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PENJELASAN MENGENAI KESAN BAHAN PERENCAT DARI HASILAN 

SEMULAJADI MALAYSIA KE ATAS TITISAN SEL TUMOR KOMPLEKS 

SKLEROSIS TUBEROUS 

ABSTRAK 

Perencat mammalian target of rapamycin (mTOR) adalah rawatan utama untuk 

angiomiolipoma berkaitan kompleks sclerosis tuberous (TSC). Everolimus telah 

diluluskan oleh Pentadbiran Makanan dan Dadah Amerika Syarikat (USFDA) untuk 

rawatan angiomiolipoma berkaitan TSC yang tidak memerlukan pembedahan segera. 

Walaubagaimanapun, everolimus menunjukkan keberkesanan sederhana 

angiomiolipoma dan mempunyai beberapa batasan lain. Kajian ini bertujuan 

mengenalpasti potensi perencat mTOR daripada sumber tempatan Malaysia sebagai 

alternatif kepada everolimus dalam merawat angiomiolipoma. Tahap pertama kajian 

ini melibatkan penyaringan maya dan dok menggunakan pendekatan in silico untuk 

mengenal pasti perencat mTOR yang berpotensi daripada pangakalan data tempatan 

NADI. AutoDock Vina digunakan untuk menyaring maya everolimus dan lebih 

daripada 4000 bahan (ligan) daripada lebih 360 spesies tumbuhan secara serentak 

terhadap FKBP5 dan FRB-domain mTOR. Everolimus bertindak sebagai kawalan 

positif dan penanda aras untuk pemilihan selanjut perencat mTOR yang berpotensi. 

AutoDock 4.2.6 kemudiannya digunakan untuk mengenal pasti kedudukan pengikatan 

setiap bahan dengan skor dok terendah. Tahap kedua kajian melibatkan bioasai 

berasaskan sel yang menggunakan titisan sel UMB1949 sebagai model TSC untuk 

mengesahkan penemuan in silico dan menilai toksisiti bahan secara in vitro. Tahap 

terakhir kajian melibatkan penilaian kesan bahan pada ekspresi gen di jalur mTOR 

menggunakan teknik RT-qPCR. Kajian menemui dua bahan bioaktif daripada Centella 
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asiatica, asiatikosid dan asid asiatik, mempunyai skor dok yang lebih rendah dan lebih 

dekat kepada everolimus (– 11.86 kcal/mol) dan memenuhi kriteria pemilihan sebagai 

perencat mTOR yang berpotensi. Nilai IC50 asiatikosid dan asid asetik adalah masing-

masing 300 µM dan 60 µM. Nilai-nilai ini lebih tinggi daripada everolimus (29.5 µM) 

tetapi mereka menunjukkan aktiviti antiproliferatif setanding secara in vitro. CAB39, 

PRKCE, RRAGC, dan RPS6KA5 adalah dikawal atur menaik oleh kesemua bahan, 

everolimus, asiatikosid dan asid asetik. DEPTOR adalah dikawal atur menurun oleh 

kesemua bahan. VEGFC (dikawal atur menurun oleh asiatikosid) dan IGFBP3 

(dikawal atur menurun oleh everolimus dan asid asetik) juga telah dipilih sebagai gen 

yang difokuskan kerana peranannya yang dilaporkan membantu angiogenesis tumor 

dan apoptosis, dan bermungkinan merencat mTOR. Ini adalah kajian pertama yang 

bertujuan mengenal pasti kemungkinan potensi terapi asiatikosid dan asid asiatik 

dalam model penyakit TSC yang mensasarkan perencatan mTOR. Penemuan ini, 

dengan kombinasi penemuan in silico kami, seharusnya menyediakan asas untuk lebih 

banyak penyelidikan tentang mekanisme tindakan, keselamatan dan keberkesanan 

bahan ini sebagai perencat mTOR. 
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ELUCIDATING THE EFFECTS OF mTOR INHIBITORS FROM 

MALAYSIAN NATURAL PRODUCTS ON TUBEROUS SCLEROSIS 

COMPLEX CELL LINE  

 

ABSTRACT 

Mammalian target of rapamycin (mTOR) inhibitors are a highly recommended 

first-line therapy for tuberous sclerosis complex (TSC)-associated angiomyolipoma. 

Everolimus has been approved by the United States Food and Drug Administration 

(USFDA) for treatment of TSC-related angiomyolipoma that do not require urgent 

surgery. However, everolimus showed only modest efficacy for angiomyolipoma and 

has several other limitations. This present study aimed to identify potential mTOR 

inhibitor from Malaysian local sources as an alternative to everolimus in treating 

angiomyolipoma. The first stage of this present study involved virtual screening and 

docking using in silico approach to identify potential mTOR inhibitors from a local 

NADI database. AutoDock Vina was applied for virtually screening everolimus and 

more than 4000 substances (ligands) from over 360 plants species simultaneously 

against FKBP5 and FRB-domain of mTOR. Everolimus acted as positive control and 

benchmark for further selection of potential mTOR inhibitors. AutoDock 4.2.6 was 

later applied to identify the binding pose of each substance with the lowest docking 

score. The second stage of the study involved cell-based bioassays using UMB1949 

cell line as TSC model to validate the in silico finding and evaluate the toxicity of the 

substances in vitro. The last stage of the study involved evaluation of the effects of 

substances on genes expression in the mTOR pathway using reverse transcription 

quantitative real-time polymerase chain reaction (RT-qPCR) technique. It was 
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discovered asiaticoside and asiatic acid, two bioactive substances from Centella 

asiatica have lower and closer docking score to everolimus (– 11.86 kcal/mol) and 

have met the selection criteria as potential mTOR inhibitors. IC50 values of asiaticoside 

and asiatic acid were 300 µM and 60 µM, respectively. These values were higher than 

everolimus (29.5 µM) but they exhibited comparable antiproliferative activities in 

vitro. CAB39, PRKCE, RRAGC, and RPS6KA5 were upregulated by all three 

substances, everolimus, asiaticoside and asiatic acid. DEPTOR was commonly 

downregulated by all three substances. VEGFC (downregulated by asiaticoside) and 

IGFBP3 (downregulated by everolimus and asiatic acid) were also selected as genes 

of interest due to their reported roles in aiding tumour angiogenesis and apoptosis, and 

possible mTOR inhibition. This is the first study to look at identifying possible 

therapeutic potentials of asiaticoside and asiatic acid in TSC disease model that targets 

mTOR inhibition. These findings, in combination with our in silico findings, provide 

a basis for more research into the mechanisms of action, safety, and efficacy of these 

substances as mTOR inhibitors.
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CHAPTER 1 

