STUDY OF PURITY AND RECOVERY OF CARBON DIOXIDE FROM BINARY MIXTURE OF NATURAL GAS USING DIFFERENT ADSORBENTS IN PRESSURE EQUALIZED PRESSURE SWING ADSORPTION

CHONG CHING YANG

UNIVERSITI SAINS MALAYSIA

2017

STUDY OF PURITY AND RECOVERY OF CARBON DIOXIDE FROM BINARY MIXTURE OF NATURAL GAS USING DIFFERENT ADSORBENTS IN PRESSURE EQUALIZED PRESSURE SWING ADSORPTION

by

CHONG CHING YANG

Thesis submitted in partial fulfilment of the requirement

for the degree of Bachelor of Chemical Engineering

June 2017

ACKNOWLEDGEMENT

First and foremost, I would like to present my sincere gratitude to my supervisor, Prof. Dr. Mohd Roslee bin Othman for his precious advice, guidance and generous encouragement throughout this research.

I would also extend my gratitude towards Dr. Iylia Idris for her kindness cooperation and helping hands in guiding me carrying out the lab experiment. She is willing to sacrifice her time in guiding and helping me throughout the experiment besides sharing her valuable knowledge.

Apart from that, I would also like to thank all School of Chemical Engineering staffs for their kindness cooperation and helping hands. Indeed their willingness in sharing ideas, knowledge and skills are deeply appreciated.

Once again, I would like to thank all the people, including those whom I might have missed out and my friends who have helped me directly or indirectly. Their contributions are very much appreciated. Thank you very much.

CHONG CHING YANG

June 2017

TABLE OF CONTENTS

	Page			
ACKNOWLEDGEMENT	i			
TABLE OF CONTENTS	ii			
LIST OF TABLES	v			
LIST OF FIGURES	vi			
LIST OF SYMBOL	viii			
LIST OF ABBREVIATION	ix			
ABSTRAK	x			
ABSTRACT	xi			
CHAPTER ONE : INTRODUCTION				
1.1 Research Background	1			
1.2Problem Statement3				
1.3 Research Objectives	5			
1.4Scope of Study6				
1.5 Organization of Thesis	6			
CHAPTER TWO : LITERATURE REVIEW				
2.1 Natural Gas	8			
2.2 Adsorption	9			
2.2.1 Pressure Swing Adsorption (PSA)	9			
2.3 Adsorbent	10			
2.3.1 Activated Charcoal (AC)	11			
2.3.2 Zirconium-benzenedicarboxylate (UiO-66)	11			
2.4 Breakthrough Study on Adsorption of Carbon Dioxide (CO ₂)	12			
2.4.1 Effects of Gas Composition	12			

2.	5	Car	bon Dioxide (CO ₂) Adsorption through Pressure Swing Adsorption (PS	A)
				13
	2.5.	1	Effects of Gas Composition	13
	2.5.	2	Effects of Initial Pressure	14
С	HAF	PTEI	R THREE : MATERIALS AND METHODS	
3.	1	Res	earch Methodology	15
3.	2	Che	emicals	16
	3.2.	1	Chemicals for Gas Mixture	16
	3.2.	2	Chemicals for Adsorbent	17
3.	3	Equ	lipment	18
	3.3.	1	Preparation of Adsorbents	18
	3.3.	2	Breakthrough Study	19
	3.3.	3	Pressure Swing Adsorption (PSA) Process	20
3.	4	Cha	aracterization of Adsorbent	21
	3.4.	1	X-Ray Diffraction (XRD)	21
	3.4.	2	Thermal Gravimetric Analysis (TGA)	22
	3.4.	3	Brunauer-Emmett-Teller (BET)	23
	3.4.	4	Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray	
	(ED	DX)		24
	3.4.	5	Particle Size Analyzer	25
3.	5	Pre	paration of Adsorbent	26
	3.5.	1	Activated Charcoal (AC)	26
	3.5.	2	Zirconium-benzenedicarboxylate (UiO-66)	26
3.	6	Bre	akthrough Study	27
	3.6.	1	Experimental Procedure of Breakthrough Study	27

