Functional Outcome Following Modular Endoprosthesis Reconstruction Surgery in Primary Bone Tumor of the Lower Limb

by

DR SHARIL BIN ABDUL RAHIM

M.D. (U.S.M.)

Dissertation Submitted In Partial Fulfillment Of The Requirement

For The Degree Of Master Of Medicine

(ORTHOPAEDICS)

UNIVERSITI SAINS MALAYSIA SCHOOL OF MEDICAL SCIENCES

DISCLAIMER

I hereby certify that the work in this dissertation is my own except for the quotations and summaries which have been duly acknowledged.

Dated: 27th May 2008

.

Dr. Sharil Abdul Rahim

PUM1370

ACKNOWLEDGEMENT

My sincere thanks to my supervisor, Associate Professor Dr. Wan Faisham Nu'man and co-supervisor Professor Dr Zulmi Wan, Orthopaedics Oncology Reconstructive Unit (OORU) in Department of Orthopaedics, Hospital Universiti Sains Malaysia, Kubang Kerian for his support, guidance and invaluable advice in the preparation of this dissertation and throughout the completion of my study.

Also my special thanks and appreciation to Associate Professor Dr Mohd Imran Yusuf, Head of Department of Orthopaedic, HUSM, all consultants, lecturers, colleagues and all the staff at the Department of Orthopaedic, HUSM.

My sincere gratitude to Dato' Dr Suresh Chopra, Head of Department of Orthopaedic, Hospital Alor Star, his encouragement and being the role model for me. Also my sincere gratitude to all consultants, specialists, colleagues and all the staffs at the Department of Orthopaedic, Hospital Alor Star.

Special thanks to Dr Sarimah and Dr Kamarul Imran who had never failed to guide me on the statistical analysis of this study.

For both of my parents, Abdul Rahim b Md Shariff and Wan Enshah bt Wan Abdullah, thank you so much for believing in me and praying for my success in the program.

iii

To my beloved wife, Dr Hanina Idris, thank you for the constant support, understanding and sacrifices and last but not least, to all my children, Nabilah Hanim, Nazril Hisham, Naim Hafiz and Nureen Husna, far away in Sg.Petani, Kedah, forgive me for the valuable time loss seeing all of you growing up and without whom I could never completed my study.

LIST OF ABBREVIATION

- HUSM Hospital Universiti Sains Malaysia
- MSTS Musculoskeletal Tumor Society
- LSS Limb Salvage Surgery
- OS Osteosarcoma
- GCT Giant Cell Tumor
- DF endo Distal femur endoproosthesis
- PT endo Proximal Tibia endoprosthesis
- ROM Range of movement
- ISOLS International Symposium on Limb Salvage

v

- TESS Toronto Extremity Salvage Score
- GMRS Global Modular Replacement System

TABLE OF CONTENTS

	Page
TITLE PAGE	i
DISCLAIMER	ii
ACKNOWLEDGEMENT	iii
LIST OF ABBREVATION	v
TABLE OF CONTENTS	vi
APPENDICES	xi
LIST OF TABLES	xii
LIST OF FIGURES	xiv
ABSTRACT	xvi
ABSTRAK	xviii

CHAPTER 1: INTRODUCTION

CHA	PTER 2	: LITERATURE REVIEW	4
2.1	Overv	view of Bone Tumor	5
	2.1.1	Biology Behavior of Tumor	5
	2.1.2	Classification of Bone Tumor	8
	2.1.3	Etiology of Bone Tumor	9
2.2	Evalu	ation	10
	2.2.1	Clinical Presentation	10

	2.2.2	Physical Examination	n	1	0
	2.2.3	Radiography		1	1
		2.2.3.1 Plain Radio	ograph	1	1
		2.2.3.2 C.T. Scan		1	1
		2.2.3.3 M.R.I.		1	1
	2.2.4	Biopsy		1	2
2.3	Stagir	ng of Bone Tumor		1	3
2.4	Overv	view Management of I	Bone Tumor	1	7
	2.4.1	History		1	7
	2.4.2	Role of Chemothera	ру	1	8
	2.4.3	Surgery		1	9
		2.4.3.1 Amputation		19	9
		2.4.3.2 L.S.S.		20	0
	2.4.4	Overview L.S.S		2	1
		2.4.4.1 Types of Re	section	2:	3
		2.4.4.2 Osseous Rec	onstruction	20	6
		2.4.4.2.1	Autograft	2'	7
		2.4.4.2.2	Allograft	28	8
		2.4.4.2.3	Endoprosthesis	30	0
		2.4.4.2.4	Alloprosthesis	40)
2.5	Outco	me of Surgery		41	l
	2.5.1	LSS versus Amputat	ion	42	2
2.6	Functi	onal Evaluation of Re	constructive Procedures	43	3

