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ABSTRAK 

FEM ubah suai merupakan topik yang penting dalam bidang penyelidikan. Memandangkan 

pelbagai jenis pelaksanaan kod penyelidikan telah dihasilkan, hal ini penting untuk menguji 

algoritma dalam masalah penanda aras supaya  penilaian prestasi dapat dilakukan dengan 

cara yang standard. Kerja ini mengkaji prestasi kod FEM ubah suai PolyDE dalam masalah 

pemindahan haba mantap tiga dimensi. Simulasi PolyDE telah dijalankan dengan strategi 

adaptiviti yang berbeza menggunakan polinomial order elemen yang berbeza pada domain 

geometri permukaan melengkung dan permukaan rata. Strategi adaptiviti yang dikaji ialah h-

FEM dan hp-FEM. H-FEM melakukan “mesh refinement” di rantau yang memerlukan mesh 

halus manakala hp-FEM melibatkan gabungan “mesh refinement” dan penukaran polinomial 

order elemen untuk meningkatkan ketepatan penyelesaian. Dalam had bilangan darjah 

kebebasan yang diuji, telah didapati bahawa ralat hp-FEM menyuai lengkung quadratik 

manakala ralat h-FEM menyuai garisan linear dalam plot logaritma-logaritma berkenaan 

dengan bilangan darjah kebebasan dan masa CPU (saat). Kebaikan penyuaian dibukti dengan 

nilai pekali penentuan, 𝑅2  yang melebihi 0.9 untuk semua penyuaian garisan linear dan 

lengkung quadratik. Kesimpulannya, prestasi hp-FEM dalam kadar penumpuan ralat lebih 

baik berbanding dengan h-FEM. Perbezaan polynomial order elemen tidak mendatangkan 

kesan yang ketara dalam kadar penumpuan ralat. PolyDE mempunyai isu dengan pengurusan 

ingatan. Contohnya, bilangan darjah kebebasan yang diperoleh daripada simulasi hp-FEM 

dengan polynomial order permulaan satu pada geometri permukaan lengkung terhad pada 

28468. Prestasi PolyDE pada geometri permukaan lengkung adalah memuaskan, dengan nilai 

kadar penumpuan ralat yang tinggi berbanding dengan geometri permukaan rata. Keputusan 

simulasi sink haba jejarian yang dihasilkan semula di PolyDE adalak konsisten dengan [1]. 

Kesimpulannya, PolyDE berkaliber untuk aplikasi dalam analisis sink haba LED sebenar. 

Kajian kes telah ditetapkan untuk menanda aras prestasi PolyDE. 



x 
 

ABSTRACT 

Adaptive FEM is a topic of interest in research. As different implementations of research 

code have been developed, it is crucial to test the algorithms on benchmark problems so 

assessment of the performance can be done in a standard way. This work studies the 

performance of adaptive FEM code PolyDE on 3-dimensional steady-state heat transfer 

problem. PolyDE simulations were run for different adaptivity strategies with elements of 

different polynomial orders on curved surface and flat surface geometry domain. The 

adaptivity strategies studied were h-FEM and hp-FEM. H-FEM involves refining the mesh at 

the region where finer elements are required while hp-FEM involves combination of refining 

the mesh and changing the polynomial orders of the elements to improve the accuracy of the 

solution. Within the limitation of the number of degree of freedom tested, it was found that 

error for hp-FEM fits quadratic curves while the error for h-FEM fits linear line in 

logarithmic-logarithmic plot with respect to number of degree of freedom (NDOF) and CPU 

time (sec). The goodness of fits was proven with coefficient of determination, 𝑅2, which 

shows value above 0.9 for all the fitted linear lines and quadratic curves. Hence, it was 

concluded that hp-FEM performs better than h-FEM in faster error convergence. Difference 

in polynomial order of elements has no significant effect on error convergence rates. PolyDE 

has issue with memory management. For example, NDOF obtained is limited at 28468 for 

simulation with hp-FEM starting polynomial order 1 on the curved surface geometry. 

PolyDE’s performance on curved surface domain geometry is acceptable, with the simulation 

results for curve surface geometry showing higher error convergence rate than the flat surface 

geometry. The radial heat sink simulation results replicated in PolyDE is in agreement with 

[1]. It is concluded that PolyDE is reliable for application in actual LED heat sink analysis. 