INTRODUCTION 

1.1 Research background 

Tuberous sclerosis complex (TSC) is a rare, multi-system genetic disorder that causes 

non-cancerous (benign) tumours to develop in the brain and on other vital organs 

including the kidneys, heart, eyes, lungs, and skin. It has been well established that 

mutations in either TSC1 or TSC2 are the cause of the TSC in 85% of the patients. 

Although curative therapy is still largely elusive, mTOR inhibition has been a hallmark 

therapeutic target for tumour manifestations of TSC. Rapamycin, a United States Food 

and Drug Administration (USFDA)-approved immunosuppressant drug has been 

showed to substitute the role of hamartin/tuberin protein complex (encoded 

respectively by TSC1 and TSC2) in inhibiting mTOR activity towards control of cell 

growth and proliferation. In addition, the efficacy of rapamycin in shrinking tumours 

related to TSC manifestations has been demonstrated. Rapamycin, naturally produced 

by the soil bacteria of Streptomyces hygroscopicus isolated from the Easter Island, is 

currently hardly accessible to TSC Malaysian patients as well as other patients in 

worldwide for its USFDA-approved usage. This is because of, until now, rapamycin 

has not been approved by USFDA for treating any TSC manifestation despite 

extensively used for treating facial angiofibromas (Canpolat et al., 2014) and 

subependymal giant cell astrocytoma (SEGA) (Sparagana et al., 2010). The reasons 

are due to a significant progression in facial angiofibromas after rapamycin therapy 

discontinued (Canpolat et al., 2018) and rapamycin has no effect on optic nerve tumour 

for subependymal giant cell astrocytoma (SEGA) (Sparagana et al., 2010). 
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Besides, it was found out that rapamycin has poor pharmacokinetics and this led to the 

development of everolimus. Due to its superior efficacy, everolimus has been 

approved by USFDA for several cancer types such as advanced breast cancer, 

advanced renal cell carcinoma (RCC), pancreatic neuroendocrine tumours (PNETs) 

and selected manifestations of TSC such as renal angiomyolipoma (patients not 

preferring urgent surgery) and SEGA (patients need therapeutic intervention but 

cannot be curatively resected) (Lebwohl et al., 2013).  Meanwhile, in Malaysia, 

everolimus has been used in combination with lenvima for treating adult patients with 

advanced renal cell carcinoma (RCC) following before vascular endothelial growth 

factor (VEGF)-targeted therapy (National Pharmaceutical Regulatory Agency 

(NPRA), 2018).  

Malaysia has been a place where tremendously numerous natural substances can be 

derived, be it from plants, bacteria or animals. Following this, the Universiti Sains 

Malaysia (USM) School of Pharmaceutical Sciences has developed a resourceful 

database where information of thousands of natural substances stored could be traced 

for their homology to other pharmaceutical substances in use and their activity towards 

a certain therapeutic target.  This database is known as NADI (Natural Product 

Discovery) and the present study used this database to discover the promising mTOR 

inhibitors as an alternative for standard treatment, everolimus, for treating TSC. 

Therefore, the present study aimed to identify the potential mTOR inhibitors using the 

in silico analyses. Only a few top substances with the lowest docking score than 

everolimus that resulted from the in silico analyses were subjected to the cell-based 

bioassays for cytotoxicity test. Furthermore, the significant effects of these selected 

substances on the gene expression levels in the mTOR pathway were determined and 
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validated using reverse transcription quantitative real-time polymerase chain reaction 

(RT-qPCR). The gene functions were determined using bioinformatics analysis. 

1.2 Rationale of the study 

Everolimus had already been licensed by the USFDA and European Medicines 

Agency (EMA) as the standard drug for the treatment of inoperable TSC-related brain 

and kidney tumours. However, patients do not have good access to this treatment 

because of its high cost i.e., £28,000 per year per patient (2016). In Malaysia, the 

current price of everolimus (10 mg per tablet) is between RM 144.58-RM1,126.49 for 

each tablet (depends on the manufacturer). Besides, everolimus treatment has numbers 

of limitations. First and foremost, the use of everolimus as monotherapy for treating 

cancer resulted in modest efficacy as it exerted cytostatic rather than cytotoxic effect 

(Meric-Bernstam and Gonzalez-Angulo, 2009). Everolimus also failed to completely 

block mTORC1-mediumted signalling events. Like other mTOR inhibitors, resistance 

towards everolimus due to the existence of feedback loops (Carew et al., 2011) has 

also been reported. Everolimus has been associated with several side effects such as 

pneumonia, nasopharyngitis, sinusitis, amenorrhoea, stomatitis, upper respiratory tract 

infections, disturbed wound healing, acne and laboratory abnormalities such as 

hypercholesterolemia, hypertriglyceridemia and neutropenia (Trelinska et al., 2015; 

Sadowski et al., 2016). Therefore, the present study aimed to determine the potential 

mTOR inhibitor to solve the limitations of the current standard treatment for TSC 

patients. The present study hypothesised that potential Malaysian-derived mTOR 

inhibitors could be screened and acquired from the NADI database utilising a virtual 
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screening method and differential gene expression in the mTOR pathway could be 

determined. 

