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{0,1, … , 𝑛} The set of all integers between 0 and n 
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𝐴𝑖,𝑗 Element i, j of matrix A 
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Partial derivative of y with respect to x 

∇𝑥𝑦 Gradient of y with respect to x 
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𝔼Χ~Ρ[𝑓(𝑥)] 𝑜𝑟 𝔼𝑓(𝑥) Expectation of f(x) with respect to P(x) 

𝑓: 𝔸 → 𝔹 The function 𝑓 with domain 𝔸 and range 𝔹 
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‖𝑥‖ L2 norm of x 
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PENGENALAN  CIRI-CIRI WAJAH BERASASKAN 

PEMBELAJARAN MENDALAM 

 

ABSTRAK 

 

Pengenalan Wajah merupakan teknologi yang sedang membangun dengan banyak 

aplikasi di dalam kehidupan sebenar. Matlamat Projek Tahun Akhir ini adalah untuk 

mewujudkan  Pengenalan Ciri-ciri Wajah yang lengkap untuk keselamatan atau kemudahan. 

Aplikasi pengenalan wajah secara automatik dapat membantu ahli forensik untuk meninjau 

sesuatu kawasan dengan adanya Pembelajaran Mesin (ML). Namun in bukan seuatu yang 

mudah kerana imej yang yang ditangkap adalah sangat berbeza dari segi posisi dan halangan 

terhadap faktor sukarela dan tidak sukarela. Dengan pengenalan Pembelajaran Mendalam (DL), 

konsep Rantaian Konvolusi Neural (CNN) yanag dicadangkan pada suatu ketika dahulu 

akhirnya boleh direalisasikan. Dalam projek ini, Fast CNN model digunakan sebagai teras bagi 

pengenalan ciri-ciri wajah untuk memabantu pengguna mengenalinya. Pengguna boleh 

mengenali ciri-ciri wajah termasuk jantina, berkaca mata dan muka berbulu. Pengenalan ciri-ciri 

wajah juga boleh berfungsi dengan baik dalam mengenali wajah yang dihadapkan dengan 

sempurna dan tidak sempurna. Optimasi dilakukan secara berperingkat dengan menjalankan 

eksperimen terhadap parameter untuk latihan rangkain supaya nilai optimum boleh dicapai. 

Dengen menggunakan model ini, prestasi terbaik boleh dihasilkan dalam mengenali ciri-ciri 

wajah. Penggabungan algorithm terhadap pengoptimasi memainkankan peranan penting dalm 

mengoptimasi pembelajaran algorithm. Penambahan lapisan konvolusi juga penting dalam 

mengekstrak ciri-ciri yang berkaitan dengan imej muka. 
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DEEP LEARNING BASED FACE ATTRIBUTES RECOGNITION 

 

ABSTRACT 

 

Face Recognition is a recently developing technology with numerous real life 

applications. The goal of this Final Year Project is to create a complete Face Attributes 

Recognition for security or facility. The automated face identification application is helpful in 

assisting forensic to survey an area with the implementation of Machine Learning (ML). It was 

once a difficult challenge due to uncertainties in the captured such as high variation of pose and 

obstruction corresponding to voluntary and involuntary factors. With the introduction of Deep 

Learning (DL), the concept of Convolutional Neural Network (CNN) that was once an idea can 

be realized. In this project, Fast CNN architecture is used as the core engine to power the face 

attributes recognition that aims to help users to identify its. The users can identify the face 

attributes including gender, glasses and facial hair. The face attributes recognition also can be 

performed well in identifying properly and improperly frontalized faces. Optimization is 

performed by experimenting in stages with several training parameters to obtain the best value 

for this unique purpose. Using this architecture, the best performance of training algorithm can 

be produced in order to recognize face attributes. Combined-algorithm based optimizers plays 

an important role in optimizing the training algorithm. The addition of convolutional layer is 

also essential in order to extract related facial features of facial images. 

 

 



1 
 

CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

Face Attributes Recognition is one of the fields from computer vision (CV) that has 

attracted many interests for a long period. The practical applications for it are numerous including 

biometrical security to automatically detect facial images (Findling and Mayrhofer, 2012) and 

fast face detection in violent video scenes (Machaca Arceda et al., 2016). Due to these capabilities, 

a lot of companies and research centres have been working on it. Usually, the central processing 

unit (CPU) of a machine was used to train neural networks (Goodfellow et al., 2016h). Nowadays, 

this method is normally considered as inadequate. Currently, the graphic processing unit (GPU) 

computing or the CPU of several machines networked together are used instead. Earlier, before 

these expensive setups are introduced, researchers put too much effort to show that CPU could 

not cope with the high computational job required by neural networks. It is outside the scope to 

explain on how to apply efficient numerical CPU code, but it can be highlighted that prudent 

implementation for particular CPU families can produce great improvements. 

