

DEEP LEARNING BASED

FACE ATTRIBUTES RECOGNITION

MOHAMAD HAZIM BIN SAIDI

UNIVERSITI SAINS MALAYSIA

2018

i

ACKNOWLEDGEMENT

First of all, I would like to thank Prof. Madya Dr. Shahrel Azmin Bin Suandi for his

inspiration and guidance for my final year project (FYP). The decision to take up Deep

Learning based project is quite tough, but with his encouragement, this project is successfully

completed. Discovery and exploration into the realm of Deep Learning is the greatest

experience from this project, shall never be forgotten.

A big commendation for Face Recognition Homepage for providing free facial

database. A special thanks to the creator and developer of SCFace, SoF, IMFDB, LFW, Fei and

GT database for providing me a variety of facial images.

Special appreciation to administration officers of School of Electrical and Electronic

Engineering (PPKEE) for arranging numerous talks and workshop in order to prepare and guide

me and other students throughout this year. Not to forget about the academic staffs and lab

assistant that provide generous advices and technical support for me to complete the project.

Special thanks to Encik Abdul Latif for providing easy accessibility to computer in

Communication Lab. The hardware is a crucial component in my project and hence her help is

much appreciated.

Besides, I am extremely thankful to the develop team behind Tensorflow whom open-

source this tool for public and allows anyone to be part of Deep Learning research community.

It provides sufficient tutorial for me to finish up my project with Fast CNN architecture.

Without them, the project would be much harder to proceed.

Last but not least, I would like to extend my gratitude to my family and friends whom

supported me during FYP period and had given useful advice and positive encouragement when

I was down.

ii

TABLE OF CONTENTS

Acknowledgement i

Table of Contents ii

List of Tables vi

List of Figures vii

List of Abbreviations ix

Notation xi

Abstrak xiii

Abstract xiv

Chapter 1 : Introduction

1.1 Background... 1

1.2 Problem Statement………………………………………………………………….. 2

1.3 Objective……………………………………………………………………………. 5

1.4 Project Scope……………………………………………………………………...... 5

Chapter 2 : Literature Review

2.1 Overview………...……………………………...………………………………….. 6

2.2 Introduction………………………………………………………………………… 6

 2.2.1 Artificial Intelligence……………………………………………..………... 7

 2.2.2 Machine Learning……..………………………………………………..….. 9

 2.2.3 Deep Learning….………………………………...………………………... 10

2.3 Dataset……………………………………………………………………………… 11

 2.3.1 Soft Biometrics………………...…………………………………………... 12

 2.3.2 Dataset Type……...………………………………...…………………........ 13

iii

 2.3.3 The Increasing Number of Dataset………………………………………… 15

 2.3.4 Dataset Augmentation……………………………………………………... 16

2.4 Library for Deep Learning …………………………………………………………. 17

 2.4.1 Tensorflow……………………………………………………………...….. 18

 2.4.2 Keras………………………………………………………………...……... 19

2.5 Deep Learning Model………………………………………………………………. 19

 2.5.1 Artificial Neural Network……….…………………………………………. 20

 2.5.2 Convolutional Neural Network…………………………………………….. 21

 2.5.2.1 Convolutional Layer……………………………………………... 22

 2.5.2.2 Pooling Layer……………………………………………………. 24

2.6 Activation Function………………………………………………………………… 27

 2.6.1 Rectifier Linear Unit…………………….…………………………………. 28

 2.6.2 Output Layer……………………………………………………………….. 29

2.7 Optimization of Training Deep Models…………………………………………….. 29

 2.7.1 Empirical Risk Minimization……………………………………………… 30

 2.7.2 Batch Size …………………………………………………………………. 31

 2.7.3 Hyperparameters and Validation Sets... 32

 2.7.4 Optimizer…………………………………………………………………... 33

 2.7.4.1 Basic Algorithms...………………………………………………. 33

 2.7.4.1.1 Stochastic Gradient Descent………………………… 33

 2.7.4.1.2 Momentum…………………………………………... 35

 2.7.4.1.3 Nesterov Momentum………………………………… 37

 2.7.4.2 Algorithms with Adaptive Learning Rates……………………… 38

 2.7.4.2.1 AdaGrad……………………………………………... 38

 2.7.4.2.2 RMSProp…………………………………………….. 39

2.8 Dropout…………………………………………... 40

2.9 Summary…………………………………………………………………………… 43

iv

Chapter 3 : Methodology

3,1 Overview…………………………………………………………………………… 44

3.2 Convolutional Neural Network Architecture………………………………………. 47

3.3 Parameter of Trained Deep Model……………………………................................. 48

 3.3.1 Dataset Segregation Ratio…...…………..…………………………………. 48

 3.3.2 Batch Size and Epoch……………………………………………………… 49

 3.3.3 Combined-algorithms Based Optimizers…………...……………………… 50

3.4 Experimentation and Optimization by Phase………………………………………. 51

3.5 Manual Testing……………………………………………………………………... 52

3.6 Deep Learning Implementation on Tensorflow Platforms…………...…………….. 55

3.7 Summary……………………………………………………………………………. 55

Chapter 4: Result & Discussion

4.1 Overview…………………………………………………………………………… 57

4.2 Dataset Collection for Training…………………………………………………….. 59

4.3 Dataset Augmentation……………………………………………………………… 63

4.4 Experimentation of Deep Learning………………………………………………… 65

 4.4.1 Face Attributes Recognition…..…………………………………………… 65

 4.4.2 Dataset Size………………………………………………………………... 66

 4.4.2.1 Manual Testing of IMFDB, LFW and MD Database...…………. 68

4.5 Optimization of Deep Learning…………………………………………………….. 71

 4.5.1 Optimizer of Training……………………………………………………… 71

 4.5.1.1 Training Set……………………………………………………… 72

 4.5.1.2 Validation Set……………………………………………………. 72

 4.5.2 Fast CNN Layer……………………………………………………………. 72

 4.5.2.1 Training Set……………………………………………………… 73

v

 4.5.2.2 Validation Set……………………………………………………. 73

4.6 Summary……………………………………………………………………………. 74

Chapter 5: Conclusion and Future Work

5.1 Conclusion………………………………………………………………………….. 75

5.2 Recommendation for Future Work…………………………………………………. 76

Chapter 6: Reference 79

Appendix A: The Performance of Experimentation Phase 86

Appendix B: The Performance of Optimization Phase 89

Appendix C: The Deep Learning Code for Experiment 1 93

vi

LIST OF TABLES

Table 2.1 : Examples of different formats of data that can be employed with

convolutional networks…………………………………….…………………...