 

1.3 Objectives of the study 

1.3.1 General objective 

The general objective of this present study was to elucidate the effects of Malaysian-

Derived mTOR inhibitor on Tuberous Sclerosis Complex (TSC) cell line.  

1.3.2 Specific objectives 

1) To identify Malaysian-Derived mTOR inhibitor substances; substances with 

lower docking score than everolimus and/or substances targeting inhibition 

of mTOR activity.  

2) To determine the IC50 of everolimus and selected Malaysian-Derived mTOR 

inhibitor substances on human Tuberous Sclerosis cell line (UMB1949).  

3) To determine the expression of selected genes along the mTOR pathway 

following treatment with everolimus and selected Malaysian-Derived mTOR 

inhibitor substances on human Tuberous Sclerosis cell line (UMB1949).  

4) To validate the expression of selected genes found to be highly modulated 

along the mTOR pathway. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Tuberous Sclerosis Complex (TSC) 

TSC (OMIM 191100) (Rosset et al., 2017) is a rare autosomal dominant inherited (Lin 

et al., 2019) multisystemic disorders characterized by the growths of hamartomas, 

generally affecting multiple organs such as the brain, skin, kidney, heart and lungs 

(Huang and Manning, 2008; NINDS 2013). TSC is also known as 

epiloia or Bourneville-Pringle disease (Rodrigues et al., 2012). Pathophysiologically, 

TSC is caused by the mutation of either one of two tumour suppressor genes, TSC1 

(tuberous sclerosis complex 1) or TSC2 (tuberous sclerosis complex 2), which 

functionally encode hamartin and tuberin, respectively (European Chromosome 16 

Tuberous Sclerosis Consortium, 1993; van Slegtenhorst et al., 1997; Curatolo et al., 

2008; Franz et al., 2010; Bolton et al., 2015; DiMario et al., 2015) and this event will 

trigger activation of the mechanistic or mammalian target of rapamycin (mTOR) 

signalling pathway, leading to uncontrolled cell growth/proliferation and finally cause 

the development of hamartomas in multiple organs, influencing the role of these 

organs (Huang and Manning, 2008; Mackeigan and Krueger, 2015; Gruber et al., 2019; 

Lin et al., 2019; Štefániková et al., 2019). Despite TSC being categorized as a rare 

disorder, it was estimated 1.5 million individuals were affected by TSC globally 

(Kingswood and de Vries, 2015). TSC affected both genders equally (Kingswood and 

de Vries, 2015; Rosset et al., 2017), all racial and ethnic groups (Tsai and Crino, 2012; 

Kingswood and de Vries, 2015; Rosset et al. 2017). 
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It was reported that the incidence of live births approximately 1:6000 to 1:10,000 

(Osborne et al., 1991; Crino et al., 2006; Devlin et al., 2006; Curatolo et al., 2008; 

Orlova and Crino, 2010), while the general estimation of TSC prevalence was between 

1: 14,000 and 1: 25,000 (Devlin et al., 2006; Hong et al., 2009). Specifically, based on 

the evidence, the TSC prevalence decreases as age increases such as for those aged 

less than 6 years, at 12 years and at 18 years old, their prevalence was 1: 14,000, 1: 

19,000 and 1: 24,000, respectively (Devlin et al., 2006; Hong et al., 2009). 

It was reported that one-third of the cases are familial cases, in which the disorder 

follows an explicit dominant inheritance pattern, while two-thirds of the cases are 

sporadic due to the de novo germline mutations in one of the TSC (Osborne et al., 

1991; Dabora et al., 2001). The latter was manifested by a high rate of spontaneous 

mutations (Dabora et al., 2001; Gao et al., 2018). In familial cases, both genes 

contributed to the same frequency of mutations (Povey et al. 1994; Jones et al. 1997) 

whereas in de novo cases, TSC2 mutations are 2 to 10 times more common than TSC1 

mutations (Jones et al., 1999; Nijda et al., 1999; Dabora et al., 2001; Langkau et al., 

2002; Rosset et al., 2017). This might be due to the GAP domain (exon 35 – 39) of 

TSC2 a target for missense mutations (Maheshwar et al., 1997). The frequency of de 

novo TSC1 mutations is lower than TSC2 mutations due to a few factors such as less 

complexity, smaller size structure of genomic locus, rarity of missense, large DNA 

rearrangements and splice site mutations (Kwiatkowski, 2003). In addition, TSC1 

mutations are also linked to less severe TSC phenotype compared to TSC2 mutations 

(Jones et al., 1999; Dabora et al., 2001). 
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According to Rosset et al (2017), approximately 80-95% of types of mutations present 

in TSC1 and TSC2 mutations are small mutations such as missense, small deletions, 

nonsense, splicing site mutations and small insertions. Only 5-20% represents large 

deletions, large duplications or complex rearrangements (Rosset et al., 2017) which 

were reported exclusively in TSC2 (Sandra et al., 2001). TSC1 had three hotspot 

regions, which were identified as exons 8, 15, and 18. Meanwhile, the most frequently 

mutated areas of TSC2 were exons 29, 33, and 40 (Jiangyi et al., 2020). 

 

2.2 TSC genes, their protein products and TSC protein complex 

TSC1 (van Slegtenhorst, 1997) and TSC2 (ECTSC, 1993) were identified as causal 

genes for TSC disorder by the positional cloning approach. The cytogenetic location 

of TSC1 and TSC2 were 9q34.13 and 16p13.3, respectively (Salussolia et al., 2019). 

TSC1 comprises a 23 exons gene, where exons 1 and 2 make up the 5’ untranslated 

region (do not affect the encoded protein) (Ali and Kumar, 2003) and exons 3 – 23 

encode an 8.5 kb mRNA and hamartin (Avgeris et al., 2017). Hamartin comprises 

1,164 amino acids and its molecular mass is 130 kDa (Salussolia et al., 2019). 