3.6.2	Effects of Initial Gas Composition	28	
3.7	Pressure Swing Adsorption (PSA) Process	29	
3.7.1	Experimental Procedure	29	
3.7.2	Effects of Initial Pressure	30	
3.7.3	Effects of Gas Composition	31	
CHAP	TER FOUR : RESULTS AND DISCUSSION	32	
4.1	Characterization of Adsorbents	32	
4.1.1	X-Ray Diffraction (XRD)	33	
4.1.2	Thermal Gravimetric Analysis (TGA)	34	
4.1.3	Brunauer-Emmett-Teller (BET)	34	
4.1.4	Scanning Election Microscopy (SEM) and Energy Dispersive X-Ray		
(EDZ	K)	36	
4.1.5	Particle Size Analyzer	40	
4.2	Breakthrough Study	41	
4.2.1	Effects of Different Adsorbents	44	
4.2.2	Effects of Gas Composition	47	
4.3	Pressure Swing Adsorption (PSA) Process	51	
4.3.1	Effects of Different Adsorbents	54	
4.3.2	Effects of Gas Composition	55	
4.3.3	Relationship of Purity and Recovery	56	
CHAP	FER FIVE : CONCLUSIONS AND RECOMMENDATIONS		
5.1	Conclusions	58	
5.2	Recommendations	59	
REFER	REFERENCES 60		

LIST OF TABLES

		Page
Table 1.1	Various Pressure Swing Adsorption (PSA)/ Vacuum Pressure	4
	Swing Adsorption (VPSA) Processes offered for gas separation	
	and purification.	
Table 3.1	Properties of Methane.	16
Table 3.2	Properties of Carbon Dioxide.	17
Table 3.3	The composition of Palm Kernel.	17
Table 3.4	The composition of UiO-66.	17
Table 4.1	Proximate analysis of both samples.	34
Table 4.2	Surface area and pore characteristics of samples.	34
Table 4.3	Elemental analysis of both samples.	40
Table 4.4	Mean diameter sizes of both sample.	40
Table 4.5	Summary of breakthrough time and saturated time for binary	50
	mixture of natural gas by using activated charcoal and UiO-66.	
Table 4.6	Operating parameters for pressure swing adsorption (PSA) at	51
	ambient temperature for each cycle.	
Table 4.7	Purity and recovery of CH4 and CO2 by using different	54

adsorbents with different inlet gas composition.

LIST OF FIGURES

Page

Figure 1.1	The chart shows CO_2 emissions (per capita) from the	2		
	consumption of energy in Malaysia (Business, 2011).			
Figure 1.2	The pie chart shows the percentage of CO ₂ emissions from	3		
	different non-renewable sources.			
Figure 3.1	Process flow chart of research.			
Figure 3.2	Furnace (GSL-1100X, MTI Corporation).			
Figure 3.3	Gas chromatography (7890A, Agilent Technologies).			
Figure 3.4	Schematic diagram of experimental setup for PSA.	20		
Figure 3.5	Thermogravimetric Analyzer (TGA 7, Perkin Elmer).	22		
Figure 3.6	Surface and porosity analyser (ASAP 2020, iDB).			
Figure 3.7	Particle Size Analyzer (Nano-ZS, Malvern).	25		
Figure 3.8	Experimental setup for breakthrough study.	28		
Figure 3.9	Rig setup for PSA process.			
Figure 4.1	X-ray diffraction patterns of activated charcoal and UiO-66.			
Figure 4.2	Isotherm linear plots for (a) activated charcoal and (b) UiO-	35		
	66.			
Figure 4.3	SEM micrograph of activated charcoal with (a) x1000	37		
	magnification (b) x3000 magnification and (c) x5000			
	magnification.			
Figure 4.4	SEM micrograph of UiO-66 with (a) x5000 magnification, (b)			
	x10,000 magnification and (c) x20,000 magnification.			