14

Table 3.1 : The default parameters of combined-algorithms based optimizer……………... 51

Table 3.2 : The experiments of project…………………………………………………….. 52

Table 4.1 : Projects break-down and operations performed in each experiment…………... 58

Table 4.2 : The involved database with respect to every experiment……………………… 62

Table 4.3 : The category of face attributes………………………………………………… 62

Table 4.4 : The distribution of dataset in each category…………………………………… 63

Table 4.5 : The error percentage of dataset size……………………………………............ 67

Table 4.6 : The manual testing of Experiment 5 for IMFDB……………………………… 69

Table 4.7 : The manual testing of Experiment 5 for LFW………………………………… 70

Table 4.8 : The manual testing of Experiment 5 for MD..………………………………… 70

Table 4.9 : The performance of optimizers………………………………………………… 71

Table 4.10 : The performance of Fast CNN…………….…………………………………… 73

Table A1 : The error percentage of face attributes recognition……………………………. 88

vii

LIST OF FIGURES

Figure 1.1 : Variability in a face (Alza, 2017)………………………..…………………….. 3

Figure 1.2 : Examples of frontalized faces (Alza, 2017)…………………………………… 4

Figure 2.1 : A Venn diagram of introduction(Goodfellow et al., 2016b)…………………... 7

Figure 2.2 : Illustration of DL (Goodfellow et al., 2016b)…………………………………. 11

Figure 2.3 : Top 16 open source deep learning libraries by Github stars and contributors

(Clark, 2018)..………………………………………………………………….

18

Figure 2.4 : The three layers of an ANN (Shi, 2014)………………………………………. 21

Figure 2.5 : The illustration of input, 𝐼 and kernel, 𝐾 matrices…………………………….. 22

Figure 2.6 : An example of 2-D convolution without kernel-flipping (Goodfellow et al.,

2016k)………………………………………………………………………......

24

Figure 2.7 : Figure 2.6: Max pooling introduces invariance (Goodfellow et al., 2016j)…… 25

Figure 2.8 : Example of learned invariances (Goodfellow et al., 2016j)…………………… 26

Figure 2.9 : Figure 2.8: Pooling with downsampling (Goodfellow et al., 2016j)…………... 27

Figure 2.10 : The rectified linear activation function (Goodfellow et al., 2016d)…………… 28

Figure 2.11: Activation functions of a neuron (Negnevitsky, 2005)……………………… 29

Figure 2.12 : Typical relationship between capacity and error (Goodfellow et al., 2016c)…. 32

Figure 2.13: SGD algorithm (Goodfellow et al., 2016g)……………………………………. 34

Figure 2.14: SGD with momentum algorithm (Goodfellow et al., 2016g)………………….. 36

Figure 2.15: SGD with Nesterov’s acceleration algorithm (Goodfellow et al., 2016g)…….. 38

Figure 2.16: AdaGrad algorithm (Goodfellow et al.)……………………………………….. 39

Figure 2.17: RMSProp algorithm (Goodfellow et al.)………………………………………. 40

Figure 2.18: Dropout training (Goodfellow et al., 2016f)…………………………………... 42

Figure 3.1 : Example of facial images in different database (Grgic et al., 2011, Afifi et al.,

2017, Huang et al., 2007, Husain et al., 2013, Thomaz, 2006, Nefian, 2000)…

45

viii

Figure 3.2 : Overall process of building a facial image recognition system using CNN

architecture……………………………………………………………………..

46

Figure 3.3 : The Fast CNN architectures which are used in project (Gopalakrishnan et al.,

2017)……………………………………………………………………………

47

Figure 3.4 : Overview of the methodology followed in this work (Romero Aquino et al.,

2017)……………………………………………………………………………

49

Figure 3.5 : The examples of four facial expression in IMFDB(Husain et al., 2013) …… 53

Figure 3.6 : The examples of perpendicular face rotation in LFW(Huang et al., 2007)……. 53

Figure 3.7 : The examples of MD database……….………………………………………... 54

Figure 4.1 : Example of dataset augmentation performed on facial image of Subject 001

SCFace………………………………………………………………………….

65

Figure 4.2 : The error percentage of face attributes recognition……...………….…………. 66

Figure 4.3 : Total attribute error for increasing dataset…………………………………….. 68

Figure 5.1 : Accuracy vs Number of operations in various CNN models (Migdał, 2017)…. 77

Figure A1 : Total dataset testing for each category of attribute……………………………. 86

Figure A2 : Total dataset error of each attribute………………………………………….. 86

Figure A3 : Total error dataset of each size in gender attribute……………………………. 87

Figure A4 : Total error dataset of each category of gender attribute in Experiment 5……... 87

Figure B1 : Training accuracy of optimizers……...………………………………………... 89

Figure B2 : Training loss of optimizers…………………………………………………….. 89

Figure B3 : Validation accuracy of optimizers…………………………………………….. 90

Figure B4 : Validation loss of optimizers……..……………………………………………. 90

Figure B5 : Training accuracy of Fast CNN layer………………………………………….. 91

Figure B6 : Training loss Fast CNN layer…………………………………………………. 91

Figure B7 : Validation accuracy Fast CNN layer………..…………………………………. 92

Figure B8 : Validation loss Fast CNN layer………………...……………………………… 92

Figure C1 : Source code of Experiment 1……..……..…………………………………….. 93

ix

LIST OF ABBREVIATIONS

AdaGrad Adaptive Subgradient Descent

Adam Adaptive Moment Estimate

AI Artificial Intelligence

ANN Artificial Neural Network

API Application Program Interface

CNN Convolution Neural Network

CPU Central Processing Unit

CV Computer Vision

DL Deep Learning

DNN Deep Neural Network

DRL Deep Reinforcement Learning

GPU Graphic Processing Unit

GT Georgia Tech

IDE Interactive Development Environment

IMFDB Indian Movie Face Database

LFW Labelled Face in the Wild

ML Machine Learning

MD Malaysia Database

Nadam Nesterov-accelerated Adaptive Moment Estimation

NLP Natural Language Processing

RCNN Recurrent Convolution Neural Network

ReLu Rectified Linear Unit

ResNet Residential Network

RL Representation Learning

x

RMSProp Root Mean Square Propagation

SCFace Surveillance Camera Face

SoF Specs on Faces

VGG Visual Geometry Group

xi

NOTATION

𝑎 A scalar (integer or real)