The field of soft biometrics was significantly targeted to augment the recognition process 

by fusion of metrics that were essential to discriminate population rather than individuals (Nixon 

et al., 2015). Afterward, this was refined to deploy measures that could be applied in 

discriminating individuals especially using descriptions that can be perceived using human vision 

and in surveillance imagery. A deep branch of this recent field concerns approaches to estimate 

soft biometrics using conventional biometrics methods or just from images alone. These three 

strands merge to form soft biometrics. A functional feature-based approach useful for real forensic 

caseworks corresponding to the size, orientation and shape of facial traits, which can be regarded 
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as a soft biometric methods (Tome et al., 2015). The proposed features can also be deployed as 

additional information that can enhance the performance of traditional face attributes recognition. 

Experimental results indicate good recognition performance and high discrimination power 

especially for continuous features.  

By comparing face attributes recognition algorithms to humans on challenging tasks, the 

level or accuracy of machines can be obtained. Both must recognize facial image taken under a 

variety of uncontrolled illumination conditions in both indoor and outdoor settings and also a 

person’s appearance that includes make up, wearing glasses and so on (Feng and Prabhakaran, 

2016). In the good and middle condition, the algorithm performs far better than humans on face 

attributes recognition in pairing while in the poor condition, the humans result has more stable 

accuracy rather than algorithms (O'Toole et al., 2012). This research shows that the superiority of 

machines over humans in face recognitions field are not yet accomplished. A lot of study must be 

researched to build face attributes recognition for security, employment and so on.  

1.2 Problem Statement  

There are many fields of soft biometrics which apply the feature set selection and machine 

learning for recognition corresponding to experimental factors and fusion of soft biometric traits. 

It has not been focused yet in studying the application of soft biometrics in forensics (Nixon et 

al., 2015). There are many attributes in soft biometrics for face attributes recognition (Liu et al., 

2015). Some attributes such as Asian, glasses and facial hair are not precisely recognized because 

the used dataset contains mostly the Caucasians with their own style and genetic. The lack of 

distinct dataset can lead to the decreasing performance of deep learning.   

In order to produce efficient, robust and reliable face attributes recognition, it should 

undergo careful testing and verification on real-world datasets that are related to the real-world 

settings part. In the real-world, the face attributes recognition should be able to detect facial 

images in unavoidable face alterations, voluntary face alterations, uncontrolled environments and 

accuracy control in large-scaled dataset (Feng and Prabhakaran, 2016). The unavoidable face 
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alteration factors include the aging impacts when identifying a face. The voluntary face alterations 

factors include camouflage, plastic surgery, make up and so on. The uncontrolled environments 

factors affect the accuracy of the algorithms especially on the small dataset which contains 264 

augmented images (Romero Aquino et al., 2017). The increasing number of datasets can be used 

to improve accuracy neglecting the factors.  In Figure 1.1, the large dataset is essential in 

recognizing many variability in a face. (Alza, 2017). 

 

Figure 1.1: Variability in a face (Alza, 2017) 

The face attributes recognition becomes more crucial in mobile phones application. In 

order to unlock the screen, the frontal facial image must be captured. Even this way of application 

is not considered as the most secure because the easy availability of frontal snapshots of the device 

owners from the social network, newspaper, magazines or other media (Findling and Mayrhofer, 

2012). In Figure 1.2, the first two columns are examples of properly frontalized ones while in the 



4 
 

last two there are cases in which frontalization has not performed properly (Alza, 2017). The 

convolutional neural network (CNN) failed many times in detecting the improper frontalized 

facial images. 

 

Figure 1.2: Examples of frontalized faces (Alza, 2017) 

There are many ways of optimization for deep learning (DL). Hypothetically, increasing 

the convolutional layer increases the accuracy of performance. DeepID2+ shows an increment in 

accuracy with respect to the addition of convolutional layer (Sun et al., 2014) while Fast CNN 

shows the opposite results when 6 layer of convolution is added (Gopalakrishnan et al., 2017). 