	2.6.1 M.S.T.S system	43
	2.6.2 Toronto extremity score	49
CHA	PTER 3: OBJECTIVES	51
3.1	General Objectives	52
3.2	Specific Objectives	52
CHA	PTER 4: METHODOLOGY	53
4.1	Research Strategy	54
4.2	Subject Selection	54
4.3	Period Of Study	54
4.4	Place Of Study	54
4.5	Ethical Board Approval	55
4.6	Sampling Size And Sampling Procedure	55
4.7	Selection Criteria	57
	4.7.1 Inclusion Criteria	57
	4.7.2 Exclusion Criteria	57
4.8	Details of Methodology	58
4.9	Data Collections	59
	4.9.1 Socio-demographic data	59
	4.9.2 MSTS system data	59
	4.9.3 Others data	61

4.9.4	Woun	d In	fecti	on

CHAF	CHAPTER 5: RESULTS		
5.1	Demo	graphic characteristics	65
	5.1.1	Age distribution of study population	66
	5.1.2	Race Distribution of study population	67
	5.1.3	Gender distribution of the study population	68
	5.1.4	Distribution of bone tumors	69
	5.1.5	Distribution of patients has lung metastasis in primary bone tumors	70
	5.1.6	Distribution of patient undergone type of reconstruction	71
	5.1.7	Distribution of endoprosthesis system used in study	72
5.2	Clinica	1 Characteristics	73
	5.2.1	ROM of knee in PT endoprosthesis and DF endoprosthesis	73
	5.2.2	MSTS functional score	75
	5.2.3	MSTS functional score of PT endoprosthesis	76
	5.2.4	MSTS functional score of DF endoprosthesis	77
	5.2.5	Percentage of MSTS score for PT and DF endoprosthesis	78
	5.2.6	Description of Pain in MSTS functional score	79
	5.2.7	Description of Function in MSTS functional score	80
	5.2.8	Description of Emotional in MSTS functional score	81
	5.2.9	Description of Support in MSTS functional score	82
	5.2.10	Description of Walking in MSTS functional score	83
	5.2.11	Description of Gait in MSTS functional score	84

	5.2.12	Infection of Endoprosthesis surgery in HUSM	85
	5.2.13	Rate Infection of PT and DF endoprosthesis surgery HUSM	86
	5.2.14	Infection with MSTS score	87
	5.2.15	Revision surgery in Endoprosthesis surgery in HUSM	88
5.3	Case Il	lustration (Case Sample no.22)	91
	5.3.1	Picture of the patient (case no 22) during assessment	91
	5.3.2	Picture of the patient (case no 31) during assessment	93
	5.3.3	Picture of the patient (case no 18) with an infection	94
CHAPTER 6: DISCUSSION			95
	6.1	Socio-Demographic Characteristics	96
	6.2	Clinical Characteristics	98
CHAP'	TER 7:	CONCLUSION	103
CHAP	TER 8:	LIMITATION	105
CHAP	TER 9:	RECOMMENDATION	108
REFEF	RENCE	S	109

APPENDICES

.

Appendix A:	References	109
Appendix B:	Demographic data sheet	115
Appendix C:	MSTS data form	116
Appendix D:	Flow chart	117
Appendix E:	Certificate of Ethical Approval	
Appendix F:	Consent form	118

LIST OF TAE	LIST OF TABLES	
Table 2.1:	Classification of primary tumors of bone	8
Table 2.2:	Enneking System for the Surgical Staging of Malignant Bone and	
	Soft Tissue Tumors	15
Table 2.3:	MSTS pain description	44
Table 2.4:	MSTS function description	45
Table 2.5:	MSTS emotional description	46
Table 2.6:	MSTS support description	47
Table 2.7:	MSTS walking description	48
Table 2.8:	MSTS gait description	49
Table 5.1:	Demographic characteristic of the study	65
Table 5.2	Type of Bone Tumor for the 54 patients	69
Table 5.3:	Number of patients with has Lung Metastasis in Primary Bone Tumor	: 70
Table 5.4:	System of prosthesis used in Endoprosthesis surgery	72
Table 5.5:	Comparison of Flexion of knee joint between PT endoprosthesis and	
	DF endoprosthesis	73
Table 5.6	MSTS functional scores	75
Table 5.7:	Description of Pain in MSTS score	79
Table 5.8:	Description of Function in MSTS score	80
Table 5.9:	Description of Emotional in MSTS score	81

xii

Table 5.10:	Description of Support in MSTS score	82
Table 5.11:	Description of Walking in MSTS score	83
Table 5.12:	Description of Gait in MSTS score	84
Table 5.13:	Percentage of Infection in Endoprosthesis surgery in HUSM	85
Table 5.14:	Number of patient getting infection in PT endoprosthesis compare to	
	DF Endoprosthesis	86
Table 5.15:	Revision of surgery with other factors.	89