𝐴 A matrix

Α A tensor

𝐼𝑛 Identity matrix with n rows and n columns

𝑒(𝑖) Standard basis vector [0, . . . , 0, 1, 0, . . . , 0] with a 1 at position i

{0,1, … , 𝑛} The set of all integers between 0 and n

[𝑎, 𝑏] The real interval including a and b

(𝑎, 𝑏] The real interval excluding a but including b

𝐴𝑖,𝑗 Element i, j of matrix A

𝐴⨀𝐵 Element-wise (Hadamard) product of A and B

𝑑𝑦

𝑑𝑥

Derivative of y with respect to x

𝜕𝑦

𝜕𝑥

Partial derivative of y with respect to x

∇𝑥𝑦 Gradient of y with respect to x

∇Χ𝑦 Matrix derivatives of y with respect to X

∇×𝑦 Tensor containing derivatives of y with respect to X

𝜕𝑓

𝜕𝑥

Jacobian matrix 𝐽 ∈ ℝ𝑚×𝑛 of 𝑓: ℝ𝑛 → ℝ𝑚

∇𝑥
2𝑓(𝑥) 𝑜𝑟 𝐻(𝑓)(𝑥) The Hessian matrix of f at input point x

𝑎~Ρ Random variable a has distribution P

𝔼Χ~Ρ[𝑓(𝑥)] 𝑜𝑟 𝔼𝑓(𝑥) Expectation of f(x) with respect to P(x)

𝑓: 𝔸 → 𝔹 The function 𝑓 with domain 𝔸 and range 𝔹

𝑓(𝑥; 𝜃) Composition of the functions f and g

‖𝑥‖ L2 norm of x

xii

𝑝𝑑𝑎𝑡𝑎 The data generating distribution

�̂�𝑑𝑎𝑡𝑎 The empirical distribution defined by the training set

𝕏 A set of training examples

𝑥(𝑖) The i-th example (input) from a dataset

𝑦(𝑖) The target associated with x(i) for supervised learning

xiii

PENGENALAN CIRI-CIRI WAJAH BERASASKAN

PEMBELAJARAN MENDALAM

ABSTRAK

Pengenalan Wajah merupakan teknologi yang sedang membangun dengan banyak

aplikasi di dalam kehidupan sebenar. Matlamat Projek Tahun Akhir ini adalah untuk

mewujudkan Pengenalan Ciri-ciri Wajah yang lengkap untuk keselamatan atau kemudahan.

Aplikasi pengenalan wajah secara automatik dapat membantu ahli forensik untuk meninjau

sesuatu kawasan dengan adanya Pembelajaran Mesin (ML). Namun in bukan seuatu yang

mudah kerana imej yang yang ditangkap adalah sangat berbeza dari segi posisi dan halangan

terhadap faktor sukarela dan tidak sukarela. Dengan pengenalan Pembelajaran Mendalam (DL),

konsep Rantaian Konvolusi Neural (CNN) yanag dicadangkan pada suatu ketika dahulu

akhirnya boleh direalisasikan. Dalam projek ini, Fast CNN model digunakan sebagai teras bagi

pengenalan ciri-ciri wajah untuk memabantu pengguna mengenalinya. Pengguna boleh

mengenali ciri-ciri wajah termasuk jantina, berkaca mata dan muka berbulu. Pengenalan ciri-ciri

wajah juga boleh berfungsi dengan baik dalam mengenali wajah yang dihadapkan dengan

sempurna dan tidak sempurna. Optimasi dilakukan secara berperingkat dengan menjalankan

eksperimen terhadap parameter untuk latihan rangkain supaya nilai optimum boleh dicapai.

Dengen menggunakan model ini, prestasi terbaik boleh dihasilkan dalam mengenali ciri-ciri

wajah. Penggabungan algorithm terhadap pengoptimasi memainkankan peranan penting dalm

mengoptimasi pembelajaran algorithm. Penambahan lapisan konvolusi juga penting dalam

mengekstrak ciri-ciri yang berkaitan dengan imej muka.

xiv

DEEP LEARNING BASED FACE ATTRIBUTES RECOGNITION

ABSTRACT

Face Recognition is a recently developing technology with numerous real life

applications. The goal of this Final Year Project is to create a complete Face Attributes

Recognition for security or facility. The automated face identification application is helpful in

assisting forensic to survey an area with the implementation of Machine Learning (ML). It was

once a difficult challenge due to uncertainties in the captured such as high variation of pose and

obstruction corresponding to voluntary and involuntary factors. With the introduction of Deep

Learning (DL), the concept of Convolutional Neural Network (CNN) that was once an idea can

be realized. In this project, Fast CNN architecture is used as the core engine to power the face

attributes recognition that aims to help users to identify its. The users can identify the face

attributes including gender, glasses and facial hair. The face attributes recognition also can be

performed well in identifying properly and improperly frontalized faces. Optimization is

performed by experimenting in stages with several training parameters to obtain the best value

for this unique purpose. Using this architecture, the best performance of training algorithm can

be produced in order to recognize face attributes. Combined-algorithm based optimizers plays

an important role in optimizing the training algorithm. The addition of convolutional layer is

also essential in order to extract related facial features of facial images.