Surprisingly, there is no other vertebrate protein that homology to hamartin (Rosset et 

al., 2017). Hamartin consists of a putative transmembrane domain at amino acids 127–

144 (Jozwiak, 2006) implying that it is membrane-bound and has a large coiled-coil 

domain amino acid 730 – 996 (Jozwiak, 2006; Napolioni and Curatolo, 2008). This 

domain is required for protein-protein interactions between hamartin and tuberin (Van 

Slegtenhorst et al., 1998) and also the binding of TBC1D7 to hamartin for stabilization 

of hamartin dimerization (Gai et al., 2016; Qin et al., 2016). Hamartin has been 

suggested to regulate cell adhesion due to its interaction with the ezrin-radixin-moesin 

https://www.omim.org/geneMap/16/85?start=-3&limit=10&highlight=85
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(ERM) family member proteins and activates the small-GTP binding protein Rho 

(Lamb et al., 2000) (Figure 2.1). It was described as hamartin to be localized to the 

centrosome (Napolioni and Curatolo, 2008). A major function of hamartin is to 

stabilize the hamartin tuberin complex and facilitate the GTPase-activating function 

of tuberin in the complex (Han and Sahin, 2011). 

 

Figure 2.1: The detailed structures of hamartin and tuberin (Adapted from Napolioni 

and Curatolo, 2008)  

 

TSC2 comprises 42 exons gene, where exon 1 does not has a coding sequence and 

located in the 5’untranslated region (Ekong et al., 2016), exons 2–42 encoding the 

functional protein (Ekong et al., 2016) and exons 25, 26 and 31 are subject to 

alternative splicing (Cheadle et al., 2000). TSC2 functions encoding a 5.5 kb mRNA 

and tuberin. Tuberin comprises 1807 amino acids and its molecular mass 198 kDa. A 
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region spanning amino acids 1517-1674 and encoded by exons 34 – 38 show 

significant homology to the Ras superfamily GTPase-activating proteins (GAPs) 

human rap1 GAP and murine Spa1 (Figure 2.1) (ECTSC, 1993; Maheshwar et al., 

1997). Since tuberin is a GTPase activating protein, it regulates the GTP binding and 

hydrolysing activity of the Ras superfamily of proteins (Rosset et al., 2017) and plays 

a vital role in the regulation of cell cycle progression, differentiation and development 

(Sudarshan et al., 2019). Interestingly, based on mutational analysis of TSC2 from TSC 

patients, it was advocated that the GAP domain region of tuberin is critical for its 

function (Niida et al., 1999). In addition, tuberin has a hamartin binding domain 

(amino acids 1 – 418) (Benvenuto et al., 2000) and it is important to retain hamartin 

localized in the cytosol in the form of soluble (Nellist et al., 1999). Tuberin has been 

reported to be localised to the cytosol and the membrane fraction within the cytoplasm 

and the nucleus (Napolioni and Curatolo, 2008). Hamartin and tuberin are co-

expressed in cells of few organs such as the brain, kidney, pancreas and lung 

(Napolioni and Curatolo, 2008). Most hamartin and tuberin are localized in the cytosol 

(Nellist et al., 1999) and a small fraction of them could be found in the Golgi, early 

endosomes and associated with membrane fraction or cytoskeleton (Plank et al., 1998; 

Nellist et al., 1999). 

TSC1 and TSC2 are associated with the third protein, Tre2-Bub2-Cdc16 (TBC) 1 

domain family, member 7 (TBC1D7) and formed a heterotrimeric complex namely, 

TSC protein complex (Figure 2.2). TSC1 is needed as a stabilizer for TSC2 (Huang 

and Manning et al., 2008) and TBC1D7 (Napolioni and Curatolo, 2008) and also to 

avoid TSC2 ubiquitin-mediumted proteasomal degradation (Chong-Kopera et al., 

2006; Hu et al., 2008) or TSC2 sequestration by 14-3-3 binding (Li et al., 2002; 
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Shumway et al., 2003). The function of TSC2 will be inhibited if 14-3-3 is associated 

with TSC2 (Li et al., 2002). Based on the biochemical characterization report, it was 

suggested TBC1D7 as a third protein component of the TSC protein complex 

(Salussolia et al., 2019). In the TSC complex, TBC1D7 stabilizes the hamartin 

dimerization through the binding to the coiled-coiled fragment of hamartin (Gai et al., 

2016; Qin et al., 2016). The interaction between TSC1-TSC2-TBC1D7 contributes to 

the stabilization of them as “Rhebulator” complex (Sato et al., 2010; Dibble et al., 

2012). Besides, TBC1D7 vital for the interaction between TSC1 and TSC2 and needed 

for the appropriate regulation of Rheb and mTORC1 by cellular growth condition as 

well (Dibble et al., 2012). It was reported that the knockdown of TBC1D7 caused the 

reduction of association TSC1 and TSC2. This reduction leads to decreased Rheb-

GAP activity and elevated mTORC1 activity, hence, increased cell growth and 

detained induction of autophagy under low energy conditions (Dibble et al., 2012). 

Apart from this, mTORC1 signalling also elevated by overexpression of TBC1D7 

(Nakashima et al., 2007). mTOR activation is inhibited by the TSC protein complex 

through the action of the GTPase-activating protein (GAP) domain in TSC2 

(Salussolia et al., 2019). TSC1 binds to TSC2 through the C-terminal coiled-coil 

domain and the N-terminal TSC2-interacting core domain (Nellist et al., 1999; Sun et 

al., 2013; Lima et al., 2014; Gai et al., 2016). TSC complex is a critical negative 

regulator of the mechanistic target of rapamycin (mTOR), a master regulator to many 

cellular functions such as cell growth and proliferation (Gao et al., 2002; Inoki et al., 

2002; Tee et al., 2002) (Figure 2.2). 
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Figure 2.2: The subunits of TSC protein complex, mTORC1 subunits and its 

downstream functions (Adapted from DiMario et al., 2015)  