For choosing optimizer, adaptive moment estimate (Adam) is experimentally proven in pavement 

distress detection (Gopalakrishnan et al., 2017) while nesterov-accelerated adaptive moment 

estimation (Nadam) is shown to be the best performance in training of word2vec word 

embeddings (Dozat, 2015). Both results are deployed in the application of face recognition since 

the research in this field commonly use stochastic gradient descent (SGD) as optimizer of DL 

(Luo et al., 2017).    
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1.3 Objective 

The objectives of project are listed as follows:  

1. To develop a system that recognizes the face attributes focusing on gender, glasses and 

facial hair. 

2. To investigate the influence of dataset size on Fast CNN in gender attribute recognition. 

3. To evaluate the gender attribute recognition system performance on improperly 

frontalized facial images.  

4. To determine the best optimizer and configuration to train Fast CNN for gender attribute 

recognition.  

1.4 Project Scope 

The aim of this project is to build a training algorithm that is able to recognize face 

attributes as the soft-biometric information prior to facial recognition. It is noteworthy that facial 

recognition is not within the scope of this thesis. The Fast CNN is utilized as a feature extraction 

technique. Utilizing some optimizer in order to make the system more robust. The challenges 

involved in such a project is considered in order to obtain the predictable results.  

  Feature extraction is also a very challenging problem. Many algorithms and techniques 

have been utilized throughout the years such as Eigen Faces or Active Shape models (Çarıkçı and 

Özen, 2012, Edwards et al., 1998) . The recent application will produce the best results which is 

applying DL, particularly the CNN. Therefore, after studying the recent state of art, it has been 

concentrated in this project.  

  Finally, Python is used in implementing this project. Firstly, the face in the image is 

frontalized so that it is looking directly towards the camera. Next, the frontalized face is delivered 

to Fast CNN and a set of related features are extracted.  Lastly, these features are applied as 

attributes to compare pairs of images to verify whether the sample are classified corresponding to 

gender, glasses and facial hair attributes. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Overview 

In this chapter, the flow of implementing project has been researched through a lot of 

paper, book and website. The introduction of this chapter has been explained in Section 2.2. The 

dataset which is the input of this project has been explained in Section 2.3. The library used in 

this work which is suitable for DL is explained in Section 2.4. A lot of model can be used for deep 

learning. Two models which are artificial neural network (ANN) and CNN are described in 

Section 2.5. The activation functions have been deployed in both model. These functions are 

explained in section 2.6. Section 2.7 explains the parameter that can be tuned in this project. 

Lastly, Section 2.8 explains the use of dropout in deep learning model.   

2.2 Introduction 

Artificial intelligence (AI) has been studied deeply till obtaining DL research (see Figure 

2.1). AI, Machine Learning (ML) and DL have been described in Sections 2.2.1, 2.2.2 and 2.2.3 

respectively. 
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Figure 2.1: A Venn diagram of introduction (Goodfellow et al., 2016a). 

In Figure 2.1, DL is a kind of representation learning (RL), which is in turn a kind of ML, 

which is applied for many but not all approaches to AI. Every section in the Venn diagram 

includes an example of an AI technology. 

2.2.1 Artificial Intelligence 

Nowadays, artificial intelligence (AI) is a successful discipline with numerous hands-on 

applications and active research areas (Goodfellow et al., 2016a). Intelligent software is 

considered to computerise every day work, recognise images or speech, perform diagnoses in 

medication and verify basic scientific study. During the previous days of AI, the discipline quickly 

handled and resolved issues that are mentally tough for humans but quite simple for computers—

issues that can be explained by a list of formal, mathematical rules. The real task to artificial 
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intelligence showed to be cracking the jobs that are simple for people to do but hard for people to 

explain formally on the issues that are solved naturally and automatically, like identifying spoken 

words or expression in images. 

Several of the initial achievements of AI occurred in somewhat formal and sterile 

surroundings and did not need computers to have ample information about the world. For 

instance, IBM’s Deep Blue chess-playing system triumph over world victor Garry Kasparov in 

1997 (Hsu, 2002). Chess is certainly a very simple world, comprising merely sixty-four locales 

and thirty-two pieces that can shift only strictly limited ways. Planning an effective chess tactic 

is a huge achievement, but the challenge is not because of the complication of expressing the 

chess pieces set and permissible shifts to the computer. Chess can be totally expressed by a very 

short list of absolutely formal rules, simply kept ahead of time by the programmer. In 

contradiction, formal and abstract jobs that are among the toughest mental activities for a human 

are among the simplest for a computer. It is known that computers has the ability to beat even the 

greatest human chess player, but are only just matching not much of the capabilities of normal 

human beings to identify speech or objects. A human’s daily life needs a huge amount of 

knowledge about the world. Many of this knowledge are subjective and instinctual, and hence 

hard to express formally. One of the main questions in AI is how to obtain this informal 

information into a computer. 