LIST OF FIGURES

Figure 2.1: Various excision types for soft-tissue and tumors sarcoma	25
Figure 2.2: Custom distal femoral prostheses used between 1982 and 2000	31
Figure 2.3: Modular replacement system (Howmedica, Inc.).	32
Figure 5.1: Distribution of patients according to age	66
Figure 5.2 Race Distribution of study population	67
Figure 5.3 Gender distribution of the study population	68
Figure 5.4 Distribution patients according to bone tumors	69
Figure 5.5: Distribution of patients has lung metastasis in primary bone tumors.	70
Figure 5.6 Distribution of type of reconstruction in primary bone tumors	71
Figure 5.7 Distribution endoprosthesis system	72
Figure 5.8: Distribution ROM of knee joint in endoprosthesis surgery	74
Figure 5.9 Distribution of MSTS score in both PT and DF endoprosthesis	75
Figure 5.10 Distribution of MSTS functional score in PT endoprothesis	76
Figure 5.11 Distribution of MSTS functional score in DF endoprosthesis	77
Figure 5.12 Distribution of % of MSTS score for PT and DF endoprosthesis	78
Figure 5.13: Distribution of Pain in PT and DF endoprosthesis	79
Figure 5.14: Distribution of Function in PT and DF endoprosthesis	80
Figure 5.15: Distribution of Emotional in PT and DF endoprosthesis	81
Figure 5.16: Distribution of Support in PT and DF endoprosthesis	82
Figure 5.17: Distribution of Walking in PT and DF endoprosthesis	83

Figure 5.18: Distribution of Gait in PT and DF endoprosthesis	84
Figure 5.19: Percentage of Infection in Endoprosthesis surgery in HUSM	85
Figure 5.20: Distribution of Infection in PT and DF endoprosthesis	86
Figure 5.21: Distribution of patient had infection and the MSTS score	87
Figure 5.22: Rate of Revision Surgery following Endoprosthesis	88

ABSTRACT

Introduction: Wide resection in Limb Salvage Surgery for primary bone tumors results in segmental osseous defect. The optimum method for reconstruction distal femur and proximal tibia remained controversial. Options include the use of autografts, allografts, custom-made megaprostheses and modular endoprostheses. Endoprosthesis allows early rehabilitation with a good long term functional outcome result. The aim of this study is to evaluate the functional outcome of patient in modular endoprosthetic reconstructions surgery in the treatment of primary bone tumors of distal femur and proximal tibia of the lower limb, by using Musculoskeletal Tumor Society scoring system.

<u>Methods</u>: Fifty four consecutive patients with primary bone tumor of distal femur and proximal tibia were selected and reviewed to determine the functional outcome after wide resection endoprosthesis reconstruction surgery by using Musculoskeletal Tumor Society scoring system.

<u>Results:</u> There were 34 (63%) cases of distal femur and 20 (37%) cases of proximal tibia bone tumor. The Primary osteosarcoma are 33 (61.1%) and stage III GCT are 20 (37%). The mean age is 26.6 ± 10.61 . There were 12 (22.2%) patients who had metastasis to the lung. The mean MSTS score for both DF and PT endoprosthesis was 21.13 (70.43%), MSTS score for DF was 21.94 (73.13%) and PT was 19.75 (65.83%) group into good to excellent result. The infection rate was 13% (7 cases) and high in PT endoprosthesis

xvi

group. The early revision rate of endoprosthesis replacement was 11.1% (6 cases) mainly due to infection (3 cases). Infection and at site of endoprosthesis were the cause of early failure.

<u>Conclusion:</u> Endoprosthesis replacement for primary bone tumors had good to excellence MSTS score. There were no different in functional outcome after distal femur endoprosthesis and proximal tibia endoprosthesis. The cause of early failure in our center following endoprosthesis surgery is infection and the location of endoprosthesis replacement which is a proximal tibia.

ABSTRAK

Pengenalan: Pembedahan Penyelamatan Anggota dalam pembuangan tisu luas di dalam kanser tulang primer akan menyebabkan kehilangan pada segmen tulang. Cara optima untuk membentuk semula pada tulang hujung femur dan pangkal tibia masih lagi kontroversi. Terdapat beberapa cara untuk membentuk semula tulang yang dipotong iaitu "autografts", "allografts", "custom-made megaprosthesis" dan "modular endoprosthesis". Penggunaan "endoprosthesis" ini dapat membolehkan pesakit menjalani proses rehabilitasi dengan cepat dan memberi keputusan fungsi yang terbaik kepada pesakit kanser tulang. Tujuan kajian ini di jalankan adalah untuk menilaikan semula kebolehan pesakit selepas pembedahan "endoprosthesis" dalam kanser tulang primer di hujung tulang femur dan pangkal tulang tibia dengan menggunakan sistem markah MSTS.