The case studies have been established for benchmarking the performance of PolyDE.  



1 
 

Benchmark Analysis of Heat Conduction Problems with 

Adaptive FEA Code PolyDE 

 
Jerome Lee Jie Jen 

 
School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 

Nibong Tebal, Pulau Pinang 

 

Keywords: Heat sink, h-FEM, hp-FEM, curved surface geometry, PolyDE  

 

1. INTRODUCTION 

 The finite element method (FEM) is a numerical method for solving engineering and 

mathematical physics problem. FEM subdivides the geometry domain into ‘finite elements’ 

and computes the approximate solution for the weak form of the PDE using, among other 

methods, variational methods by minimizing the error norm [2]. FEM is important and 

practical because most of the real-world engineering problems involve complicated 

geometries, loadings and material properties in which there is no analytical solution. The 

application of FEM was originally in field of structural engineering, such as the published 

work by Hrennikoff [3] in 1941 and McHenry [4] in 1943 [5]. Wilson and Nickel solved heat 

conduction problem in 1966, marking the beginning of FEM application in non-structural 

field [6]. 

 Adaptive FEM is a version of FEM which incorporates automatic mesh refinement in 

the algorithm for faster error convergence. The adaptive FEM was introduced by Babuska 

and Theinbolt in the late 1970s [7, 8]. The refinement methods include h-refinement, p-

refinement, and hp-refinement. H-refinement involves refining the mesh at the region where 

finer elements are required such as at high singularity region; p-refinement is such that the 
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mesh element polynomial order is changed without changing the mesh element size; while 

hp-refinement combines h-refinement and p-refinement to optimize the advantage of both [2]. 

Examples of adaptive finite element libraries available as open source include Alberta 

[9], DealII [10], FEniCS [11], FETK [12], Hermes [13], libMesh [14], Phaml [15], and 

2dhp90 [16]. It is not straightforward to assess the efficiency of an adaptive FEM algorithm. 

To characterize the efficiencies of different algorithms, a common approach is by solving 

benchmark problems. Examples of benchmark problems are the suit of 12 benchmark 

problems for adaptive FEA collected by Dr. William Mitchell (NIST) [17]. The work by 

Zhonghua Ma et al [18] solved the benchmark problems in [17] using HERMES [13]. The 

results shows that hp-FEM converge the fastest with respect to number of degree of freedom 

(NDOF) and CPU time. 

 In this project, the goal is to establish case studies for benchmarking the performance 

of adaptive FEM code like PolyDE. The first objective is to construct a heat sink with a 

circular base and cylindrical fins, hereinafter known as cylindrical heat sink, and a heat sink 

with rectangular base and rectangular fins, hereinafter known as rectangular heat sink for 

simulation in PolyDE. Error convergences are compared between different polynomials 

orders of element and also compared between h-FEM and hp-FEM. A concern on FEM is the 

distortion on curved surface geometry, therefore performance of PolyDE on curved surface 

and flat surface geometry domain are compared [19]. The next objective is to assess the 

reliability of results with PolyDE. Numerical simulation of radial heat sink from the work by 

S.H Yu et al [1] is replicated in PolyDE for results comparison and analysis. The last 

objective is to simulate a radial heat sink to model the actual application of heat sink for 

50mm diameter 2W LED module. 
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2. LITERATURE REVIEW 

The adaptive FEM methods are h-refinement, p-refinement, and hp-refinement. The 

hp-refinement is known to be the most optimal method. It is an active area in research, with 

different algorithms being researched on. In the work by Zienkiewicz et al. in 1989, the 

procedure is by implementing h-refinement with lower order elements such as linear or 

quadratic element, to obtain certain percentage accuracy specified. It is then followed by p-

refinement which further reduces the error and improves the accuracy [2, 20]. 

 A concern on FEM is the distortion on curved surface geometry domain. The curved 

surface geometry is approximated by edges of the collections of elements, such as piecewise 

straight lines or flat surface if linear elements are used; the original surface will not be fully 

recovered [19]. This affects the solution accuracy greatly in fields where solution is sensitive 

to the geometry such as structural analysis. Therefore, the recovery of curved surface is of 

importance.  