Some AI  plans have pursued hard-code information of the world in formal languages. A 

computer is capable of thinking about statements in these formal languages spontaneously using 

logical inference rules. This is called as the knowledge based method to AI. One of the most 

popular projects is Cycl (Elkan and Greiner, 1993). Cycl is an inference engine and a statements 

database in a language known as CycL. These statements are inserted by a human supervisor staff. 

It is a cumbersome procedure. People strive to create formal rules with sufficient difficulty to 

precisely explain the world.  
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2.2.2 Machine Learning 

The complications confronted by systems depending on hard-coded information propose 

that AI systems require the capability to develop their own knowledge, by obtaining patterns from 

raw data. This capability is called machine learning. The overview of ML permitted computers to 

handle issues concerning real world knowledge and make choices that seem subjective. A simple 

ML algorithm known as logistic regression can decide whether to propose cesarean delivery 

(Mor-Yosef et al., 1990).  

The execution of these simple ML algorithms relies greatly on the representation of the 

given data For instance, when logistic regression is utilised to suggest cesarean delivery, the AI 

system does not observe the patient directly (Goodfellow et al., 2016a). On the other hand, the 

doctor informs the system quite a few pieces of pertinent information, like the presence or absence 

of a uterine mark. Every chunk of information involved in the depiction of the patient is called as 

a feature. Logistic regression discovers how all of these features of the patient associates with 

numerous outcomes. Yet, it cannot affect how the features are described in any way. If an MRI 

scan of the patient was presented to the logistic regression, instead of the doctor’s formalized 

report, it would not be capable of making useful estimations. Separate pixels in an MRI scan have 

insignificant connection to any difficulties that might happen during delivery. 

An answer to this issue is to use ML to learn the mapping from representation to output 

as well as the representation itself. This method is called representation learning (Goodfellow et 

al., 2016a). Learned representations typically end in much better performance than can be gained 

with hand-designed representations. These also let AI systems to quickly adjust to new tasks, with 

minimum human involvement. The RL algorithm can learn a useful set of features for an easy 

task in short time or a difficult task in longer time. Designing the features manually for a difficult 

task needs a lot of human time and effort; it can take years for the whole community of 

researchers. The ideal example of a RL algorithm is the autoencoder. An autoencoder is the fusion 

of an encoder function that transforms the input data into another representation, and a decoder 

function that transforms the new representation back into the initial format (Goodfellow et al., 
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2016i). Autoencoders are trained to keep as much information as possible when an input is 

operated via the encoder and then the decoder, but are also trained to make the new representation 

have numerous fine properties. Different types of autoencoders target to attain different types of 

properties. 

2.2.3 Deep Learning 

DL lets the computer to create difficult concepts out of simpler concepts (Goodfellow et 

al., 2016a). Figure 2.2 depicts how a DL system can represent the idea of an image of an individual 

by merging simpler concepts, such as contours and corners, which are consecutively described in 

terms of edges. The ideal illustration of a DL model is the feedforward deep network or multilayer 

perceptron (MLP). A multilayer perceptron is simply a mathematical function mapping few set 

of input values to output values. The function is developed by combining many simpler functions. 

It can be considered that application of a different mathematical function as giving a new 

representation of the input. The notion of learning the correct representation for the data offers 

one viewpoint on deep learning. Another viewpoint on DL is that depth allows the computer to 

discover a multi-step computer program. Every layer of the representation can be considered as 

the state of the computer’s memory after performing additional set of instructions in parallel. 

Networks with more depth can perform more instructions in order. Sequential instructions give 

big power because later instructions can refer back to the outcomes of previous instructions. In 

line with this perspective of deep learning, not all of the information in a layer’s activations 

essentially encodes factors of variation that describe the input. The representation also keeps state 

information that aids to run a program that can add up of the input. This state information could 

be similar to a pointer or counter in an old-style computer program. It is not related with the 

content of the input particularly, but it assists the model to structure its processing. 

The primary characteristic of DL is the capability of creating abstractions by building 

complex ideas from basic ones (Alza, 2017). Provided with an image, it is also capable of learning 

concepts such as cars, humans or cats by joining sets of simpler features such as edges and corners. 