LIST OF FIGURES

		Page
Figure 4.5	EDX analysis of activated carbon.	39
Figure 4.6	EDX analysis of UiO-66.	39
Figure 4.7	Breakthrough profile of CH_4 and CO_2 using activated charcoal	42
	with different $CH_4:CO_2$ ratio (a) 50:50, (b) 60:40 and (c)	
	80:20.	
Figure 4.8	Breakthrough profile of CH4 and CO2 using UiO-66 with	43
	different CH4:CO2 ratio (a) 50:50, (b) 60:40 and (c) 80:20.	
Figure 4.9	Breakthrough profile of CH4 with different adsorbent	45
	according to CH ₄ :CO ₂ ratio (a) 50:50, (b) 60:40 and (c) 80:20.	
Figure 4.10	Breakthrough profile of CO ₂ with different adsorbent	46
	according to CH ₄ :CO ₂ ratio (a) 50:50, (b) 60:40 and (c) 80:20.	
Figure 4.11	Breakthrough profile of CH ₄ with different ratio according to	48
	adsorbents (a) activated charcoal and (b) UiO-66.	
Figure 4.12	Breakthrough profile of CO ₂ with different ratio according to	49
	adsorbents (a) activated charcoal and (b) UiO-66.	
Figure 4.13	Purity plots of CH_4 and CO_2 against cycle (a) CH_4 and (b)	52
	CO ₂ .	
Figure 4.14	Recovery plots of CH_4 and CO_2 against cycle (a) CH_4 and (b)	53
	CO ₂ .	
Figure 4.15	Purity vs recovery plots for (a) CH4 and (b) CO2.	57

vii

LIST OF SYMBOL

С	Concentration	g/l
Co	Initial concentration	g/l
P/Po	Relative pressure	-

LIST OF ABBREVIATION

- CO₂ Carbon Dioxide
- CH₄ Methane
- PSA Pressure Swing Adsorption
- VPSA Vacuum Pressure Swing Adsorption
- CMS Carbon Molecular Sieve
- UiO-66 Zirconium-benzenedicarboxylate
- MOF Metal Organic Framework
- AC Activated Charcoal
- EDX Energy Dispersive X-Ray

KAJIAN KETULENAN DAN PEMULIHAN KARBON DIOKSIDA DARIPADA CAMPURAN BINARI GAS ASLI DENGAN PENJERAP BERBEZA DALAM TEKANAN EKUALISASI PENJERAPAN TEKANAN BUAIAN

ABSTRAK

Kesan pemisahan metana (CH₄) dan carbon dioksida (CO₂) merupakan campuran binari gas asli telah disiasat dengan ujian penyifatan, kajian proses penembusan dan penjerapan tekanan buaian (PSA). 2 jenis penjerap dikaji dan dibandingkan iaitu arang teraktif dan zirkonium-benzenedicarboxylate (UiO-66). Ujian penyfatan menunjukkan bahawa UiO-66 mempunyai luas permukaan BET yang lebih tinggi dan arang teraktif mempunyai kandungan karbon tetap yang lebih tinggi. Untuk kajian proses penembusan, keluk proses penembusan telah diperolehi dalam keadaan 1 bar dan suhu bilik. Kesan kedua-dua penjerap dan nisbah kemasukan gas yang berbeza telah disiasat. UiO-66 menunjukkan ia mempunyai kapasiti penjerapan yang lebih besar dibuktikan dengan masa yang lebih lama dalam kajian proses penembusan. Di samping itu, proses PSA telah menggunakan penjerapan 2 katil dalam keadaan 3 bar dan suhu bilik. Walau bagaimanapun, kesan pemisahan campuran ini tidak berkesan dan tertarik dari segi komersial kerana 2 jenis penjerap yang digunakan tidak sesuai untuk memisahkan binary gas ini. Oleh itu, ketulenan tidak tercapai tetapi pemulihan boleh diperolehi kerana UiO-66 menunjukkan lebih daripada 90% ke atas untuk pemulihan CO₂.

STUDY OF PURITY AND RECOVERY OF CARBON DIOXIDE FROM BINARY MIXTURE OF NATURAL GAS USING DIFFERENT ADSORBENTS IN PRESSURE EQUALIZED PRESSURE SWING ADSORPTION

ABSTRACT

The separation effect of methane (CH₄) and carbon dioxide (CO₂) which is binary mixture of natural gas was investigated with characterization tests, breakthrough study and pressure swing adsorption (PSA) process. 2 types of adsorbent were studied and compared which were activated charcoal and zirconium-benzenedicarboxylate (UiO-66). The characterization tests showed that UiO-66 has higher BET surface area and activated charcoal has higher fixed carbon content. For breakthrough study, the breakthrough curves were obtained under the condition of 1 bar and room temperature. The effects of both adsorbents and different inlet gas ratio were investigated. UiO-66 has larger adsorption capacity proven by its longer breakthrough time. Besides, PSA process had utilized 2-bed adsorption under the conditions of 3 bar and room temperature. However, separation effect of this mixture was not effective and commercially attractive because 2 types of adsorbent used were not suitable for separating this binary gas. Hence, the purity was not achieved but the recovery could be obtained because UiO-66 showed more than 90% recovery on CO₂.