<u>Metodology</u>: Lima puluh empat pesakit berturut-turut dalam kanser hujung tulang femur dan pangkal tulang tibia telah dipilih untuk dinilai semula dalam kebolehan fungsi selepas pembedahan "endoprosthesis" dengan menggunakan sistem markah MSTS.

Keputusan: Didapati 34 pesakit (63%) mengalami kanser hujung tulang femur dan 20 pesakit (37%) mengalami kanser pada pangkal tulang tibia. Kanser tulang osteosarkoma primer adalah 33 kes (61.1%) dan peringkat III GCT adalah 20 kes (37%). Purata umur pesakit adalah 26.6±10.61. Dua belas pesakit mengalami pembiakan kanser ke paru-paru. Pemjumlahan purata MSTS pada kedua-dua hujung femur dan pangkal tibia adalah 21.13 (70.43%), markah MSTS pada hujung femur adalah 21.94(73.13%), markah MSTS pada

pangkal tibia adalah 19.75(65.83%). Ini menunjukkan keputusan yang baik ke terbaik di dalam pembedahan "endoprosthesis" ini. Paras jangkitan kuman adalah 13%(7 kes) dan jangkitan adalah tinggi pada tulang pangkal tibia. Paras pembedahan "endoprosthesis" semula pada peringkat awal adalah 11.1% (6kes). Majoriti pembedahan semula ini adalah disebabkan oleh infeksi.

<u>Kesimpulan:</u> Pembedahan "endoprosthesis" dalam kanser tulang primer adalah baik ke sangat baik pada markah MSTS. Didapati tiada perbezaan yang signifikan dalam markah MSTS pada hujung tulang femur dan pangkal tulang tibia. Punca utama kegagalan pada pembedahan "endoprosthesis" ini adalah infeksi dan kedudukan "endoprosthesis" tersebut..

<u>Chapter 1:</u> Introduction

Chapter 1: Introduction

The distal femur and the proximal tibia is the most common location for bony tumor lesions. In the 1970s, the primary treatment for these lesions was amputation. With advances in radiation treatment, chemotherapy and endoprosthesis, limb salvage became an option in the early 1980s. Although there appears to be a higher incidence of local recurrence with limb salvage, the overall patient survival is similar to that for amputation. The development of new operative techniques, better patient selection and improved prosthetic design have improved the functional outcome of L.S.S.

The optimum method for reconstruction of the lower limb after resection of the femur or tibia is controversial. Options include the use of autografts, allografts, custom-made megaprostheses and modular endoprostheses. Endoprosthesis allows early ambulation rehabilitation with a good long term functional outcome result.(Zeegen, Aponte-Tinao et al. 2004)

Improvements in the treatment of primary bone neoplasms have led to an increase in the long-term survival of the patients. Many of them are young and are expected to lead active lives, placing greater demands on their implants, whilst those with metastatic disease are anticipated to have poor bone quality, possibly placing a greater load on the endoprosthesis. Accordingly, durability of the implant is important in reducing the likelihood of revision.

The aim of this study is to evaluate the functional outcome of patient in modular endoprosthetic reconstructions surgery in the treatment of primary bone tumors of distal

femur and proximal tibia of the lower limb, by using Musculoskeletal Tumor Society scoring system. We also will determine the cause of early failure following wide resection endoprosthesis reconstruction surgery.

<u>Chapter 2:</u> Literature Review

Chapter 2: Literature Review

2.1 Overview of Bone Tumor

Surgical procedures for limb salvage have been performed for more than a century for primary bone sarcomas of low or moderate grade. In the past decade, advances in adjuvant and neoadjuvant treatment, in diagnostic imaging, and in the surgical techniques for reconstruction of limbs have led to serious consideration of limb-salvage surgery for most patients who have osteosarcoma, the most common high-grade sarcoma of bone.

Bone tumors are a rare and heterogeneous group of tumors. Although bone comprise 75% of the average body weight, these neoplasms represent less than 1% of all adult and 15% of pediatric malignancies. The annual incidence in the United States, which remains relatively constant, is approximately 2500 bone tumors.(Malewar 2001) Because these lesions are so rare, few pathologists have sufficient experience to deal comfortably with their diagnosis. This is further compounded by the steady evolution in the classification of bone tumors, which is behavior, ultrastructure, based on their biological and results of immunohistochemical and cytogenetic studies.

2.1.1 Biology Behavior of Tumor

Tumors arising in bone and soft tissues have characteristic patterns of biological behavior because of their common mesenchymal origin and anatomical environment. Those unique patterns form the basis of the staging system and current treatment strategies. Histologically, sarcomas