This process is performed via successive “layers” that intensify the complexity of the learned 
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concepts. The concept of depth in DL comes exactly from these abstraction levels. Each layer 

gains input and output of previous one and utilise it to learn higher-level characteristic, as shown 

in Figure 2.2. In few cases, the network is the one that utilise these characteristics to create an 

output, and occasionally it merely generates them from other techniques. If the layer increases, 

the abstract of concepts features represent also increases. This will continue until they are able to 

learn recognizing difficult concepts such as cars or people 

 

Figure 2.2: Illustration of DL (Goodfellow et al., 2016a). 

2.3 Dataset 

Soft biometrics in dataset is explained in the section 2.3.1 Dataset is the input of DL in 

this project in the form images which will be explained in the section 2.3.2. In Sections 2.3.3 and 

2.3.4 explains the parameters deployed in dataset which are increasing size and augmenting 

dataset respectively. 
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2.3.1 Soft Biometrics 

There are many research challenges in recognizing facial images. The challenges are 

unavoidable facial feature alterations, voluntary facial feature alterations, uncontrolled 

environments and accuracy on large-scale dataset. The unavoidable facial feature alterations 

includes the factors of age, health status, living habits and environments. These factors affect the 

facial feature changes such as pimple, wrinkle, cloudy eye and so on. For voluntary facial feature 

alterations, the pursuit of beauty causes all kinds of facial variations such as make up, hair style, 

dyed hair, contact lenses, glasses style and so on. For uncontrolled environments, the quality of 

media affects the accuracy of face recognition. For accuracy control on large-scale datasets, the 

extracted facial features algorithm must be scalable when applied to large-scale dataset (Feng and 

Prabhakaran, 2016). These challenges must be considered in order to get the best accuracy of 

facial images.  

There are many ways for face attributes recognition. One of the ways is soft-biometric 

face attributes recognition. This way can detect the glasses and facial hair in facial images (Ouaret 

et al., 2010). In order to distinguish the gender of faces in the image, the features of faces can be 

extracted by using two methods which geometric features and appearance features. The first 

method applies an idea to detect the salient features and measure the distance between those 

salient features. The salient features include eyes, mouth and nose of the facial images. This 

method is also called as local features. The second method applies an idea to minimize a facial 

image by reducing the number of pixels. This method is also called as global features (Kumari et 

al., 2011). Therefore, male and female have a little bit difference based on these methods that will 

be used by DL system in classifying the gender.  

In order to create high accuracy of classifying system, five factors of face aging internally 

and externally must be considered. The factors are gender, race, make up, health condition and 

ethnicity. These factors affect the aging pattern in the face image (Geng et al., 2006). The aging 

pattern must be computed with minimum reconstruction error. Therefore, CNN architecture is 

applied in order to get all the aging pattern for analysing the facial image (Aydogdu and Demirci, 
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2017). The CNN architecture will process the aging pattern in the facial image based on the 

number of pixels with respect to those factors. The facial biometrics had been applied on Mistral 

software (Charton et al., 2010).  

2.3.2 Dataset Type 

The data used with a convolutional network typically comprises of some channels, every 

channel being the different quantity observation at some point in time or space (Goodfellow et 

al., 2016f). Table 2.1 shows samples of data types with different dimensionalities and channel 

numbers. It has been discussed that only the case in which each example in the train and test data 

has identical spatial dimensions. One benefit to convolutional networks is that they can also 

manage inputs with different spatial degrees. These types of input basically cannot be exemplified 

by traditional, matrix multiplication-based neural networks. This gives a convincing reason to use 

convolutional networks even when computational cost and overfitting are not major issues. For 

instance, take a group of images, in which every image has a different height and width. It is 

vague how to model such inputs with a weight matrix of permanent size. Notice that the 

application of convolution for dealing with variable sized inputs only sensible for inputs that have 

variable size because different recordings lengths over time and different observations widths 

over space.  
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Table 2.1: Examples of different formats of data that can be employed with convolutional 

networks. 

Number of 

dimensional 

array 

Single channel Multi-channel 

1-D Audio waveform: The axis is 

convolved over corresponding time. 

Time is discretized and measured 

the amplitude of the waveform once 

per time step. 

Skeleton animation data. 

Animations of 3-D computer-

rendered characters are produced 

by changing the pose of a 

“skeleton” over time. At every 

point in time, the pose of the 

character is described by a 

specification of the angles of every 

joints in the character’s skeleton. 