CHAPTER ONE

INTRODUCTION

1.1 Research Background

The concentration of carbon dioxide (CO_2) and the main source of CO_2 emissions is from the combustion of fossil fuels such as natural gas in the atmosphere continue to increase. There are some serious concerns about the effects of CO_2 on the environment have been raised and there are considered to be the main anthropogenic contributor to the greenhouse gas effect and are responsible for 60% of the observed increase in the temperature of the atmosphere, which is commonly referred to as global warming (Yua et al., 2012). Pressure swing adsorption has become very prominent in the purification of gases for multiple applications, namely air purification (Rege et al., 2001; Hassan et al., 1986), hydrogen separation and purification (Malek and Farooq, 1998) and CO₂ capture (García et al., 2013; Pirngruber and Leinekugel-le-Cocq, 2013). The system is a popular technique, a reliable and economic on-site supply method. Many types of porous media have been used for CO_2/CH_4 separation such as carbon molecular sieves (Bai et al., 2013), zeolites (Cavenati et al., 2004), metal organic framework (Barcia et al., 2008), and activated carbon (Goetz et al., 2006).

Figure 1.1: The chart shows CO₂ emissions (per capita) from the consumption of energy in Malaysia (Business, 2011).

According to the Figure 1.1, the largest source of carbon dioxide emissions is from the production of energy which is also combustion of fossil fuel. Emission of carbon dioxide from combustion of fossil fuel stands 87% of total human carbon dioxide emissions. In year 2011, fossil fuel created 33.2 billion tonnes of carbon dioxide emissions worldwide (Quéré et al., 2012). The 3 main types of fossil fuels are coal natural gas and oil. Coal is responsible for 43% of carbon dioxide emissions from fuel combustion, 36% is produced by oil while the remaining 20% belongs to natural gas as shown in Figure 1.2 (Defra, 2014). Hence, the study CO₂ recovery and purity from binary natural gas is essential to tackle the massive carbon dioxide emission.

Figure 1.2: The pie chart shows the percentage of CO₂ emissions from different nonrenewable energy sources (Defra, 2014).

Therefore, the focus of the present study is to study the purity and recovery of CO₂ from binary mixture of natural gas through pressure swing adsorption (PSA) using different adsorbents.

1.2 Problem Statement

The main composition in binary mixture of natural gas is CO_2 and CH_4 . Current researchers most likely focus on the ways or strategies to enrich the natural gas in order to increase the market value of it. Hence, CO_2 level in natural gas has to be reduced to enrich the natural gas and minimize the emission of CO_2 during combustion of fuel. Besides, CO_2 has an acidic nature and it causes corrosion in piping while it forms carbonic acid when it reacts with water. Therefore, separation of CO_2 and CH_4 is the main focus of this study.

For current technology, the most common method to separate binary mixture of natural gas is through cryogenic distillation. The cryogenic method is better at extraction of the lighter liquids, such as methane than other alternative absorption method (Tobin et al., 2006). However, CO₂ is only a byproduct from natural gas processing. Most of the researches focusing in producing the highest purity of natural gas because of the market demand.

According to an equipment supplier from India, Table 1.1 shows recovery details from different kind of gases.

	Nitrogen	Hydrogen	Methane	Carbon
				Dioxide
Process	PSA	PSA	VPSA	VPSA
			PSA	PSA
Feed	Air	H ₂ -off gas	Biogas	CO ₂ -off gas
	N ₂ -off gas	Natural gas	Mine gas	Flue gas
		Methanol	Natural gas	
		NH ₃		
Product Purity	95-99.99%	> 99.99%	> 98%	90/98%
Flow (Nm ₃ /h)	1-3	<-30,000	< 10,000	< 10,000
Adsorbent	CMS	CMS	CMS	CMS
		Zeolite	AC	Zeolite
		AC		AC

Table 1.1: Various Pressure Swing Adsorption (PSA) / Vacuum Pressure Swing Adsorption (VPSA) processes offered for gas separation and purification (Ltd, 2016).

The current situation for CO_2 recovery from natural gas requires more research and studies especially on PSA or VPSA processes. Different adsorbents are encouraged to study on its separation and purification performance on natural gas processing.

Therefore, PSA and VPSA studies are introduced to this research in order to find alternative methods to recover the highest amount and purity of CO_2 . The expected result for this research depends on the types of adsorbents. However, the predicted recovery and purity of CO_2 in overall are both at least 80% as from the information above the purity of gases recovered is very high.