1

CHAPTER 1

INTRODUCTION

1.1 Background

Face Attributes Recognition is one of the fields from computer vision (CV) that has

attracted many interests for a long period. The practical applications for it are numerous including

biometrical security to automatically detect facial images (Findling and Mayrhofer, 2012) and

fast face detection in violent video scenes (Machaca Arceda et al., 2016). Due to these capabilities,

a lot of companies and research centres have been working on it. Usually, the central processing

unit (CPU) of a machine was used to train neural networks (Goodfellow et al., 2016h). Nowadays,

this method is normally considered as inadequate. Currently, the graphic processing unit (GPU)

computing or the CPU of several machines networked together are used instead. Earlier, before

these expensive setups are introduced, researchers put too much effort to show that CPU could

not cope with the high computational job required by neural networks. It is outside the scope to

explain on how to apply efficient numerical CPU code, but it can be highlighted that prudent

implementation for particular CPU families can produce great improvements.

The field of soft biometrics was significantly targeted to augment the recognition process

by fusion of metrics that were essential to discriminate population rather than individuals (Nixon

et al., 2015). Afterward, this was refined to deploy measures that could be applied in

discriminating individuals especially using descriptions that can be perceived using human vision

and in surveillance imagery. A deep branch of this recent field concerns approaches to estimate

soft biometrics using conventional biometrics methods or just from images alone. These three

strands merge to form soft biometrics. A functional feature-based approach useful for real forensic

caseworks corresponding to the size, orientation and shape of facial traits, which can be regarded

2

as a soft biometric methods (Tome et al., 2015). The proposed features can also be deployed as

additional information that can enhance the performance of traditional face attributes recognition.

Experimental results indicate good recognition performance and high discrimination power

especially for continuous features.

By comparing face attributes recognition algorithms to humans on challenging tasks, the

level or accuracy of machines can be obtained. Both must recognize facial image taken under a

variety of uncontrolled illumination conditions in both indoor and outdoor settings and also a

person’s appearance that includes make up, wearing glasses and so on (Feng and Prabhakaran,

2016). In the good and middle condition, the algorithm performs far better than humans on face

attributes recognition in pairing while in the poor condition, the humans result has more stable

accuracy rather than algorithms (O'Toole et al., 2012). This research shows that the superiority of

machines over humans in face recognitions field are not yet accomplished. A lot of study must be

researched to build face attributes recognition for security, employment and so on.

1.2 Problem Statement

There are many fields of soft biometrics which apply the feature set selection and machine

learning for recognition corresponding to experimental factors and fusion of soft biometric traits.

It has not been focused yet in studying the application of soft biometrics in forensics (Nixon et

al., 2015). There are many attributes in soft biometrics for face attributes recognition (Liu et al.,

2015). Some attributes such as Asian, glasses and facial hair are not precisely recognized because

the used dataset contains mostly the Caucasians with their own style and genetic. The lack of

distinct dataset can lead to the decreasing performance of deep learning.

In order to produce efficient, robust and reliable face attributes recognition, it should

undergo careful testing and verification on real-world datasets that are related to the real-world

settings part. In the real-world, the face attributes recognition should be able to detect facial

images in unavoidable face alterations, voluntary face alterations, uncontrolled environments and

accuracy control in large-scaled dataset (Feng and Prabhakaran, 2016). The unavoidable face

3

alteration factors include the aging impacts when identifying a face. The voluntary face alterations

factors include camouflage, plastic surgery, make up and so on. The uncontrolled environments

factors affect the accuracy of the algorithms especially on the small dataset which contains 264

augmented images (Romero Aquino et al., 2017). The increasing number of datasets can be used

to improve accuracy neglecting the factors. In Figure 1.1, the large dataset is essential in

recognizing many variability in a face. (Alza, 2017).

Figure 1.1: Variability in a face (Alza, 2017)

The face attributes recognition becomes more crucial in mobile phones application. In

order to unlock the screen, the frontal facial image must be captured. Even this way of application

is not considered as the most secure because the easy availability of frontal snapshots of the device

owners from the social network, newspaper, magazines or other media (Findling and Mayrhofer,

2012). In Figure 1.2, the first two columns are examples of properly frontalized ones while in the

4

last two there are cases in which frontalization has not performed properly (Alza, 2017). The

convolutional neural network (CNN) failed many times in detecting the improper frontalized

facial images.

Figure 1.2: Examples of frontalized faces (Alza, 2017)

There are many ways of optimization for deep learning (DL). Hypothetically, increasing

the convolutional layer increases the accuracy of performance. DeepID2+ shows an increment in

accuracy with respect to the addition of convolutional layer (Sun et al., 2014) while Fast CNN

shows the opposite results when 6 layer of convolution is added (Gopalakrishnan et al., 2017).

For choosing optimizer, adaptive moment estimate (Adam) is experimentally proven in pavement

distress detection (Gopalakrishnan et al., 2017) while nesterov-accelerated adaptive moment

estimation (Nadam) is shown to be the best performance in training of word2vec word

embeddings (Dozat, 2015). Both results are deployed in the application of face recognition since

the research in this field commonly use stochastic gradient descent (SGD) as optimizer of DL

(Luo et al., 2017).

5

1.3 Objective

The objectives of project are listed as follows:

1. To develop a system that recognizes the face attributes focusing on gender, glasses and

facial hair.

2. To investigate the influence of dataset size on Fast CNN in gender attribute recognition.

3. To evaluate the gender attribute recognition system performance on improperly

frontalized facial images.

4. To determine the best optimizer and configuration to train Fast CNN for gender attribute

recognition.

1.4 Project Scope

The aim of this project is to build a training algorithm that is able to recognize face

attributes as the soft-biometric information prior to facial recognition. It is noteworthy that facial

recognition is not within the scope of this thesis. The Fast CNN is utilized as a feature extraction

technique. Utilizing some optimizer in order to make the system more robust. The challenges

involved in such a project is considered in order to obtain the predictable results.

 Feature extraction is also a very challenging problem. Many algorithms and techniques

have been utilized throughout the years such as Eigen Faces or Active Shape models (Çarıkçı and

Özen, 2012, Edwards et al., 1998) . The recent application will produce the best results which is

applying DL, particularly the CNN. Therefore, after studying the recent state of art, it has been

concentrated in this project.