Every channel in the data is fed to 

the convolutional model 

represents the angle about one axis 

of one joint. 

2-D Audio data that has been pre-

processed with a Fourier transform. 

The audio waveform is transformed 

into a 2D tensor with different rows 

corresponding to different 

frequencies and columns 

corresponding to different points in 

time. Using convolution in the time 

Colour image data. One channel 

has red, green and blue pixel. The 

convolution kernel moves over 

both the horizontal and vertical 

axes of the image, conferring 

translation equivariance in both 

directions. 
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makes the model equivariant to 

shifts in time. Using convolution 

across the frequency axis makes the 

model equivariant to frequency, so 

that the same melody played in a 

different octave generates the 

similar representation but at a 

different height in the network’s 

output. 

3-D Volumetric data. A common source 

of this kind of data is medical 

imaging technology, such as CT 

scans. 

Colour video data. One axis 

corresponds to time, one to the 

height of the video frame, and one 

to the width of the video frame. 

 

2.3.3 The Increasing Number of Dataset 

The main thoughts are the feasibility and cost of collecting more data, the feasibility and 

cost of decreasing the test error by other means, and the quantity of data that is estimated to be 

compulsory to enhance test set performance considerably (Goodfellow et al., 2016g). At huge 

internet corporations with millions or billions of users, it is possible to collect large datasets, and 

the cost of doing so can be significantly less than the other options, so the solution is practically 

always to collect more training data. For instance, the improvement of huge labelled datasets was 

one of the most vital reasons in resolving object recognition. In other circumstances, such as 

medical applications, it may be expensive or impossible to collect more data. A simple option to 

collecting more data is to decrease the model size or enhance regularization, by modifying 

hyperparameters such as weight decay coefficients, or by including regularization approaches 

such as dropout. Collecting more data is appropriate if the gap between train and test performance 
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is still deplorable even after tuning the regularization hyperparameters. If collecting much more 

data is not achievable, another method to enhance generalization error is to develop the learning 

algorithm itself. This becomes the field of research and not the field of advice for applied experts. 

2.3.4 Dataset Augmentation 

For several ML jobs, it is rationally clear-cut to generate new fake data (Goodfellow et 

al., 2016d). This method is the simplest method for classification. A complex, high dimensional 

input x should be taken by a classifier and summarized with a category identity y. This denotes 

that the major task coping with a classifier is to be invariable to a large range of transformations. 

New (x, y) pairs can be produced effortlessly just by converting the x inputs in our training set. 

This method is not as freely relevant to many other tasks. For instance, it is quite hard to produce 

new fake data for a density estimation task except if the density estimation problem managed to 

be solved. Dataset augmentation has been a specifically efficient method for a particular 

classification problem which is object recognition. Images are high dimensional and involve a 

wide variety of variation factors, many of which can be simply faked. Processes like transforming 

the training images a few pixels in every direction can usually significantly enhance 

generalization, although the model has already been invented to be partly translation invariant by 

using the convolution and pooling methods explained in Sections 2.11 and 2.12 respectively. 

Several other processes like rotating the image or scaling the image have also verified to be quite 

efficient. 

The models are trained with different approaches using data augmentation to enhance 

their classification competence (Romero Aquino et al., 2017). The models are also trained and 

verified without any augmentation in order to contemplate those results as initial baselines. 

Random transformations were used on the raw images of the train dataset to augment them 

(cropping, rotation, swirl, horizontal flip, vertical flip and different forms of noises such as salt 

and pepper, and Gaussian noise). The test set remained unaffected in all cases.  
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Traditional transformations (Perez and Wang, 2017) use a combination of affine 

transformations to influence the training data (Jannik Bjerrum, 2017). For every input image, a 

”duplicate” image is generated, which is shifted, rotated, zoomed in/out, distorted, flipped, or 

shaded with a hue. Both image and the duplicate are placed into the neural net. For a dataset of 

size N, a dataset of 2N size is generated. 

Neural augmentation (Perez and Wang, 2017) functions outstandingly better than no 

augmentation. In the dogs versus cats problem, the neural augmentation works the best with a 

91.5% to 85.5% in comparison with no augmentation. In the dogs verses fish problem, the neural 

augmentation works the second best with 77.0% to 70.5%. Whereas the traditional augmentation 

works almost as well at a lesser time expense, this does not prevent the combination of different 

augmentation approaches. An approach that first operates traditional augmentations, and then 

pairs up data for neural augmentation, which could possibly beat all experiments tested. 