One of the widely used methods is the plane to surface transformation method used by 

O.C. Zinekiewicz and D. V. Phillips [21].  The mesh is first generated in a two-dimensional 

parent domain before mapped onto the curved surface. T.S Lau and S.H. Lo proposed a 

scheme for automatic generation of unstructured triangular meshes of arbitrary density 

distribution over curved surface [22]. The elements are generated directly on the curved 

surface using the advancing front technique. 

One of the objectives in this project is to study the performance of PolyDE on curved 

surface. Simulation is run for rectangular heat sink as a control. The simulation results on 

cylindrical heat sink is compared to the rectangular heat sink. If the error convergence rate of 

cylindrical heat sink simulations results is similar or higher than the rectangular heat sink, 

PolyDE is considered to perform well on curved surface domain geometry. 
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3. METHODOLOGY 

 For 3D steady-state heat conduction with no material heat generation, the governing 

equation is: 

∂2T

∂2x
+

∂2T

∂2y
+

∂2T

∂2z
= 0 

 

 The settings for PolyDE are written in “FEMsettings.txt”. The type of linear solver 

used is unsymmetric multifrontal (UMF) method solver. The UMF method is common as 

finite element solver, which also available in software like ANSYS and ABAQUS.  Table 3.1 

shows the description of the main settings.  

Table 3.1: Main settings in PolyDE 

Parameter Description 

ADAPTION_TYPE  To define types of adaption strategy 

ADAPT_STEPS To specify number of adapt steps 

HP_ALGORITH To specify the percentage of elements to be refined, for example, 

TOP5 specify that top 5% elements with the highest error are to be 

refined. 

LINSOLVERTYPE To define the type of linear solver, such as UMF 

POLYORDER To define the starting polynomial order 

 

 The meshes are built from Salome using tetrahedral elements. The simulation is run in 

PolyDE. Temperature plots are obtained from Paraview.  

 

3.1 Computational Performance of PolyDE 

 A cylindrical heat sink with 1761 starting elements and rectangular heat sink with 431 

starting elements are constructed in Salome. Figure 3.1 shows cylindrical heat sink and 

rectangular heat sink geometry domain. 
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(a)                                                                     (b) 

Figure 3.1: Mesh prepared in Salome for (a) cylindrical heat sink and (b) rectangular heat sink 

 

 Performance of PolyDE on different adaption methods is studied. The simulations are 

run with h-adaption polynomial order of 1, 2, 3, hereinafter known as h1, h2, and h3-adaption, 

and with hp-adaption starting polynomial order of 1 and 2, hereinafter known as hp1 and hp2-

adaption. The simulations are run for maximum number of adaption steps obtained before the 

program crashes. The relative error in energy norm for the solution, hereinafter known as 

error, obtained from a posteriori error estimations technique built-in in PolyDE is plotted 

against NDOF and CPU Time (seconds) [23].  The error convergence rates are compared 

between different polynomials orders of elements, and also compared between h-adaption 

and hp-adaption. 

 Performance of PolyDE on curved surface domain is studied. Simulation is run for 

rectangular heat sink as a control. The simulation results on cylindrical heat sink is compared 

to the rectangular heat sink to analyse performance of PolyDE on curved surface domain.  

 The material assigned to the heat sinks is steel with thermal conductivity, k=50.2 

W/mK . The heat sinks bases are assigned with Dirichlet boundary condition T=373K and the 

rest of the surface are assigned with Robin boundary conditions with heat convection 
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coefficient, h=10W/𝑚2K and ambient air temperature, 𝑇∞  = 293K. Figure 3.2 shows the 

boundary conditions for cylindrical heat sink and rectangular heat sink. 

 

 

Figure 3.2: Boundary conditions for cylindrical heat sink and rectangular heat sink 

 

 Robin boundary condition for convection is often used in practice. The use of Robin 

boundary condition usually cause difficulty to linear solver since the system matrix is non-

symmetric. This alters the efficiency of solutions. 