 Finally, Python is used in implementing this project. Firstly, the face in the image is

frontalized so that it is looking directly towards the camera. Next, the frontalized face is delivered

to Fast CNN and a set of related features are extracted. Lastly, these features are applied as

attributes to compare pairs of images to verify whether the sample are classified corresponding to

gender, glasses and facial hair attributes.

6

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

In this chapter, the flow of implementing project has been researched through a lot of

paper, book and website. The introduction of this chapter has been explained in Section 2.2. The

dataset which is the input of this project has been explained in Section 2.3. The library used in

this work which is suitable for DL is explained in Section 2.4. A lot of model can be used for deep

learning. Two models which are artificial neural network (ANN) and CNN are described in

Section 2.5. The activation functions have been deployed in both model. These functions are

explained in section 2.6. Section 2.7 explains the parameter that can be tuned in this project.

Lastly, Section 2.8 explains the use of dropout in deep learning model.

2.2 Introduction

Artificial intelligence (AI) has been studied deeply till obtaining DL research (see Figure

2.1). AI, Machine Learning (ML) and DL have been described in Sections 2.2.1, 2.2.2 and 2.2.3

respectively.

7

Figure 2.1: A Venn diagram of introduction (Goodfellow et al., 2016a).

In Figure 2.1, DL is a kind of representation learning (RL), which is in turn a kind of ML,

which is applied for many but not all approaches to AI. Every section in the Venn diagram

includes an example of an AI technology.

2.2.1 Artificial Intelligence

Nowadays, artificial intelligence (AI) is a successful discipline with numerous hands-on

applications and active research areas (Goodfellow et al., 2016a). Intelligent software is

considered to computerise every day work, recognise images or speech, perform diagnoses in

medication and verify basic scientific study. During the previous days of AI, the discipline quickly

handled and resolved issues that are mentally tough for humans but quite simple for computers—

issues that can be explained by a list of formal, mathematical rules. The real task to artificial

8

intelligence showed to be cracking the jobs that are simple for people to do but hard for people to

explain formally on the issues that are solved naturally and automatically, like identifying spoken

words or expression in images.

Several of the initial achievements of AI occurred in somewhat formal and sterile

surroundings and did not need computers to have ample information about the world. For

instance, IBM’s Deep Blue chess-playing system triumph over world victor Garry Kasparov in

1997 (Hsu, 2002). Chess is certainly a very simple world, comprising merely sixty-four locales

and thirty-two pieces that can shift only strictly limited ways. Planning an effective chess tactic

is a huge achievement, but the challenge is not because of the complication of expressing the

chess pieces set and permissible shifts to the computer. Chess can be totally expressed by a very

short list of absolutely formal rules, simply kept ahead of time by the programmer. In

contradiction, formal and abstract jobs that are among the toughest mental activities for a human

are among the simplest for a computer. It is known that computers has the ability to beat even the

greatest human chess player, but are only just matching not much of the capabilities of normal

human beings to identify speech or objects. A human’s daily life needs a huge amount of

knowledge about the world. Many of this knowledge are subjective and instinctual, and hence

hard to express formally. One of the main questions in AI is how to obtain this informal

information into a computer.

Some AI plans have pursued hard-code information of the world in formal languages. A

computer is capable of thinking about statements in these formal languages spontaneously using

logical inference rules. This is called as the knowledge based method to AI. One of the most

popular projects is Cycl (Elkan and Greiner, 1993). Cycl is an inference engine and a statements

database in a language known as CycL. These statements are inserted by a human supervisor staff.

It is a cumbersome procedure. People strive to create formal rules with sufficient difficulty to

precisely explain the world.

9

2.2.2 Machine Learning

The complications confronted by systems depending on hard-coded information propose

that AI systems require the capability to develop their own knowledge, by obtaining patterns from

raw data. This capability is called machine learning. The overview of ML permitted computers to

handle issues concerning real world knowledge and make choices that seem subjective. A simple

ML algorithm known as logistic regression can decide whether to propose cesarean delivery

(Mor-Yosef et al., 1990).

The execution of these simple ML algorithms relies greatly on the representation of the

given data For instance, when logistic regression is utilised to suggest cesarean delivery, the AI

system does not observe the patient directly (Goodfellow et al., 2016a). On the other hand, the

doctor informs the system quite a few pieces of pertinent information, like the presence or absence

of a uterine mark. Every chunk of information involved in the depiction of the patient is called as

a feature. Logistic regression discovers how all of these features of the patient associates with

numerous outcomes. Yet, it cannot affect how the features are described in any way. If an MRI

scan of the patient was presented to the logistic regression, instead of the doctor’s formalized

report, it would not be capable of making useful estimations. Separate pixels in an MRI scan have

insignificant connection to any difficulties that might happen during delivery.

An answer to this issue is to use ML to learn the mapping from representation to output

as well as the representation itself. This method is called representation learning (Goodfellow et

al., 2016a). Learned representations typically end in much better performance than can be gained

with hand-designed representations. These also let AI systems to quickly adjust to new tasks, with

minimum human involvement. The RL algorithm can learn a useful set of features for an easy

task in short time or a difficult task in longer time. Designing the features manually for a difficult

task needs a lot of human time and effort; it can take years for the whole community of

researchers. The ideal example of a RL algorithm is the autoencoder. An autoencoder is the fusion

of an encoder function that transforms the input data into another representation, and a decoder

function that transforms the new representation back into the initial format (Goodfellow et al.,

10

2016i). Autoencoders are trained to keep as much information as possible when an input is

operated via the encoder and then the decoder, but are also trained to make the new representation

have numerous fine properties. Different types of autoencoders target to attain different types of

properties.

2.2.3 Deep Learning

DL lets the computer to create difficult concepts out of simpler concepts (Goodfellow et

al., 2016a). Figure 2.2 depicts how a DL system can represent the idea of an image of an individual

by merging simpler concepts, such as contours and corners, which are consecutively described in

terms of edges. The ideal illustration of a DL model is the feedforward deep network or multilayer

perceptron (MLP). A multilayer perceptron is simply a mathematical function mapping few set

of input values to output values. The function is developed by combining many simpler functions.

