem	
Inborn errors of metabolism	
Crigler-Najjar syndrome type 1 and type 2	
Gilbert syndrome	
· · · · · · · · · · · · · · · · · · ·	
Tyrosinemia Hypermethioninemia	
Hypermethioninemia	
Hypermethioninemia Lucey-Driscoll syndrome	
Hypermethioninemia	
Hypermethioninemia Lucey-Driscoll syndrome Increased enterohepatic circulation	
Hypermethioninemia Lucey-Driscoll syndrome Increased enterohepatic circulation Intestinal obstruction Meconium ileus	
Hypermethioninemia Lucey-Driscoll syndrome Increased enterohepatic circulation Intestinal obstruction Meconium ileus Meconium plugging	
Hypermethioninemia Lucey-Driscoll syndrome Increased enterohepatic circulation Intestinal obstruction Meconium ileus Meconium plugging Cystic fibrosis	
Hypermethioninemia Lucey-Driscoll syndrome Increased enterohepatic circulation Intestinal obstruction Meconium ileus Meconium plugging Cystic fibrosis Hormonal	
Hypermethioninemia Lucey-Driscoll syndrome Increased enterohepatic circulation Intestinal obstruction Meconium ileus Meconium plugging Cystic fibrosis Hormonal Hypothyroidism	
Hypermethioninemia Lucey-Driscoll syndrome Increased enterohepatic circulation Intestinal obstruction Meconium ileus Meconium plugging Cystic fibrosis Hormonal	

1.4 METABOLISM OF BILIRUBIN

Every human will continuously produce and form bilirubin and newborn infants produce relatively more bilirubin than any other age group. The bilirubin load of the newborn is 2 to 3 times higher than that of an adult (Laura A.Stokowski, 2006).

1.4.1 Bilirubin Production

Bilirubin production is the result from degradation of heme from the red blood cells (75% - 80%), muscle myoglobin and liver enzymes such as cytochrome and catalases (20% - 25%), through the intermediary step of biliverdin. The formation of bilirubin is shown step by step in figure 1.1. Bilirubin in the serum of humans occurs in the form of the 4Z,15Z isomer and is almost insoluble in water (Hansen, 2000).

Substituents: M=methyl, P=proprionic, V=vinyl

Figure 1.1 Formation of biliverdin and unconjugated bilirubin from heme. Reproduced

from (Michael W. King, 2006) with permission

1.4.2 Transport of Bilirubin

The indirect bilirubin or unconjugated bilirubin is transported in the plasma, bound to albumin with a binding affinity of $10^7 - 10^8 \text{ M}^{-1}$ at the primary binding site, but there is also a secondary binding site on albumin where bilirubin is bound with lower affinity (Hansen, 2000).

Because of the high affinity of albumin for bilirubin, the equilibrium concentration of free or unbound bilirubin in the plasma is only in the low nanomolar range even in the presence of hyperbilirubinaemia. But when the concentration of bilirubin increases excessively, the primary binding site of albumin becomes saturated and free bilirubin concentration will increase markedly. The binding of bilirubin to albumin increases with postnatal age and is reduced in sick babies and also in the presence of exogenous or endogenous binding competitors. Besides binding to albumin, bilirubin can also bind to other proteins such as $\dot{\alpha}$ -fetoprotein, ligandin, lipoprotein, lysine and erythrocytes (Hansen, 2000).

1.4.3 Uptake, conjugation and Excretion of Bilirubin

After bilirubin-albumin binding, this bilirubin-albumin complex passes through the hepatic circulation and comes into contact with hepatocytes and bilirubin is transported into the cell. Within the hepatocyte around 60% of bilirubin is found in the cytosol and 25% in the microsomes (Hansen, 2000).