 

3.2 Assessment of Reliability of Results with PolyDE 

To compare PolyDE simulation with the results from the work of S.H. Yu et al [1], 

PolyDE simulation is done for aluminum radial heat sink with middle fins length 𝐿𝑀  of 

0.005m, 0.0025m, and 0.0045m are constructed. Only a single set of fins is simulated because 

of the symmetrical characteristics in geometry. The simulation is run with h2-adaption. The 

parameters and dimensions are shown in Table 3.2 and Figure 3.3. 
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Table 3.2: Parameters for radial heat sink simulation [1] 

Parameters 

Number of long fins, 𝑁𝐿 20 

Number of middle fins, 𝑁𝑀 20 

Outer radius, 𝑟𝑜 (m) 0.075 

Inner radius, 𝑟𝑖 (m) 0.010 

Length of long fins, 𝐿𝐿 (m) 0.055 

Length of middle fins, 𝐿𝑀 (m) 0.005, 0.0025, 0.0045  

Fins height, H (m) 0.0213  

Thickness, t (m) 0.002  

Thermal conductivity, k (W/mK) 202.4 

Heat flux input, �̇� (W/𝑚2) 700  

Ambient air temperature, 𝑇∞ (K) 303.15 

Heat convection coefficient, h (W/𝑚2K) 5.50, 4.85, 3.90 

 

 

 

Figure 3.3: Dimensions of radial heat sink [1] 

 

The boundary conditions are listed as: 

(a) Heat sink base: constant heat flux, �̇� = −𝑘
𝜕𝑇𝑠

𝜕𝑛
|ℎ𝑒𝑎𝑡 𝑠𝑖𝑛𝑘 𝑏𝑎𝑠𝑒 =700W/𝑚2 

(b) Periodic interface: symmetric condition, 
𝜕𝑇𝑠

𝜕𝑛
|𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑤𝑎𝑙𝑙 = 0 

(c) Inner curved surface, 
𝜕𝑇𝑠

𝜕𝑛
|𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑤𝑎𝑙𝑙 = 0 

(d) Remaining surface: robin boundary condition, ℎ𝑇𝑠 + 𝑘
𝜕𝑇𝑠

𝜕𝑛
|𝑤𝑎𝑙𝑙 = ℎ𝑇∞ 

The study in [1] uses computational fluid dynamics simulation where the average heat 

convection coefficient, havg  is derived from the simulation results. In PolyDE, heat 
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convection coefficient is assigned to the surfaces with the same ℎ𝑎𝑣𝑔 value obtained from 

Figure 8 of [1]. Figure 3.4 shows the boundary conditions for radial heat sink with middle 

fins length of 0.005m.  

 

Figure 3.4 Boundary conditions for radial heat sink with middle fins length, 𝐿𝑀 of 0.005m,  

 

3.3 Computation of Radial Heat Sink for 2W LED Module 

 To model the actual heat sink application for 50mm diameter 2W LED module, the 

radial heat sink for middle fins length, 𝐿𝑀 of 0.025m is downscaled by factor of 3, such that 

the diameter is 0.050m. The downscaled radial heat sink is simulated with heat input of 2W. 

The parameters and dimensions are shown in Table 3.3. 

 

Table 3.3: Parameters for downscaled radial heat sink simulation 

Parameters 

Number of long fins, 𝑁𝐿 20 

Number of middle fins, 𝑁𝑀 20 

Outer radius, 𝑟𝑜 (m) 0.0250 

Inner radius, 𝑟𝑖 (m) 0.0033 

Length of long fins, 𝐿𝐿 (m) 0.0183 

Length of middle fins, 𝐿𝑀 (m) 0.0083  

Fins height, H (m) 0.0071  

Thickness, t (m) 0.00067  

Thermal conductivity, k (W/mK) 202.4 

Heat flux input, �̇� (W/𝑚2) 1037.03  

Ambient air temperature, 𝑇∞ (K) 303.15 

Heat convection coefficient, h (W/𝑚2K) 4.85 
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All boundary conditions are maintained the same as the original model, with 

exception of heat flux input. Figure 3.5 shows the boundary conditions for downscaled radial 

heat sink. 

 

Figure 3.5 Boundary conditions for downscaled radial heat sink  

 

4. RESULTS AND DISCUSSION 

 For computational performance analysis of PolyDE, simulation is done on cylindrical 

and rectangular heat sink to study the error convergence rates. For the assessment of 

reliability of results with PolyDE, the thermal resistance of radial heat sink, Rth from PolyDE 

and the work by S.H. Yu et al [1] are compared. Radial heat sink for 2W LED module is 

simulated to model actual LED application. Table 4.1 shows the abbreviation used for 

different adaption strategy. 