It can be considered that application of a different mathematical function as giving a new

representation of the input. The notion of learning the correct representation for the data offers

one viewpoint on deep learning. Another viewpoint on DL is that depth allows the computer to

discover a multi-step computer program. Every layer of the representation can be considered as

the state of the computer’s memory after performing additional set of instructions in parallel.

Networks with more depth can perform more instructions in order. Sequential instructions give

big power because later instructions can refer back to the outcomes of previous instructions. In

line with this perspective of deep learning, not all of the information in a layer’s activations

essentially encodes factors of variation that describe the input. The representation also keeps state

information that aids to run a program that can add up of the input. This state information could

be similar to a pointer or counter in an old-style computer program. It is not related with the

content of the input particularly, but it assists the model to structure its processing.

The primary characteristic of DL is the capability of creating abstractions by building

complex ideas from basic ones (Alza, 2017). Provided with an image, it is also capable of learning

concepts such as cars, humans or cats by joining sets of simpler features such as edges and corners.

This process is performed via successive “layers” that intensify the complexity of the learned

11

concepts. The concept of depth in DL comes exactly from these abstraction levels. Each layer

gains input and output of previous one and utilise it to learn higher-level characteristic, as shown

in Figure 2.2. In few cases, the network is the one that utilise these characteristics to create an

output, and occasionally it merely generates them from other techniques. If the layer increases,

the abstract of concepts features represent also increases. This will continue until they are able to

learn recognizing difficult concepts such as cars or people

Figure 2.2: Illustration of DL (Goodfellow et al., 2016a).

2.3 Dataset

Soft biometrics in dataset is explained in the section 2.3.1 Dataset is the input of DL in

this project in the form images which will be explained in the section 2.3.2. In Sections 2.3.3 and

2.3.4 explains the parameters deployed in dataset which are increasing size and augmenting

dataset respectively.

12

2.3.1 Soft Biometrics

There are many research challenges in recognizing facial images. The challenges are

unavoidable facial feature alterations, voluntary facial feature alterations, uncontrolled

environments and accuracy on large-scale dataset. The unavoidable facial feature alterations

includes the factors of age, health status, living habits and environments. These factors affect the

facial feature changes such as pimple, wrinkle, cloudy eye and so on. For voluntary facial feature

alterations, the pursuit of beauty causes all kinds of facial variations such as make up, hair style,

dyed hair, contact lenses, glasses style and so on. For uncontrolled environments, the quality of

media affects the accuracy of face recognition. For accuracy control on large-scale datasets, the

extracted facial features algorithm must be scalable when applied to large-scale dataset (Feng and

Prabhakaran, 2016). These challenges must be considered in order to get the best accuracy of

facial images.

There are many ways for face attributes recognition. One of the ways is soft-biometric

face attributes recognition. This way can detect the glasses and facial hair in facial images (Ouaret

et al., 2010). In order to distinguish the gender of faces in the image, the features of faces can be

extracted by using two methods which geometric features and appearance features. The first

method applies an idea to detect the salient features and measure the distance between those

salient features. The salient features include eyes, mouth and nose of the facial images. This

method is also called as local features. The second method applies an idea to minimize a facial

image by reducing the number of pixels. This method is also called as global features (Kumari et

al., 2011). Therefore, male and female have a little bit difference based on these methods that will

be used by DL system in classifying the gender.

In order to create high accuracy of classifying system, five factors of face aging internally

and externally must be considered. The factors are gender, race, make up, health condition and

ethnicity. These factors affect the aging pattern in the face image (Geng et al., 2006). The aging

pattern must be computed with minimum reconstruction error. Therefore, CNN architecture is

applied in order to get all the aging pattern for analysing the facial image (Aydogdu and Demirci,

13

2017). The CNN architecture will process the aging pattern in the facial image based on the

number of pixels with respect to those factors. The facial biometrics had been applied on Mistral

software (Charton et al., 2010).

2.3.2 Dataset Type

The data used with a convolutional network typically comprises of some channels, every

channel being the different quantity observation at some point in time or space (Goodfellow et

al., 2016f). Table 2.1 shows samples of data types with different dimensionalities and channel

numbers. It has been discussed that only the case in which each example in the train and test data

has identical spatial dimensions. One benefit to convolutional networks is that they can also

manage inputs with different spatial degrees. These types of input basically cannot be exemplified

by traditional, matrix multiplication-based neural networks. This gives a convincing reason to use

convolutional networks even when computational cost and overfitting are not major issues. For

instance, take a group of images, in which every image has a different height and width. It is

vague how to model such inputs with a weight matrix of permanent size. Notice that the

application of convolution for dealing with variable sized inputs only sensible for inputs that have

variable size because different recordings lengths over time and different observations widths

over space.

14

Table 2.1: Examples of different formats of data that can be employed with convolutional

networks.

Number of

dimensional

array

Single channel Multi-channel

1-D Audio waveform: The axis is

convolved over corresponding time.

Time is discretized and measured

the amplitude of the waveform once

per time step.

Skeleton animation data.

Animations of 3-D computer-

rendered characters are produced

by changing the pose of a

“skeleton” over time. At every

point in time, the pose of the

character is described by a

specification of the angles of every

joints in the character’s skeleton.

Every channel in the data is fed to

the convolutional model

represents the angle about one axis

of one joint.

2-D Audio data that has been pre-

processed with a Fourier transform.

The audio waveform is transformed

into a 2D tensor with different rows

corresponding to different

frequencies and columns

corresponding to different points in

time. Using convolution in the time

Colour image data. One channel

has red, green and blue pixel. The

convolution kernel moves over

both the horizontal and vertical

axes of the image, conferring

translation equivariance in both

directions.

15

makes the model equivariant to

shifts in time. Using convolution

across the frequency axis makes the

model equivariant to frequency, so

that the same melody played in a

different octave generates the

similar representation but at a

different height in the network’s

output.

3-D Volumetric data. A common source

of this kind of data is medical

imaging technology, such as CT

scans.