2.3 mTOR complexes and their function 

mTOR protein is a 289-kDa serine-threonine kinase that belongs to the 

phosphoinositide 3kinase (PI3K)-related kinase family and is conserved throughout 

evolution (Laplante and Sabitini, 2009). Figure 2.3 shows the detailed domain of 

mTOR. Localization of mTOR is found in the cellular cytoplasm as a complex with 

other molecules (Strimpakos et al., 2009). mTOR plays an integral role in the 

coordination of metabolism, protein synthesis, cell growth, and proliferation (Feng et 

al., 2020). It acts as a molecular sensor to maintain metabolism and cellular 

homeostasis and integrate environmental signals by altering the cellular and metabolic 

processes (Soliman, 2005; Foster and Finger, 2010). The reported studies have 

implicated mTOR as a cell cycle progression and a central regulator of metabolism, 
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cellular proliferation, and growth (Laplante and Sabatini, 2009; Duvel et al., 2010; 

Saxton and Sabatini, 2017; Feng et al., 2020). mTOR regulates cell growth by 

controlling autophagy, mRNA translation, metabolism and ribosome biogenesis 

(Guertin and Sabatini, 2005; Sarbassov et al., 2005; Wullschleger et al., 2006). mTOR 

pathway is activated during various cellular processes (such as tumour formation and 

angiogenesis, insulin resistance, adipogenesis and T-lymphocyte activation) and is 

deregulated in chronic diseases including diabetes, insulin resistance, obesity and 

cardiovascular disease (McMahon et al., 2011) and various types of cancer (Arva et 

al., 2012). 

 

 

Figure 2.3: Schematic representation of mTOR domain. mTOR is an evolutionarily 

conserved serine-threonine that belongs to the phosphatidylinositol-3-kinase-related 

kinase (PIKK) family. Structurally, the N-terminal half of mTOR protein possesses 

two identical HEAT (Huntington, Elongation factor 3A, a subunit of PP2A, and 

TOR1) repeats and functionally in mediumting the formation of a multimeric complex 

with other protein targets. Next to HEAT repeats, is the FAT (FRAP, ATM and 

TRRAP) domain and contributing to the active conformation of the kinase domain. 

FRB (FKBP12-rapamycin-binding) domain is significant to TOR family kinase 

because the hydrophobic cleft of this domain promotes its interaction with the FKBP-

rapamycin complex. Indirectly, the FRB domain has been proposed as a possible 

regulatory domain of mTOR activity. The FRB domain is followed by the catalytic 

kinase domain. Lastly, the FATC (FAT C-terminus) domain at the C-terminus possess 

the homology sequence to the FAT domain and it plays the same role as the FAT 

domain as well (Adapted from Russell et al., 2011) 
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mTOR plays its main cellular functions by forming two distinct protein complexes, 

mTORC1 and mTORC2, through assembly with specific adaptor proteins 

(Wullschleger, et al., 2006; Kapahi et al., 2010). These two protein complexes with 

different composition, control mTOR functions (Verhoef et al., 1999; Eussen et al., 

2000). Both mTOR complexes are large; where mTORC1 and mTORC2 comprised of 

six and seven known protein components, respectively (Laplante and Sabatini, 2012). 

Figure 2.4 illustrates the components, specific inputs and function for each mTOR 

complex. Both mTOR complexes share four similar components: mTOR subunit, 

mLST8 (mammalian lethal with Sec13protein8, also known as G𝛽L), which is a 

positive regulator, DEPTOR (DEP domain-containing mTOR-interacting protein), 

which works as the negative regulator and Tti1/Tel2 complex, the complex responsible 

for stabilization of mTOR and regulation of the PIKKs stability (Kaizuka et al., 2010). 

Specifically, mTORC1 associated with Raptor (regulatory-associated protein of 

mTOR), a positive regulator involved in substrate recruitment, and PRAS40 (proline-

rich Akt substrate of 40kDa), the component responsible for mTORC1 inhibition, 

(Sancak et al., 2005). While, mTORC2 is associated with mSIN-1 (mammalian stress-

activated protein kinase interacting protein), which is necessary for the assembly of 

the complex, Rictor (rapamycin-insensitive companion of mTOR), an essential player 

in the activation of the interaction between mTORC2 and tuberous sclerosis complex 

2 (TSC2), and PROTOR-1 (protein observed with RICTOR-1), which has been 

showed to bind to RICTOR (Eussen, 2000; Verhoef, 1999). Recently it was discovered 

rapamycin-resistant mTOR complex, mTORC3, as one of members of mTOR 

complex (Harwood et al., 2018). However, little information regarding mTORC3 is 

revealed for this time being. It was reported, mTOR interacts with ETS variant 

transcription factor 7 (ETV7) to form a complex and promote cell proliferation 
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(Harwood et al., 2018). ETV7 is a member of the PNT (pointed) domain–containing 

ETS (E26 transformation–specific) family of transcription factors (Potter et al., 2000) 

and it is present in all vertebrates except a subset of rodents such as mouse (Harwood 

et al., 2018). Overexpression of ETV7 was reported associated with tumourigenic 

transformation in mice (Cardone et al., 2005; Carella et al., 2006). Despite Raptor or 

Rictor absent as one of mTORC3 component, it is still being able to phosphorylate 

target proteins such as S6K1, 4E-BP1 and Akt. Surprisingly, even-though 

overexpression of ETV7 was observed in U937 cells, it failed to elevate mTORC3 

formation. This scenario is different compared to scenario of mTORC1 and mTORC2. 