1.3 Research Objectives

The objectives of the present research are:

- To prepare, characterize, and analyse the adsorbents used for removal of CO₂ through PSA process.
- 2. To analyse the breakthrough study on adsorption of CO₂/CH₄ from binary mixture of natural gas by varying the operating parameter such as gas ratio and adsorbent types.
- 3. To study the performance of PSA in term of purity and recovery by manipulating initial pressure, gas ratio and types of adsorbent.

1.4 Scope of Study

Adsorbent is one of the crucial element in this research because adsorbent surface adsorbs gas particles on its surface. Before preparation starts, the raw materials and chemicals are collected or ordered from suppliers. Method of preparations are searched and decided. Different types of adsorbents are then prepared to for experiment use. After the preparation phase, characterization of adsorbent provides the properties and details of each adsorbent.

In this research, several adsorbents are selected to undergo breakthrough of CO₂ and CH₄ which is binary mixture of natural gas. During breakthrough process, the separation performance of each adsorbent with different binary gas composition is investigated. The time of breakthrough for adsorbents is taken as reference for upcoming PSA process.

For PSA process, pressure is manipulated to study the best pressure by using different type of adsorbents. This PSA is a 2-bed process which involves pressurization, depressurization, purging and equalization. These steps are manipulated by adjusting the valves in the rig setup.

1.5 Organization of Thesis

This research paper consists of total 5 chapters. Chapter 1 writes up about the background and purpose of the research paper. The objectives and problem statement are also well explained in this section. For more detailed information, Chapter 2 covers related theory and journal studies about adsorbents, breakthrough and equalized pressure PSA. The effect of parameters to PSA and breakthrough are listed in second

chapter. All of the material used for this whole research and procedure of experiments are included in Chapter 3.

Chapter 4 describes the experimental results and discussions of the data obtained. Further elaboration on the effect of different adsorbent and parameters on the breakthrough and PSA process. Chapter 5 is the last chapter and it concludes all the findings obtained in this study. Recommendations are also included in the last chapter as well.

CHAPTER TWO

LITERATURE REVIEW

This literature review mainly writes up about the adsorption, adsorbents, breakthrough process and also PSA. It contains all of the related information extracted from other researches that contribute to this research.

2.1 Natural Gas

Natural gas is a fossil fuel and its combustion normally causes global warming emission. Natural gas is a mixture of different gases but the main composition is CH₄ (Saidur et al., 2007). The higher CH₄ content in natural gas, the higher market value it gets. However, the composition of natural gas is not constant because it may contain other components such as ethane, propane and butane as well as nitrogen, helium, carbon dioxide, hydrogen sulphide and even water content (DeLuchi et al., 1988). Natural gas is one of the cleaner fossil fuels and its reserves are 5288.5 trillion cubic feet (Energy, 2002). It is easy to transport and store, available on demand, and cheaper than gasoline and diesel (Jaramillo et al., 2007). It is cheap and available in great quantities in many parts of the world. CO₂ emitted from every 1000MJ of energy released from combustion of natural gas is 53.07 kg CO₂. Hence, it is much lesser comparing with other fossil fuel (Administration, 2016).

2.2 Adsorption

In the previous couple of decades, many techniques had been utilized to study and recover the highest purity of CO₂. The more common methods were adsorption (Chapel et al., 1999; Mimura et al., 1997) and membrane filtration (Favre, 2007).

Adsorption is defined as adhesion of a chemical species onto a surface of particles. Adsorption is a common separation technique. During the adsorption process, the gas or liquid (adsorbate) bind to a solid or liquid surface (adsorbent). The adsorption works depend on the surface energy. When the atoms on adsorbent surface are partly exposed, adsorbate molecules are attracted to the surface atoms. Adsorption may result from chemisorption, physisorption and electrostatic attraction (Education, 2017). Chemisorption is a kind of adsorption which the adsorbed substances is held by chemical bonds. Physisorption is also called physical adsorbent.

Adsorption isotherms are also used to describe adsorption because different parameters will cause different effects on the process. Several models have been developed to describe adsorption which are linear, Langmiur, Freundlich, Brunauer– Emmett–Teller, Redlich–Peterson and others (Foo and Hameed, 2010).