 

Table 4.1: Description for abbreviation used for different adaption strategy 

Adaption Strategy Description 

h1 h-adaption with polynomial order 1 

h2 h-adaption with polynomial order 2 

h3 h-adaption with polynomial order 3 

hp1 hp-adaption with starting polynomial order 1 

hp2 hp-adaption with starting polynomial order 2 
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4.1 Computational Performance of PolyDE 

For h-adaption, 𝑙𝑜𝑔10𝐸𝑟𝑟𝑜𝑟 is expected to decrease almost linearly with 𝑙𝑜𝑔10𝑁𝐷𝑂𝐹 

and 𝑙𝑜𝑔10𝐶𝑃𝑈 𝑇𝑖𝑚𝑒, linear regression lines are fitted for the logarithmic-logarithmic plots. 

The gradient of the fitted lines are shown in Table 4.2 and Table 4.3. For hp-adaption, second 

order polynomial curves are fitted. Table 4.4 and Table 4.5 show the fitted curves equation 

while Table 4.6 and Table 4.7 show the gradient expression for the fitted curves. 

 Figure 4.1 shows that, for cylindrical heat sink, the error convergence rates with 

respect to NDOF of h-adaptions in descending order are h3, h2 and h1-adaption. The error 

convergence rates with respect to CPU Time in descending order are h2, h3, and h1-adaption.

 Figure 4.2 shows that for cylindrical heat sink, the error convergence rate with respect 

to NDOF for hp2-adaption is almost linear which is not expected. It is likely due to 

insufficient data set since only 4 data points are acquired for hp2-adaption. This is because 

PolyDE running out of memory at higher levels of adaption steps with hp2-adaption. The 

error convergence rates with respect to CPU Time for hp1 and hp2-adaption shows almost 

similar curvature for cylindrical heat sink, with gradient expression “−0.0760x − 0.2351” 

and " − 0.0760x − 0.1557" respectively.  

 Figure 4.3 shows that for rectangular heat sink, the error convergence rate with 

respect to NDOF is the highest for h2, followed by h3, and then h1-adaption while the error 

convergence rates with respect to CPU Time is the highest for h2, followed h1, and then h3-

adaption.   

 From Figure 4.4, for rectangular heat sink, the error convergence rate with respect to 

NDOF for hp2 is more curved than hp1-adaption. The gradient expression for hp1 and hp2-

adaption are “ −0.3244x + 0.6836 ” and “ −0.5108x − 1.3567 ” respectively. The error 

convergence rate with respect to CPU Time for hp2 is also more curved than hp1-adaption.  
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(a) 

 

(b) 

Figure 4.1: Error convergence rate regression for cylindrical heat sink for h1, hp2, and h3-adaption 

with respect to (a) NDOF and (b) CPU Time (sec) 
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(a) 

 

(b) 

Figure 4.2: Error convergence rate regression for cylindrical heat sink for hp1 and hp2-adaption with 

respect to (a) NDOF and (b) CPU Time (sec) 
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(a) 

 

(b) 

Figure 4.3: Error convergence rate regression for rectangular heat sink for h1, h2, and h3-adaption 

with respect to (a) NDOF and (b) CPU Time (sec) 
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The gradient expression for hp1 and hp2-adaption are “−0.0682x − 0.2217"  and “−0.1628x −

0.1229" respectively. 

 Comparing element of different polynomial order, the error convergence rates with 

respect to both NDOF and CPU Time do not show consistent observations. The increase in 

element polynomial order reduces the error but increases the NDOF. Therefore, the change in 

polynomial order of the starting mesh does not affect the error convergence rate significantly. 

 Comparing h-adaption and hp-adaption, hp-adaption converges faster than h-adaption. 

From Figure 4.1 and Figure 4.3, errors for h-adaption fits linear lines while from Figure 4.2 

and Figure 4.4, errors for hp-adaption fits quadratic curves, hence the gradient for hp-

adaption is increasing logarithmically with NDOF. The goodness of fits for the fitted lines 

and curves are proved with high coefficient of determination, 𝑅2 values, which are all above 

0.9, as shown in the figures.  Hp-adaption has better error convergence as it optimize the 

advantages of h-adaption, the element size refinement and p-adaption, the element 

polynomial order refinement [2]. 

 From Table 4.2, Table 4.3, Table 4.6 and Table 4.7, cylindrical heat sink shows 

higher error convergence gradient than rectangular heat sink for h1, h2, h3, and hp1-adaption, 

with exception of hp2-adaption. As mentioned previously, the fitted curve for cylindrical heat 

sink hp2- adaption is not able to fully capture the trend to show meaningful information. 