2.4 Library for Deep Learning 

DL is an continuously-growing ML methods based on data representations (Clark, 2018). 

The vast amount of resources can be a touch overwhelming for those either looking to get into 

the field, or those already engraved in it. A good way of staying updated with the latest trends is 

to interact with the community by interacting with the DL open source projects that are currently 

available. Based on Figure 2.3, Tensorflow is the best DL library followed by Keras. 
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Figure 2.3: Top 16 open source DL libraries by Github stars and contributors (Clark, 2018) 

2.4.1 Tensorflow  

TensorFlow signifies calculations by dataflow graphs (Mart et al., 2017). While focusing 

on ML applications, TensorFlow is quite sceptical on the exact idea of the calculations. To be 

specific, a computation may execute one or more training steps for a machine-learning model, or 

it can be the application of a trained model. This indicates that dataflow graphs support both 

inference and training. A dataflow graph is comprised of nodes and edges, in which every node 

symbolises an instantiation of an operation, and values flow by the edges. The operations are 

executed by kernels that can be operated on certain types of devices. 

The key interest values are tensors, which are arbitrary dimensionality arrays where the 

underlying element type is identified or inferred at graph-construction time (Mart et al., 2017). 

For that reason, the operations are mostly consisting of mathematical functions like matrix 
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multiplication.  Furthermore, certain operations may update or read state. In TensorFlow, a 

variable is an exceptional type of operation that returns a handle to a tensor. In this situation, 

informally, it can be said that the tensor is held in the variable, in which the variable operation 

and the resulting handle may be conflated. The handle can be approved as argument to operations 

that update or read the equivalent tensor. To illustrate, the tensor may consist of the weights of a 

layer in a neural network, and these are updated through the training process. Besides, along with 

the edges for communicating tensors, a graph may incorporate control edges that restrict the order 

of execution. In the existence of mutable state, this order can affect the observable semantics, 

which as well affect performance.  

2.4.2 Keras  

Following best practices to reduce cognitive load, Keras (Chollet, 2015a) provides 

consistent & simple API, reduces the number of user actions needed for common use cases, and 

offers clear and actionable feedback on user error. A model is seen as a series or a graph of 

standalone, fully-configurable modules that can be plugged together using the least possible 

restrictions. Specifically, optimizers, cost functions, regularization schemes, initialization 

schemes, neural layers, and activation functions are all standalone modules that can be combined 

to invent new models. New modules are easy to add as new classes and functions. The current 

modules give plenty examples. The ability to easily design new modules allows for total 

expressiveness, making Keras appropriate for advanced research. No distinct models 

configuration files in a declarative format. Models are explained in Python code, which is 

compact, easier to debug, and allows for ease of extensibility. 

2.5 Deep Learning Model 

Several models such as artificial neural network (ANN), CNN, recurrent neural network 

(RNN) and deep bolltzman machine (DBM) can be deployed in DL. Since the data input is in the 

form of images, ANN and CNN is suitable for this project. Section 2.5.1 explains ANN while 

section 2.5.2 explains CNN. 
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2.5.1 Artificial Neural Network 

ANN derives from a group of computationally simple nodes that are connected together 

called neurons (Alza, 2017). The neurons are arranged in layers linked between them, just like 

the biological neurons are linked with axons. These layers are distributed into three main types 

which are input, hidden and output. The input layer parallels to the data received by the network. 

It could be comprehended as the input vector from other techniques. This layer is linked to a 

hidden layer, the one that is not in extreme. This is how it got its name as it is “invisible” from 

the outside. Another interesting explanation which is different to other approaches is, once the 

network is trained, it does not give any insight on what it does. The ANN sometimes called as 

black boxes, as it is almost impossible to comprehend its functions. It can be several hidden layers, 

each linked to the previous one. Each neuron in hidden and output layers is usually linked to all 

neurons from the previous layer.  Every edge possesses an associate weight, which shows how 

strong the two neurons are linked, either directly or inversely like how the biological neurons are 

linked. Lastly, the last layer, known as output layer, provides the result of the ANN with an output 

for each class. This is crucial because ANN is typically utilized for classification problems. 
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Figure 2.4: The three layers of an ANN (Shi, 2014). 

In Figure 2.4, ANN is used to estimate an unknown mathematical function. The function 

can be either linear or non-linear. Theoretically, ANN has the ability to estimate any function. 

The neuron, its basic unit, calculates a “simple” activation function given its inputs, and spread 

its value to the subsequent layer. Thus, the entire function is formulated by collecting activation 

values from all neurons. Having hundreds of neurons, the number of edges can reach higher orders 

of magnitude, and also the difficulty in interpreting them. 