2.2.1 Pressure Swing Adsorption (PSA)

The separation technique between 2 gases is very important for current chemical processing. For this research, the main purpose is to find the best approach to separate CH_4 and CO_2 in order to recover the high recovery and purity of CO_2 . Adsorption process was coined by a German physicist since 1881 (Kayser, 1881). Then this process had been further developed into different process and one of it was PSA. Pressure swing adsorption is a technology using adsorption to recover gases based on the porosity of material used as adsorbent depending on the pressure and temperature of the feed and the selectivity of the adsorbent (Plants, 2016; Ebner and Ritter, 2004; Yang et al., 2001; Chai et al., 2011).

PSA is a periodic process. When the pressure of the system is reduced, it means the regeneration of adsorbent is occurring. The term 'swing' symbolizes the total pressure of the system changes from high pressure while feeding into system to low pressure while regeneration process (Ruthven et al., 1994; Tondeur and Wankat, 1985). The bed is pressurized with feed mixture to produce or separate desired product and alternatively, the other bed is undergoing regeneration process to remove the gas from the adsorbent in the bed (Grande, 2012).

2.3 Adsorbent

Adsorbent is a substance that adsorb adsorbate on its surface. The major types of adsorbents in use are activated alumina (Ghorai and Pant, 2005; Lin and Wu, 2001), silica gel (Wang and LeVan, 2009), activated carbon (Namasivayam and Kavitha, 2002; Hameed et al., 2007), molecular sieve carbon (Kohlenstoff-Molekularsieb, 1970; Reid and Thomas, 1999), zeolites (Alver and Metin, 2012) and polymeric adsorbents (Lia et al., 2002; Zhang et al., 2003).

Kim et al. (2015) used carbon molecular sieve as adsorbent to study the separation of binary mixture of biogas that contained CH_4 and CO_2 via PSA process. The result showed a very high purity which is 97% of CH_4 . Other than that, zeolite is one of a common adsorbents too. Gholipour and Mofarahi (2016) used Zeolite to

research on the separation effects of binary mixture of natural gas with same ratio. The result for recovery of CO₂ is 95%.

There are 4 types of adsorbent were selected for this research which are palm kernel, activated charcoal, UiO-66 and raw Hydrotalcite.

2.3.1 Activated Charcoal (AC)

Activated charcoal has porous surface that has a negative electric charge that causes positive charge gases to bond with it. Activated charcoal works by trapping toxins and chemicals in tiny pores which is also name adsorption. Activated charcoal was efficiently utilized as an adsorbent for the removal of hazardous dyes from the aqueous solutions (Iqbal and Ashiq, 2007; Mohan and Karthikeyan, 1997). The maximum surface is around 199 to 2105 m²/g BET surface area. Besides, activated charcoal was able to detoxify certain types of chemical via adsorption process (Canilhaa et al., 2004; Mussatto et al., 2004). Grande et al. (2013) utilized activated carbon as adsorbent to separate CH₄ and CO₂ under high pressure condition. The result showed higher selectivity towards CH₄ because the amount of CH₄ uptake was 7.86 mmol/g then CO₂ was 3.86 mmol/g.

2.3.2 Zirconium-benzenedicarboxylate (UiO-66)

UiO-66 is sourced from zicronium salts and it is a metal organic framework (MOF) adsorbent (Cmarik et al., 2012; Chang and Yan, 2012). MOF offers a variety of topologies, porous networks and high surface areas which has high potential for the applications for adsorption or separation (Wang et al., 2015). It can be applied in gas

adsorption and separation (Yang et al., 2011; Wu et al., 2013; Lau et al., 2013). The maximum surface is around 1067 m²/g BET surface area and the volume of pore is 0.40 cm³/g. Cao et al. (2015) studied the CO₂ recovery by using UiO-66. The researcher fed in pure CO₂ and the end of result showed the CO₂ volume uptake is 91%.

2.4 Breakthrough Study on Adsorption of Carbon Dioxide (CO₂)

2.4.1 Effects of Gas Composition

Shin (1995) studied the separation of binary gas mixture of natural gas with the ratio of half CH₄ and half CO₂. His findings showed recovery and purity of CO₂ were very high which were about 96.79% and 99.12% respectively. The operating condition is at atmospheric pressure and absorbent used were 5 Å Zeolite. Aquinoa et al. (2016) also used the similar gas composition and adsorbent with Shin which is 5:5, the different part was the operating pressure which was 400 kPa. However, the recovery of CO₂ was only 52%. Other than them, Mariem Kacema et al. (2015) used half CH₄ with half CO₂ and same adsorbent too to study the separation performance on natural gas mixture, the recovery obtained was 80% with a purity of near to 90%.