Higher error convergence rates in cylindrical heat sink shows that PolyDE performs well on 

curved surface geometry domain. Figure 4.5 shows the error convergence rate for h2-

adaption, with cylindrical heat sink having higher error convergence rate than rectangular 

heat sink. 
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(a) 

 

(b) 

Figure 4.4: Error convergence rate regression for rectangular heat sink for hp1 and hp2-adaption with 

respect to (a) NDOF and (b) CPU Time (sec) 
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(a) 

 

(b) 

Figure 4.5: Error convergence rate regression for h2-adaption for cylindrical heat sink and rectangular 

heat sink with respect to (a) NDOF and (b) CPU Time (sec) 
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Table 4.2: Regression gradient value for 𝑙𝑜𝑔10𝐸𝑟𝑟𝑜𝑟  Vs  𝑙𝑜𝑔10𝑁𝐷𝑂𝐹 for h1, h2, h3-adaption 

Adaption Gradient 

h1 h2 h3 

Cylindrical Heat Sink -0.4504 -0.7705 -0.8563 

Rectangular Heat Sink -0.4182 -0.6144 -0.6050 

 

 

Table 4.3: Regression gradient value for 𝑙𝑜𝑔10𝐸𝑟𝑟𝑜𝑟  Vs  𝑙𝑜𝑔10𝐶𝑃𝑈 𝑇𝑖𝑚𝑒 for h1, h2, h3-adaption 

Adaption Gradient 

h1 h2 h3 

Cylindrical Heat Sink -0.3179 -0.3773 -0.3188 

Rectangular Heat Sink -0.3179 -0.3624 -0.3127 

 

 

Table 4.4: Regression equation for 𝑙𝑜𝑔10𝐸𝑟𝑟𝑜𝑟 Vs 𝑙𝑜𝑔10𝑁𝐷𝑂𝐹 for hp1 and hp2-adaption 

Adaption Regression equation 

hp1 hp2 

Cylindrical Heat Sink y = −0.1912x2 + 0.9412x
− 1.8822 

y = 0.0283x2 − 0.8189x
+ 1.5673 

Rectangular Heat Sink y = −0.1622x2 + 0.6836x
− 1.3397 

y = −0.2554x2 + 1.3567x
− 2.6521 

 

 

Table 4.5: Regression equation for 𝑙𝑜𝑔10𝐸𝑟𝑟𝑜𝑟 Vs 𝑙𝑜𝑔10𝐶𝑃𝑈 𝑇𝑖𝑚𝑒 for hp1 and hp2-adaption 

Adaption Regression equation 

hp1 hp2 

Cylindrical Heat Sink y = −0.0380x2 − 0.2351x
− 0.8196 

y = −0.0380x2 − 0.1557x
− 0.9546 

Rectangular Heat Sink y = −0.0341x2  − 0.2217x 
− 0.7858 

y = −0.0814x2 − 0.1229x
− 0.9160 

 

 

Table 4.6: Regression gradient for 𝑙𝑜𝑔10𝐸𝑟𝑟𝑜𝑟 Vs 𝑙𝑜𝑔10𝑁𝐷𝑂𝐹 for hp1 and hp2-adaption 

Adaption Regression gradient 

hp1 hp2 

Cylindrical Heat Sink −0.3824x + 0.9412 0.0566x − 0.8189 
Rectangular Heat Sink −0.3244x + 0.6836 −0.5108x − 1.3567 

 

 

Table 4.7: Regression gradient for 𝑙𝑜𝑔10𝐸𝑟𝑟𝑜𝑟 Vs 𝑙𝑜𝑔10𝐶𝑃𝑈 𝑇𝑖𝑚𝑒 for hp1 and hp2-adaption 

Adaption Regression gradient 

hp1 hp2 

Cylindrical Heat Sink −0.0760x − 0.2351 −0.0760x − 0.1557 
Rectangular Heat Sink −0.0682x − 0.2217 −0.1628x − 0.1229 
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PolyDE Memory Usage 

 The convergence results discussed earlier strongly suggest that PolyDE’s memory 

usage management has yet to be optimized. The UMF solver used is known for its high 

memory consumption. Table 4.8 shows the maximum NDOF and number of elements 

obtained for different adaption strategies. The maximum NDOF and number of elements 

obtained are limited, especially for hp2-adaption. Improvement in memory usage 

management helps to provide more data set for error convergence study. 