Colour video data. One axis

corresponds to time, one to the

height of the video frame, and one

to the width of the video frame.

2.3.3 The Increasing Number of Dataset

The main thoughts are the feasibility and cost of collecting more data, the feasibility and

cost of decreasing the test error by other means, and the quantity of data that is estimated to be

compulsory to enhance test set performance considerably (Goodfellow et al., 2016g). At huge

internet corporations with millions or billions of users, it is possible to collect large datasets, and

the cost of doing so can be significantly less than the other options, so the solution is practically

always to collect more training data. For instance, the improvement of huge labelled datasets was

one of the most vital reasons in resolving object recognition. In other circumstances, such as

medical applications, it may be expensive or impossible to collect more data. A simple option to

collecting more data is to decrease the model size or enhance regularization, by modifying

hyperparameters such as weight decay coefficients, or by including regularization approaches

such as dropout. Collecting more data is appropriate if the gap between train and test performance

16

is still deplorable even after tuning the regularization hyperparameters. If collecting much more

data is not achievable, another method to enhance generalization error is to develop the learning

algorithm itself. This becomes the field of research and not the field of advice for applied experts.

2.3.4 Dataset Augmentation

For several ML jobs, it is rationally clear-cut to generate new fake data (Goodfellow et

al., 2016d). This method is the simplest method for classification. A complex, high dimensional

input x should be taken by a classifier and summarized with a category identity y. This denotes

that the major task coping with a classifier is to be invariable to a large range of transformations.

New (x, y) pairs can be produced effortlessly just by converting the x inputs in our training set.

This method is not as freely relevant to many other tasks. For instance, it is quite hard to produce

new fake data for a density estimation task except if the density estimation problem managed to

be solved. Dataset augmentation has been a specifically efficient method for a particular

classification problem which is object recognition. Images are high dimensional and involve a

wide variety of variation factors, many of which can be simply faked. Processes like transforming

the training images a few pixels in every direction can usually significantly enhance

generalization, although the model has already been invented to be partly translation invariant by

using the convolution and pooling methods explained in Sections 2.11 and 2.12 respectively.

Several other processes like rotating the image or scaling the image have also verified to be quite

efficient.

The models are trained with different approaches using data augmentation to enhance

their classification competence (Romero Aquino et al., 2017). The models are also trained and

verified without any augmentation in order to contemplate those results as initial baselines.

Random transformations were used on the raw images of the train dataset to augment them

(cropping, rotation, swirl, horizontal flip, vertical flip and different forms of noises such as salt

and pepper, and Gaussian noise). The test set remained unaffected in all cases.

17

Traditional transformations (Perez and Wang, 2017) use a combination of affine

transformations to influence the training data (Jannik Bjerrum, 2017). For every input image, a

”duplicate” image is generated, which is shifted, rotated, zoomed in/out, distorted, flipped, or

shaded with a hue. Both image and the duplicate are placed into the neural net. For a dataset of

size N, a dataset of 2N size is generated.

Neural augmentation (Perez and Wang, 2017) functions outstandingly better than no

augmentation. In the dogs versus cats problem, the neural augmentation works the best with a

91.5% to 85.5% in comparison with no augmentation. In the dogs verses fish problem, the neural

augmentation works the second best with 77.0% to 70.5%. Whereas the traditional augmentation

works almost as well at a lesser time expense, this does not prevent the combination of different

augmentation approaches. An approach that first operates traditional augmentations, and then

pairs up data for neural augmentation, which could possibly beat all experiments tested.

2.4 Library for Deep Learning

DL is an continuously-growing ML methods based on data representations (Clark, 2018).

The vast amount of resources can be a touch overwhelming for those either looking to get into

the field, or those already engraved in it. A good way of staying updated with the latest trends is

to interact with the community by interacting with the DL open source projects that are currently

available. Based on Figure 2.3, Tensorflow is the best DL library followed by Keras.

18

Figure 2.3: Top 16 open source DL libraries by Github stars and contributors (Clark, 2018)

2.4.1 Tensorflow

TensorFlow signifies calculations by dataflow graphs (Mart et al., 2017). While focusing

on ML applications, TensorFlow is quite sceptical on the exact idea of the calculations. To be

specific, a computation may execute one or more training steps for a machine-learning model, or

it can be the application of a trained model. This indicates that dataflow graphs support both

inference and training. A dataflow graph is comprised of nodes and edges, in which every node

symbolises an instantiation of an operation, and values flow by the edges. The operations are

executed by kernels that can be operated on certain types of devices.

The key interest values are tensors, which are arbitrary dimensionality arrays where the

underlying element type is identified or inferred at graph-construction time (Mart et al., 2017).

For that reason, the operations are mostly consisting of mathematical functions like matrix

19

multiplication. Furthermore, certain operations may update or read state. In TensorFlow, a

variable is an exceptional type of operation that returns a handle to a tensor. In this situation,

informally, it can be said that the tensor is held in the variable, in which the variable operation

and the resulting handle may be conflated. The handle can be approved as argument to operations

that update or read the equivalent tensor. To illustrate, the tensor may consist of the weights of a

layer in a neural network, and these are updated through the training process. Besides, along with

the edges for communicating tensors, a graph may incorporate control edges that restrict the order

of execution. In the existence of mutable state, this order can affect the observable semantics,

which as well affect performance.

2.4.2 Keras

Following best practices to reduce cognitive load, Keras (Chollet, 2015a) provides

consistent & simple API, reduces the number of user actions needed for common use cases, and

offers clear and actionable feedback on user error. A model is seen as a series or a graph of

standalone, fully-configurable modules that can be plugged together using the least possible

restrictions. Specifically, optimizers, cost functions, regularization schemes, initialization

schemes, neural layers, and activation functions are all standalone modules that can be combined

to invent new models. New modules are easy to add as new classes and functions. The current

modules give plenty examples. The ability to easily design new modules allows for total

expressiveness, making Keras appropriate for advanced research. No distinct models

configuration files in a declarative format. Models are explained in Python code, which is

compact, easier to debug, and allows for ease of extensibility.