Yua et al. (2012) used another gas ratio which were 60% of CH_4 and 40% of CO_2 . Li et al. (2014) used MOF-5 while Yua et al. (2012) used carbon molecular sieve as absorbents. Both of them operated breakthrough study at atmospheric pressure. Li obtained the CO_2 recovery of 98% while Yua et al. (2012) obtained around 30% of recovery varying with temperature.

Chou and Chen (2004) used the gas ratio of CH_4 to CO_2 8:2 for his breakthrough study. The result was 90% at atmospheric pressure too. However, the adsorbent used was a common adsorbent which was activated carbon. Besides, Britt et al. (2009) used the same ratio with Mg-MOF-74 adsorbent but at relative lower pressure and the result obtained is 99.99% of CO_2 purity.

2.5 Carbon Dioxide (CO₂) Adsorption through Pressure Swing Adsorption (PSA)

2.5.1 Effects of Gas Composition

Ko et al. (2005) utilized the PSA technique to study the separation of CO_2 from flue gas. The mixture used in experiment contained 15% of CO_2 and resulted very high recovery of CO_2 which is 97%. Zeolite was used for this study.

On the other hand, Pevida et al. (2016) selected 5:5 ratio on natural gas binary mixture by using activated carbon. Coal mine methane gas containing 45–55 vol% CH₄, 7–8 vol% O₂, 2–3 vol% CO₂ and balance nitrogen gas was studied by Olajossy et al. (2003) for separation purpose by the similar adsorbent with Pevida et al. (2016).

64% of CH₄ and 28% of CO₂ mixture were used by Asadi et al. (2013) and high purity of CO₂ can be produced after PSA process. Asadi et al. (2013) used MOF type of adsorbent for the research.

2.5.2 Effects of Initial Pressure

Cavenati et al. (2006) studied PSA performance by using high pressure to remove CO_2 from natural gas. The pressure used was 500 kPa and the performance of the removal was good by using zeolite 14x. Uchida et al. (2001) also used relative high pressure of 300 kPa to study PSA performance of flue gas using zeolite. The recovery of CO_2 was 95% at the product. Labus et al. (2014) obtained a result of 68% as CO_2 recovery. The research was also conducted at 6 bar.

There were also some other researches focus on low pressure performance on PSA process. Webley and Zhang (2008) and Choi et al. (2003) both used a pressure closed to atmospheric pressure to study on the adsorption effect on PSA. Both of their result were moderate because the recovery was higher than 60%.

CHAPTER THREE

MATERIALS AND METHODS

This chapter writes up the materials needed and experimental procedures for the project. In order to understand the adsorption process and the adsorbent behaviour, characterization methods, instrument used and breakthrough analysis of the CO_2 are also described in this chapter.

3.1 Research Methodology

The overall experimental activities carried out in this study are presented in Figure 3.1.

Figure 3.1: Process flow chart for research.

3.2 Chemicals

The main purpose of this research was to study the performance of CO_2 removal from natural gas by using different type of adsorbents. Hence, the main composition of natural gas were methane and carbon dioxide. These 2 gases were obtained from supplier with a very high purity (99.9%). During the experiment, the ratio of these 2 gases was controlled and mixed before entering adsorption column. The mixture of gases was allowed mixer to ensure perfect mixing before entering the column. The ratio of gases mixture used for CO_2 :CH₄ was varied.

3.2.1 Chemicals for Gas Mixture

Both of the tables below show the gases used for breakthrough study and PSA process. Those gases are CH_4 and CO_2 respectively which is also binary mixture of natural gas. Table 3.1 and Table 3.2 show the properties of CH_4 and CO_2 .

Properties	
Common name	Methane
Molecular formula	CH ₄
Molecular weight	16.04 g/mol
CAS number	74-82-8
Chemical structure	H H—C—H H

Table 3.1 Properties of Methane.

Properties	
Common name	Carbon Dioxide
Molecular formula	CO ₂
Molecular weight	44.01 g/mol
CAS number	120-38-9
Chemical structure	$\ddot{\mathbf{o}} = \mathbf{c} = \ddot{\mathbf{o}}$

Table 3.2: Properties of Carbon Dioxide.