 

Table 4.8: Maximum NDOF and number of elements obtained  

Adaption Cylindrical Heat Sink Rectangular Heat Sink 

Maximum NDOF 

obtained 

Maximum No. of 

Elements   Obtained 

Maximum NDOF 

obtained 

Maximum No. of 

Elements   Obtained 

h1 92858 471420 90903 457701 

h2 21018 13333 56752 37458 

h3 35898 6992 35078 7039 

hp1 28468 7139 13236 2244 

hp2 16070 3450 11910 1476 

 

Polynomial Order Control Algorithm 

 For hp-adaption in PolyDE, the polynomial orders of elements are automatically 

reduced if needed, which is a rare feature in adaptive FEM code [2]. Table 4.9 shows that hp-

adaption with element of starting polynomial order 2, having some of the elements reduced to 

polynomial order 1 after adaption. This feature is beneficial as it helps to reduce unnecessary 

NDOF and computation time. 

 

 

 

 



19 
 

Table 4.9: Rectangular heat sink hp2-adaption data log 

Adaption 

Step 

NDOF No. 

Matrix 

Entries 

Polynomial order CPU 

time 

(sec) 

Error 

Min Max Mean 

0 899 19841    0.30 0.129652927250940 

1 1387 33629 1 3 2 0.99 0.132686538963065 

2 2463 80709 1 4 2 2.82 0.095981717331999 

3 6511 325623 1 5 2 16.38 0.065739068192339 

4 11910 724666 1 6 3 53.39 0.042703370340418 

 

 Mesh refinement is such that meshes are refined at region where there is high 

parameter variation while the mesh is maintained coarser at region with less parameter 

variation. Such property is known as h-adaptive, and is implemented in h-adaption and hp-

adaption. Figure 4.6 shows the mesh density of the heat sink is uniform at every region before 

adaption. Figure 4.7 and Figure 4.8 show that after h and hp-adaption, the meshes near the 

heat sink base are finer than the fins regions. There is higher temperature variation near the 

heat sink base and lesser temperature variation at the fins. 

 

 

 
 

Figure 4.6: Rectangular heat sink mesh before adaption 
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Figure 4.7: Rectangular heat sink mesh after h2-adaption with 56752 NDOF 

 

 

 
 

Figure 4.8: Rectangular heat sink mesh after hp2-adaption with 13236 NDOF 

 

4.2 Assessment of Reliability of Results with PolyDE 

Contrary to this work, the study in [1] uses computational fluid dynamics simulation, 

where the average heat convection coefficient, ℎ𝑎𝑣𝑔 is derived from the simulation results. In 
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PolyDE, heat convection coefficient is assigned to the surfaces with the same ℎ𝑎𝑣𝑔  value 

obtained from Figure 8 of [1]. Therefore, exact results are not to be expected from PolyDE. 

Figure 4.9 shows the plot of thermal resistance, 𝑅𝑡ℎ  against middle fin length,  𝐿𝑀 

from PolyDE simulation and from [1]. As discussed in [1], as the middle fins length increase, 

the thermal resistance decreases until the middle fins length reaches an optimum length. 

Upon exceeding the optimum length, the thermal resistance increases as the middle fins 

length increases. From the interpolation of 3 data points in PolyDE simulation, thermal 

resistance, 𝑅𝑡ℎ decreases as middle fins length,  𝐿𝑀 increases from 0.005 to 0.025m, and Rth 

increases as 𝐿𝑀 increases from 0.025 to 0.045m. The data trend shown in PolyDE simulation 

is in agreement with [1], such that there is an optimum middle fins length where the thermal 

resistance, 𝑅𝑡ℎ is minimum. The percentage deviation of 𝑅𝑡ℎ of PolyDE simulation from [1] 

is less than 2%, as shown in Table 4.10. It is concluded that the PolyDE simulation model is 

acceptable, suggesting that it is reliable for application in actual LED heat sink analysis. 

The thermal resistance is given by 

𝑅𝑡ℎ =
𝑇𝑚𝑎𝑥−𝑇∞

�̇�𝐴
  (1) 

Where �̇� is the heat flux input to the heat sink base and 𝐴 is the surface area of the heat sink 

base. 