2.5.2 Convolutional Neural Network  

The most commonly applied deep neural network (DNN) in CV problems are the CNN, 

which is based in the MLP architecture (Alza, 2017). ANN on the other hand, are inspired in 

general neuronal behaviour, and CNN follow the same rules as animal’s visual cortex. This 

contains neurons that process only small segments of the input image, or visual field, and 
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recognizes related patterns. These neurons are compacted in structures like layers that allows 

intensify complex patterns. It is almost like the general DNN structure, but it is different in terms 

of shared weights 

2.5.2.1 Convolutional Layer 

In ML exercises, the input is normally a multidimensional array of data and the kernel is 

normally a multidimensional array of parameters modified by the learning algorithm (Goodfellow 

et al., 2016f). These multidimensional arrays are referred as tensors. Since every component of 

the input and kernel must be clearly stored individually, it is commonly assumed that these 

functions are nil everywhere but the limited set of points for which the values are stored. This 

indicates that in fact, the infinite summation can be implemented as a summation over a limited 

number of array elements. Lastly, convolutions are frequently used over more than one axis at a 

time. For instance, if a two-dimensional image 𝐼 is used as an input, a two-dimensional kernel 𝐾 

will probably be used as well.  

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ .𝑚 ∑ 𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)𝑛  (2.1) 

As shown in Figure 2.5, 𝑚 × 𝑛 is the matrix of input, 𝐼 while 𝑖 × 𝑗 is the matrix of kernel, 𝐾. The 

mapping of kernel matrix on input matrix is indicated by 𝐾(𝑖 − 𝑚, 𝑗 − 𝑛). 

 

 

(a) Input, 𝐼 matrix (b) Kernel, 𝐾 Matrix 

Figure 2.5: The illustration of input, 𝐼 and kernel, 𝐾 matrices 

Since convolution is commutative, it can be equivalently expressed as: 
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𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛)

𝑛𝑚

 
 

(2.2) 

Generally the second formula is more clear-cut to apply in the ML library, as there is less 

difference in the range of valid values of m and n. The commutative convolution property occurs 

because the kernel relative has been flipped to the input. If m increases, the index into the input 

also increases, while the index into the kernel lessens. The only purpose of flipping the kernel is 

to get the commutative property. Although the commutative property is helpful in writing proofs, 

it is not normally a vital property of a neural network application. On the other hand, numerous 

neural network libraries execute a correlated function named the cross-correlation, which is 

similar to convolution but without flipping the kernel: 

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑.

𝑚

∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛)

𝑛

 
 

(2.3) 

A lot of ML libraries apply cross-correlation using the term convolution (Goodfellow et 

al., 2016f). This section will stick to the practice of calling both operations as convolution, and 

stipulate whether the kernel is meant to be flipped or not in the situation where kernel flipping is 

appropriate. In the ML, the learning algorithm will learn the suitable kernel values in the proper 

place, thus an algorithm based on convolution with kernel flipping will discover a flipped kernel 

in relation to the kernel discovered by an algorithm without the flipping. It is also uncommon if 

convolution is utilised alone in machine learning; instead of using it concurrently with other 

functions, and the grouping of these functions does not commute irrespective of whether the 

convolution operation flips the kernel or not. Figure 2.6 is an illustration of convolution utilised 

to a 2-D tensor. 
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Figure 2.6: Example of 2-D convolution without kernel-flipping (Goodfellow et al., 2016f). 

In Figure 2.6, the output to only positions is restricted where the kernel lies entirely within 

the image, known as “valid” convolution in some contexts. The boxes are drawn with arrows to 

show how the upper-left element of the output tensor is formed by applying the kernel to the 

corresponding upper-left region of the input tensor. 

2.5.2.2 Pooling Layer 

A pooling function substitutes the output of the net at a certain location with a summary 

statistic of the nearby outputs. As an example, the max pooling (Zhou and Chellappa, 1988) 

operation reports the maximum output within a rectangular neighbourhood. Other functions are 

including the average of a rectangular neighbourhood, the L2 norm of a rectangular 

neighbourhood, or a weighted average based on the distance from the central pixel. 

In Figure 2.7, pooling makes the representation become approximately invariant to small 

translations of the input (Goodfellow et al., 2016f). Invariance to local translation can be a very 

useful property in order to locate some important feature. The use of pooling can be considered 
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