In mTORC1 and mTORC2, overexpression of Raptor and Rictor respectively, directly 

elevates the formation and activity of both mTOR complexes (Sarbassov et al., 2004; 

Masri et al., 2007; Bashir et al., 2012). Therefore, it is postulated that, the formation 

and activity of mTORC3 might be controlled via post-translational modifications 

(PTMs) (Harwood et al., 2018). PTMs are covalent processing processes that alter a 

protein's characteristics through proteolytic cleavage and the addition of a modifying 

group, including methyl, phosphoryl, glycosyl, and acetyl (Ramazi et al., 2020). PTMs 

exert a major influence on the structure and dynamics of proteins in a wide variety of 

biological processes, including gene expression regulation, signal transduction, cell 

cycle control, DNA repair, and gene activation (Strumillo and Beltrao, 2015; Wang et 

al., 2015; Xu and Chou, 2016; Wei et al., 2017). mTOR signalling has been showed to 

be controlled by PTMs such as phosphorylation, ubiquitination, glycosylation, and 

acetylation (Azim et al., 2010; Zoncu et al., 2011; Yin et al., 2021). 

mTORC1 is regulated by various signals, such as nutrients, growth factors, oxygen, 

energy status, and cellular stress (Liao et al., 2011). mTORC1 master regulation of 
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protein synthesis, proliferation, cell survival, autophagy, ribosome biogenesis, 

angiogenesis, mitochondrial biogenesis, migration, metabolism, invasion, and 

metastasis by phosphorylation of ribosomal protein S6 kinase 1 (S6K1) and eukaryotic 

initiation factor 4E (eIF4E)-binding protein 1 (4EBP1) (Sarbassov et al., 2005; Zhang 

et al., 2005). Until recently, it has been assumed that mTORC2 is largely resistant to 

regulation by nutrients and is activated by growth factors only (Soliman, 2015). 

 

 

Figure 2.4: mTOR complexes: mTORC1 and mTORC2 mTOR forms two distinct 

structurally and functionally complexes: mTORC1 and mTORC2. (a) The specific 

catalytic subunit that form mTORC1 and mTORC2. (b) mTORC1 and mTORC2 

stimulate by different inputs and responsible for different downstream applications 

(Adapted from Saran et al., 2015) 
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mTORC2 functions in cell proliferation, survival, polarity, cell-cycle progression, 

actin remodeling, and cell survival through the regulation of protein kinase Cα (PKCα) 

and serum and glucocorticoid-induced protein kinase 1 (SGK1) (Polak and Hall, 2006; 

García-Martínez and Alessi, 2008). Few studies showed that mTORC2 was associated 

with ribosomes and thus may be involved in protein synthesis (Zinzalla et al., 2011). 

The PI3K pathway was showed to activate mTORC2, and it seems to activate the 

TSC1/2 complex as well. mTORC1 seems to inhibit mTORC2 via phosphorylation of 

Rictor, suggesting that mTORC1 and mTORC2 are functionally interconnected 

(Zinzalla et al., 2011). 

2.4 Clinical features and classification of TSC 

Diagnosis of TSC is according to the revised and updated clinical diagnostic criteria 

for TSC, established in 2012 (Wataya‐Kaneda et al., 2017; Ebrahimi-Fakhari et al., 

2018). Based on Table 2.1, the diagnostic criteria for TSC are divided into two which 

are genetic and clinical diagnostic criteria. The inclusion of genetic testing in revised 

TSC diagnostic criteria is significant as identification of pathogenic mutation in TSC1 

or TSC2 in normal tissue is adequate for diagnosis and clinical manifestations not 

necessary. For clinical diagnostic criteria, TSC is diagnosed based on the presence of 

major and minor features of the disorder. A definite diagnosis is made on clinical 

grounds, two major features or one major plus two or more minor features are required 

to make a diagnosis. Meanwhile, possible TSC can be scrutinized when one major 

feature or two or more minor features are present (Palavra et al., 2017). TSC-related 

phenotypes are highly variable such as in some individuals, they suffered from 

infantile spasms and severe developmental delays at early life, while the others may 

remain undiagnosed until their family member is identified (Farach et al., 2019). In 
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addition, the clinical manifestations of TSC may vary greatly among family members 

(Jozwiak et al., 2000; Curatolo et al., 2008; Curatolo and Maria, 2013; Salussolia et 

al., 2019). 

Table 2.1: Revised and updated clinical diagnostic criteria of TSC (Northrup et al., 

2013) 

A. Genetic diagnostic criteria  

 

 

 

 

 

 

 

B. Clinical diagnostic criteria  

Major features Minor features 

Facial angiofibromas (≥ 3) or fibrous 

cephalic plaque 

Dental enamel pits (> 3) 

Ungual fibromas (≥ 2) Intraoral fibromas (≥ 2) 

Hypomelanotic macules (≥ 3, at least 5 mm 

diameter) 

Retinal achromic patch 

Shagreen patch Nonrenal hamartomas 

Multiple retinal hamartomas “Confetti” skin lesions 

Cortical dysplasias* Multiple renal cysts 

Subependymal nodule (SEN)  

Subependymal giant cell astrocytoma 

(SEGA) 

 

Cardiac rhabdomyoma  

Lymphangiomyomatosis (LAM)+  

Angiomyolipomas (≥ 2)+  

 

*Includes tubers and cerebral white matter radial migration lines. 
+ A combination of the two major clinical features (lymphangiomyomatosis and 

angiomyolipomas) without other features does not meet the criteria for a definite 

diagnosis. 

The identification of either a TSC1 or TSC2 pathogenic mutation in DNA from 

normal tissue is sufficient to make a definite diagnosis of TSC. A pathogenic 

mutation is defined as a mutation that clearly inactivates the function of the TSC1 

or TSC2 proteins. 
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2.5 The mTOR signalling pathway of TSC 

Currently, a plethora of upstream inputs is known to regulate mTORC1 activity 

including growth factors (Figure 2.5). The activation of growth factors such as insulin 

and IGF-1 induce binding and phosphorylation of insulin receptor substrate 1 (IRS-1). 