2.5 Deep Learning Model

Several models such as artificial neural network (ANN), CNN, recurrent neural network

(RNN) and deep bolltzman machine (DBM) can be deployed in DL. Since the data input is in the

form of images, ANN and CNN is suitable for this project. Section 2.5.1 explains ANN while

section 2.5.2 explains CNN.

20

2.5.1 Artificial Neural Network

ANN derives from a group of computationally simple nodes that are connected together

called neurons (Alza, 2017). The neurons are arranged in layers linked between them, just like

the biological neurons are linked with axons. These layers are distributed into three main types

which are input, hidden and output. The input layer parallels to the data received by the network.

It could be comprehended as the input vector from other techniques. This layer is linked to a

hidden layer, the one that is not in extreme. This is how it got its name as it is “invisible” from

the outside. Another interesting explanation which is different to other approaches is, once the

network is trained, it does not give any insight on what it does. The ANN sometimes called as

black boxes, as it is almost impossible to comprehend its functions. It can be several hidden layers,

each linked to the previous one. Each neuron in hidden and output layers is usually linked to all

neurons from the previous layer. Every edge possesses an associate weight, which shows how

strong the two neurons are linked, either directly or inversely like how the biological neurons are

linked. Lastly, the last layer, known as output layer, provides the result of the ANN with an output

for each class. This is crucial because ANN is typically utilized for classification problems.

21

Figure 2.4: The three layers of an ANN (Shi, 2014).

In Figure 2.4, ANN is used to estimate an unknown mathematical function. The function

can be either linear or non-linear. Theoretically, ANN has the ability to estimate any function.

The neuron, its basic unit, calculates a “simple” activation function given its inputs, and spread

its value to the subsequent layer. Thus, the entire function is formulated by collecting activation

values from all neurons. Having hundreds of neurons, the number of edges can reach higher orders

of magnitude, and also the difficulty in interpreting them.

2.5.2 Convolutional Neural Network

The most commonly applied deep neural network (DNN) in CV problems are the CNN,

which is based in the MLP architecture (Alza, 2017). ANN on the other hand, are inspired in

general neuronal behaviour, and CNN follow the same rules as animal’s visual cortex. This

contains neurons that process only small segments of the input image, or visual field, and

22

recognizes related patterns. These neurons are compacted in structures like layers that allows

intensify complex patterns. It is almost like the general DNN structure, but it is different in terms

of shared weights

2.5.2.1 Convolutional Layer

In ML exercises, the input is normally a multidimensional array of data and the kernel is

normally a multidimensional array of parameters modified by the learning algorithm (Goodfellow

et al., 2016f). These multidimensional arrays are referred as tensors. Since every component of

the input and kernel must be clearly stored individually, it is commonly assumed that these

functions are nil everywhere but the limited set of points for which the values are stored. This

indicates that in fact, the infinite summation can be implemented as a summation over a limited

number of array elements. Lastly, convolutions are frequently used over more than one axis at a

time. For instance, if a two-dimensional image 𝐼 is used as an input, a two-dimensional kernel 𝐾

will probably be used as well.

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ .𝑚 ∑ 𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)𝑛 (2.1)

As shown in Figure 2.5, 𝑚 × 𝑛 is the matrix of input, 𝐼 while 𝑖 × 𝑗 is the matrix of kernel, 𝐾. The

mapping of kernel matrix on input matrix is indicated by 𝐾(𝑖 − 𝑚, 𝑗 − 𝑛).

(a) Input, 𝐼 matrix (b) Kernel, 𝐾 Matrix

Figure 2.5: The illustration of input, 𝐼 and kernel, 𝐾 matrices

Since convolution is commutative, it can be equivalently expressed as:

23

𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛)

𝑛𝑚

(2.2)

Generally the second formula is more clear-cut to apply in the ML library, as there is less

difference in the range of valid values of m and n. The commutative convolution property occurs

because the kernel relative has been flipped to the input. If m increases, the index into the input

also increases, while the index into the kernel lessens. The only purpose of flipping the kernel is

to get the commutative property. Although the commutative property is helpful in writing proofs,

it is not normally a vital property of a neural network application. On the other hand, numerous

neural network libraries execute a correlated function named the cross-correlation, which is

similar to convolution but without flipping the kernel:

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑.

𝑚

∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛)

𝑛

(2.3)

A lot of ML libraries apply cross-correlation using the term convolution (Goodfellow et

al., 2016f). This section will stick to the practice of calling both operations as convolution, and

stipulate whether the kernel is meant to be flipped or not in the situation where kernel flipping is

appropriate. In the ML, the learning algorithm will learn the suitable kernel values in the proper

place, thus an algorithm based on convolution with kernel flipping will discover a flipped kernel

in relation to the kernel discovered by an algorithm without the flipping. It is also uncommon if

convolution is utilised alone in machine learning; instead of using it concurrently with other

functions, and the grouping of these functions does not commute irrespective of whether the

convolution operation flips the kernel or not. Figure 2.6 is an illustration of convolution utilised

to a 2-D tensor.

24

Figure 2.6: Example of 2-D convolution without kernel-flipping (Goodfellow et al., 2016f).

In Figure 2.6, the output to only positions is restricted where the kernel lies entirely within

the image, known as “valid” convolution in some contexts. The boxes are drawn with arrows to

show how the upper-left element of the output tensor is formed by applying the kernel to the

corresponding upper-left region of the input tensor.

2.5.2.2 Pooling Layer

A pooling function substitutes the output of the net at a certain location with a summary

statistic of the nearby outputs. As an example, the max pooling (Zhou and Chellappa, 1988)

operation reports the maximum output within a rectangular neighbourhood. Other functions are

including the average of a rectangular neighbourhood, the L2 norm of a rectangular

neighbourhood, or a weighted average based on the distance from the central pixel.

In Figure 2.7, pooling makes the representation become approximately invariant to small

translations of the input (Goodfellow et al., 2016f). Invariance to local translation can be a very

useful property in order to locate some important feature. The use of pooling can be considered

	Deep learning based face attributes recognition_Mohamad Hazim Saidi_E3_2018_MJMS