3.2.2 Chemicals for Adsorbent

In this research, 2 types of adsorbents were used which are activated charcoal and UiO-66. Tables below show all the chemicals used to prepare each adsorbents for this research use. Table 3.3 and 3.4 show the composition of adsorbents.

Table 3.3: The composition of Activated Charcoal.

Material	Chemical Formula	Supplier
Charcoal tablet	-	Biosis

	Table 3	3.4: The	composition	of UiO-66.
--	---------	----------	-------------	------------

Material	Chemical Formula	Supplier
Zirconium (IV) Chloride	ZrCl4, anhydrous powder, 99.99%	Sigma-Aldrich
Dimethylformamide (DMF)	HCON(CH ₃) ₂ , 99.8%	Sigma-Aldrich
1,4 benzenedicarboxylic acid (BDC)	C ₉ H ₆	Sigma-Aldrich
Ethanol	CH ₃ CH ₂ OH, 99.8%	Sigma-Aldrich

3.3 Equipment

Different types of equipment were used for different purposes in this research such as preparation of adsorbents, breakthrough study and PSA process.

3.3.1 Preparation of Adsorbents

During the preparation of adsorbents, a furnace was used to heat up the raw material. The raw material was then activated by flowing nitrogen gas into it and processed into adsorbent. The model number of furnace is GSL-1100X from MTI Corporation.

Figure 3.2: Furnace (GSL-1100X, MTI Corporation).

3.3.2 Breakthrough Study

The main equipment used for breakthrough study was a gas chromatography (GC). The purpose of gas chromatography was to observe the breakthrough time and breakthrough behaviour of the gases. The model of gas chromatography is 7890A from Agilent Technologies. Other than that, different kinds of valve were used to construct a mixer and column structure such as ball valve and globe valve.

Figure 3.3: Gas chromatography (7890A, Agilent Technologies).

3.3.3 Pressure Swing Adsorption (PSA) Process

The PSA structure mainly contained valves, flow meter and column bed. An example of simple schematic diagram for experimental setup for PSA is shown at below.

Figure 3.4: Schematic diagram of experimental setup for PSA (Corporation, 2016).

3.4 Characterization of Adsorbent

The main purpose of characterization was to investigate the adsorbents' characteristics that affect the performance of adsorption by using different techniques. Characteristics of samples were analysed by 4 different tests which were Particle Size Analyzer, X-Ray Diffraction (XRD), Thermal Gravimetric Analysis (TGA), Brunauer-Emmett-Teller (BET) and Scanning Electron Microscopy (SEM) (Asuquo and Martin, 2016).

3.4.1 X-Ray Diffraction (XRD)

The model number of XRD is an effective analytical technique for phase identification of a crystalline material that can provide information of unit cell dimensions. This method is common for the study of crystal structure and atomic spacing. X-ray diffraction is based on constructive interference of monochromatic Xray and the crystal sample. The model of equipment is D8 from Bruker. Hence, the interaction between X-ray and crystal sample produces constructive interference to study about crystal structure.

3.4.2 Thermal Gravimetric Analysis (TGA)

TGA is a method for thermal analysis in which studies the changes in chemical and physical properties of the materials with the increase in temperature as a function of time. It is a common method to investigate mass loss or gain due to decomposition, oxidation, or gain due to decomposition, oxidation or loss of moisture. In summary, it is a characterization method through analysis of characteristic decomposition patterns of the specific material. The figure below shows the model of equipment which is TGA 7 from Perkin Elmer.

Figure 3.5: Thermogravimetric Analyzer (TGA 7, Perkin Elmer).

3.4.3 Brunauer-Emmett-Teller (BET)

In order to study the pore size distribution, BET is a suitable method to find out the specific surface area of a sample. This technique aims to study the physical adsorption of gas molecules on a solid surface and hence it is an important analysis for the measurement of the specific surface area of a material. The model of BET analyser is ASAP 202 from iDB. It applies the Langmiur theory which explains the monolayer adsorption.

Figure 3.6: Surface and porosity analyzer (ASAP 2020, iDB).

3.4.4 Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX)

The working principle of SEM uses electron emission for imaging the condition of surface of material. SEM uses a beam of electrons to produce a variety of signals towards the surface of material. It is like a light microscope uses visible light. This characterization method can produce high-resolution imaging of surface especially the porosity of the material's surface. In this project, the magnification used is x100 times in order to get the suitable image that shows the porosity for study.