These binding stimulate the PI3K pathway, where, phosphorylation of 

phosphatidylinositol-(4,5)-biphosphate (PtdIns (4,5)P2 (PIP2) by activated PI3K leads 

to PtdIns(3,4,5)P3 (PIP3) at the plasma membrane. PIP3 then activated PDK1 (Alessi 

et al., 1997; Stokoe et al., 1997) and also recruits Akt (PKB) to the plasma membrane 

(Pearce et al., 2010). The phosphorylation of Akt at T308 residue by PDK1 leads to 

partial activation and additional phosphorylation at hydrophobic motif site S473 by 

PDK2 is required to complete the activation of Akt (Toker and Newton, 2000). 

   

 

Figure 2.5: The inputs and downstream functions in the mTOR pathway that 

responsible for TSC (Adapted from BioRender.com) 
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Following full activation of Akt by PDK1 and PDK2, Akt phosphorylates and 

inactivates the TSC1/2 complex (Potter et al., 2002). The GTPase-activating protein 

(GAP) domain is located in the C-terminal region of TSC2 and promotes the GTPase 

activity of the small GTPase Rheb (Castro et al., 2003; Garami et al., 2003; Inoki et 

al., 2003; Tee et al., 2003; Zhang et al., 2003). The inhibition of TSC2 increases GTP-

bound Rheb and hence elevates the mTORC1 activity. Consequently, mTORC1 

phosphorylates its downstream substrates such as ribosomal protein S6 kinase 1 

(S6K1), 4E-BP1 and growth factor receptor-bound protein 10 (Grb10). 

Phosphorylation of S6K1 at T389 by mTORC1 promotes translation of ribosomal 

proteins and ribosome biogenesis (Bjornsti and Houghton, 2004; Fingar and Blenis, 

2004; Inoki et al., 2005; Gentilella et al., 2015). Inactivation of 4E-BP1 due to 

phosphorylation of mTORC1 reduces the binding affinity of 4E-BP1 for eIF4E and 

leads to elevation translation of cap-dependent mRNAs (Bjornsti and Houghton, 2004; 

Fingar and Blenis, 2004; Inoki et al., 2005). ULK1 is a master regulator of autophagy 

induction and it is directly phosphorylated by mTORC1 (Chang and Neufeld, 2009; 

Jung et al., 2009: Kamada et al., 2010). ULK1/2 formed a stable complex with Atg101 

(Hosokawa et al., 2009), Atg13, FIP200 (Jung et al., 2009; Behrends et al., 2010). In 

response to nutrient deprivation, the mTORC1-dependent phosphorylation site in 

ULK1/2 swiftly dephosphorylated by yet unknown phosphatases and this trigger 

autophosphorylation of ULK1/2 and phosphorylation of FIP200 and Atg13, and 

consequently initiate the autophagy (Chang and Neufeld, 2009; Hosokawa et al., 2009; 

Jung et al., 2009; Tchevkina and Komelkov, 2012). In the condition of starved amino 

acids, RagA/B and RagC/D in GDP-bound state and GTP-bound state, respectively. 

This phenomenon resulted in the cytoplasmic localization of mTORC1. Meanwhile, 

in the condition of rich with amino acids, RagA/B and RagC/D in GTP-bound and 
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GDP-bound states, respectively and this will lead mTORC1 translocated to lysosomes 

via the GTP-dependent interaction of RagA/B with Raptor. mTORC1 is activated due 

to the colocalization with Rheb, where also located at lysosomes. Not only Rag 

heterodimers are triggered by amino acids, but other proteins such as VPS34 and 

MAP4K3 are stimulated by amino acids and essential for the activity of mTORC1 

(Byfield et al., 2005; Nobukuni et al., 2005; Findlay et al., 2007; Yan et al., 2010). 

ERK (also known as MAPK) signalling also can be activated by growth factors and 

subsequently inactivate the TSC complex and directly phosphorylate the Raptor, 

hence, promoting the activation of mTORC1. When the cells are in a state of poor 

nutrients or oxygen, negative regulation of mTORC1 activity will take place. Hypoxia 

condition stabilizes HIF-1α, subsequently, REDD1/2 proteins are activated and lead 

to stimulation of TSC complex. Stimulation of TSC complex by nutrient depletion via 

the activation of AMPK will occur via an increase in AMP levels or LKB1 (also known 

as STK11) activation. In contrast, phosphorylation of Raptor by AMPK can directly 

cause the inhibition of mTORC1 activity (Groenewoud and Zwartkruis, 2013). 

Normally, STRADα binds and exports LKB1 out of the nucleus and then bind to 

MO25 (also known as MO25α, CAB39) to form a heterotrimeric complex that 

possesses an inhibitory effect on mTOR signalling via cascade phosphorylation of 

AMPK and TSC complex (Osborne, 2010). According to Boudeau et al (2003), MO25 

was determined as a novel component of the LKB1-STRADα complex. It contributes 

to the stabilization of the complex in the cytoplasm and intensifies the catalytic activity 

of LKB1. Not only that, MO25 acts as a scaffolding component for association with 

of LKB1-STRADα complex (Zeqiraj et al., 2009). In addition, the TSC complex is 

stimulated in response to nutrient depletion, through the activation of AMPK via 

activation of LKB1 or elevation in AMP levels. Moreover, mTORC1 activity also can 
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be directly inhibited by AMPK via phosphorylation of Raptor (Groenewoud and 

Zwartkruis, 2013). Not only mTORC1 is activated by growth factors such as insulin-

like growth factor 1 (IGF-1) and insulin, but mTORC2 as well. The mechanism by 

which growth factors activate mTORC2 remains unclear. Several studies postulated 

that mTORC2 is activated by growth factor via PI3K-dependent manner through an 

unknown mechanism (García Martínez and Alessi, 2008; Oh et al., 2010; Zinzalla et 

al., 2011; Fu and Hall, 2020). The main function of mTORC2 is to stimulate cell 

survival and regulate cytoskeletal organization through its specific substrates.  

mTORC2 stimulates cell survival through activation of SGK1 (Sciarretta et al., 2018). 