 

Table 4.10: The effect of middle fins length,  LM on thermal resistance, Rth of radial heat sink 

𝐿𝑀 (m) ℎ𝑎𝑣𝑔 

(W/𝑚2𝐾) 

𝑇𝑚𝑎𝑥 (K) 𝑇𝑚𝑖𝑛 (K) 𝑅𝑡ℎ PolyDE 

(K/W) 

𝑅𝑡ℎ [1] 

(K/W) 

Percentage 

deviation 

(%) 

0.005 5.50 333.660 333.313 2.51109 2.48 1.25 

0.025 4.85 331.252 330.992 2.31290 2.31 0.13 

0.045 3.90 332.477 332.210 2.41372 2.37 1.84 

 

Temperature plot for radial heat sink with middle fins length, 𝐿𝑀 of 0.005, 0.0025, 

and 0.005m are shown in Figure 4.10 to Figure 4.12. 
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(a) 

   

 

(b) 

Figure 4.9: Plot of thermal resistance, 𝑅𝑡ℎ against middle fin length, 𝐿𝑀 from (a) results in [1] and 

from (b) PolyDE simulation  
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Figure 4.10: Temperature plot for 𝐿𝑀 = 0.005m, 𝑇𝑚𝑎𝑥 = 333.660 K,  𝑇𝑚𝑖𝑛 = 333.313 K 

 

 
Figure 4.11: Temperature plot for 𝐿𝑀 = 0.025m, 𝑇𝑚𝑎𝑥 = 331.252 K,  𝑇𝑚𝑖𝑛 = 330.992 K 

 

 
Figure 4.12: Temperature plot for 𝐿𝑀 = 0.045m, 𝑇𝑚𝑎𝑥 = 332.477 K,  𝑇𝑚𝑖𝑛 = 332.210 K 
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Convergence Testing 

Table 4.11 shows that for 𝐿𝑀 = 0.005m, at 32332 degree of freedom or 85.69s CPU 

time, all the parameters 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛 and 𝑅𝑡ℎ have converged at 6 significant figure accuracy. 

Table 4.11: Convergence testing for middle fins length, LM = 0.005m, maximum adaption step = 8 

Adaption 

Step 

NDOF No. Matrix 

Entries 

CPU time 

(sec) 

𝑇𝑚𝑎𝑥 (K) 𝑇𝑚𝑖𝑛 (K) 𝑅𝑡ℎ (K/W) 

0 11272 259798 5.80 333.659 333.314 2.51101 

1 11952 276696 11.84 333.659 333.314 2.51101 

2 13521 315663 18.84 333.659 333.314 2.51101 

3 16085 381563 27.71 333.659 333.314 2.51101 

4 20413 493123 41.45 333.659 333.314 2.51101 

5 25238 619724 57.76 333.659 333.313 2.51101 

6 32332 808042 85.69 333.660 333.313 2.51109 

7 43907 1117973 133.76 323.660 333.313 2.51109 

8 57462 1482480 210.90 323.660 333.313 2.51109 

 

From Table 4.12, for 𝐿𝑀 = 0.025m, at 15715 degree of freedom or 23.32s CPU time, 

all the parameters 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛 and 𝑅𝑡ℎ have converged at 6 significant figure accuracy.  

Table 4.12: Convergence testing for middle fins length 𝐿𝑀 = 0.025m, maximum adaption step = 7 

Adaption 

Step 

NDOF No. Matrix 

Entries 

CPU time 

(sec) 
𝑇𝑚𝑎𝑥 (K) 𝑇𝑚𝑖𝑛 (K) 𝑅𝑡ℎ (K/W) 

0 12418 286606 6.74 331.251 330.992 2.31282 

1 13560 315450 14.27 331.251 330.992 2.31282 

2 15715 370357 23.32 331.252 330.992 2.31290 

3 18862 450214 35.05 331.252 330.992 2.31290 

4 23985 584433 53.41 331.252 330.992 2.31290 

5 30172 748354 80.01 331.252 330.992 2.31290 

6 39496 995662 128.69 331.252 330.992 2.31290 

7 54404 1396016 210.91 331.252 330.992 2.31290 

 

Table 4.13 shows that for 𝐿𝑀 = 0.045m, at 18071 degree of freedom or 38.42s CPU 

time, all the parameters 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛 and 𝑅𝑡ℎ have converged at 6 significant figure accuracy.  
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