While, mTORC2 plays the role in the cytoskeletal organization through regulation of 

the Rho family of small GTPases (Etienne-Manneville and Hall, 2002; Jacinto et al., 

2004) and PKC (protein kinase C) (Sarbassov et al., 2004). Lastly, through HIF-1α 

and HIF-2α, hypoxia plays a role as a master regulator of VEGF expression (Ferrara 

et al., 2003). Elevation expression of HIF-1α resulted in the formation of HIF and 

VEGF (Slomiany and Rosenzweig, 2006). VEGF is a key regulator in angiogenesis 

(Krock et al., 2011; Takenaga, 2011). HIF-1α is upregulated in various cancers and 

HIF modulates the hallmarks of tumour such as invasion, angiogenesis and glucose 

metabolism (Ratcliffe et al., 2000; Semenza, 2003; Soni and Padwad, 2017). 

 

2.6 Therapeutic options for TSC 

2.6.1 First-generation mTOR inhibitors  

Currently, there are three generations of mTOR inhibitors and they are widely tested 

on numerous cancer types. The first-generation mTOR inhibitors comprised of 
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rapamycin (sirolimus) and its rapalogs such as everolimus (RAD001), temsirolimus 

(CCI-779), and ridaforolimus (AP23573; previously known as deforolimus that 

specifically inhibit mTORC1 (Figure 2.6). Table 2.2 shows the pharmacology of first-

generation mTOR inhibitors. In 1975, Suren Sehgal and his colleagues isolated a 

natural macrolide from Streptomyces hygroscopicus that possess antimicrobial activity 

against Candida albicans found in a soil sample collected from the island of Rapa Nui 

(Vezina et al., 1975). Later on, it was discovered that this natural product also exhibited 

antiproliferative property against and potent immunosuppressive properties (Ni 

Bhaoighill and Dunlop, 2019) and it was named rapamycin after Rapa Nui, the 

indigenous name for the Easter Island (Gibbons et al., 2009). Rapamycin exerted its 

antiproliferative action against various transformed cell lines such as renal, 

osteoblastic, lymphoid, hepatic, connective tissue, central nervous system, 

melanocytic and myogenic. It also successfully showed antiproliferative of B and T 

cells transformed by EBV and HTLV-1, respectively (Molnar-Kimber et al., 1995). 

Furthermore, rapamycin also exhibited its antiproliferative activity against head and 

neck squamous cell carcinoma (HNSCC) cell lines both as monotherapy and in 

combination with carboplatin and paclitaxel (Aissat et al., 2008). In 1999, rapamycin 

was approved by USFDA for prevention of graft acute rejection in kidney 

transplantation due to its potent immunosuppressive action in inhibition of 

proliferation activated T cells stimulated by IL-2, (Huang and Houghton, 2001; 

Saunders et al., 2001; Benjamin et al., 2011; Rivera et al., 2011). In 2003, rapamycin 

was approved by USFDA in coronary-artery stents to prevent restenosis (Sehgal, 2003; 

Thompson, 2003; Abizaid, 2007; Benjamin et al., 2011; Lamming et al., 2013). In 

2015, rapamycin was approved by USFDA for the treatment of LAM due to its 

antiproliferative effect (Koul and Mehfooz, 2019). Meanwhile, rapamycin exhibited 
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mode of immunosuppressive action through inhibition of proliferation activated T 

cells in response to IL-2 (Bierer et al., 1990; Dumont et al., 1990) and IL-12 

(Bertagnolli et al., 1994) productions. Because rapamycin exerts its 

immunosuppressive effect without inhibiting calcineurin phosphatase activity, like 

tacrolimus and cyclosporine do, it is well tolerated and does not cause calcineurin-

related adverse effects such as renal damage or hypertension (Groth et al., 1999).  Not 

only inhibited proliferation of activated T cells, but rapamycin also inhibits relapsing 

experimental allergic encephalomyelitis (EAE), adjuvant arthritis (AA) and the 

humoral immunoglobulin E (IgE) immune response (Martel et al., 1977). Even-though 

rapamycin was clearly stated as one of the mTORC1 inhibitors, a high concentration 

of rapamycin (Shor et al., 2008) and depending on cell type (Willems et al., 2012), can 

block mTORC2 activity hence leads to mTORC2 inhibition. Not only that, some 

studies revealed prolonged treatment with rapamycin possibly affect both mTORC2 

and Akt (Sarbassov et al., 2006; Barilli et al., 2008). 

Despite rapamycin possess lots of benefits or actions, it has unfavourable 

pharmacokinetics which is low bioavailability due to its poor water stability and 

chemical stability, and these limits its application in cancer therapy (Huang and 

Houghton, 2003; Zhou et al., 2010). Thus, several rapalogs with better 

pharmacokinetic properties, lessen immunosuppressive effects (Ballou and Lin, 2008; 

Rizzieri et al., 2008) and more stable were developed (Zheng and Jiang, 2015). These 

rapalogs include temsirolimus, everolimus and ridaforolimus. They differed from 

rapamycin at a single position of lactone ring (C40) where the hydrogen at C40 

position is replaced by a dihydroxymethyl propionic acid ester (Elit, 2002), 

hydroxyethyl group (Dumont, 2001) and dimethylphosphinate (Palavra et al., 2017) 



 

24 
 

(Figure 2.6), respectively. Although rapamycin and its rapalogs differ at C40, they 

share the central macrolide chemical structure and due to this, they exert their effects 

via the same mechanism of action (Figure 2.7) (Hartford and Ratain, 2007; Zhou and 

Huang, 2012; MacKeigan and Krueger, 2015; Palavra et al., 2017). Upon entering the 

cells, each first generation of mTOR inhibitor binds to the FKBP12 to form a complex 

then binds to the FRB domain in the C-terminus of mTOR and hence exerting growth-

inhibitory and cytotoxic effects by inhibiting mTORC1 signalling to downstream 

effectors (Figure 2.8) (Kunz and Hall, 1993; Chen et al., 1995; Choi et al., 1996). 
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