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PEMBANGUNAN POLI(β-SIKLODEKSTRIN BERFUNGSIKAN CECAIR 

IONIK) BERKONJUGAT NANOPARTIKEL MAGNET SEBAGAI 

PENJERAP UNTUK PENGEKSTRAKAN MIKRO POLISIKLIK 

AROMATIK HIDROKARBON DARIPADA SAMPEL MAKANAN 

ABSTRAK 

Pencemaran makanan merupakan isu keselamatan makanan global yang boleh 

menimbulkan masalah kesihatan. Analisis terhadap pencemar adalah penting untuk 

memastikan keselamatan pengguna dan pematuhan terhadap had peraturan. Oleh itu, 

pembangunan teknik penyediaan sampel yang mudah, berskala kecil, dan sensitif 

sentiasa menjadi pilihan yang digemari. Kajian ini bertujuan untuk membangun dan 

menyiasat bahan nano yang baru, iaitu poli(βCD-IL)@Fe3O4 dan aplikasinya dalam 

pengekstrakan mikro polisiklik aromatik hidrokarbon (PAHs) yang mempunyai berat 

molekul rendah dan tinggi yang disenaraikan sebagai bahan pencemar utama oleh 

Komuniti Eropah (EC) dan Agensi Perlindungan Alam Sekitar (EPA). Dalam 

bahagian pertama kajian, poli(βCD-IL)@Fe3O4 telah berjaya disintesis dan dicirikan 

oleh pelbagai teknik termasuk FT-IR, analisis elemen CHN, XRD, TEM, SEM, VSM, 

BET, TGA, DSC, potensi zeta dan ukuran kebolehbasahan. Seterusnya, poli(βCD-

IL)@Fe3O4 digunakan sebagai penjerap dalam kaedah magnetik μ-SPE bersama gas 

kromatografi pengesan pengionan nyala (magnetik µ-SPE-GC-FID) untuk penentuan 

lima PAHs terpilih yang mempunyai berat molekul rendah dalam sampel beras. Dalam 

keadaan optimum, lekuk penentukuran telah menunjukkan kelinearan dalam 

kepekatan antara 0.1 dan 500 μg kg-1 dengan pekali penentuan (R2) di antara 0.9970 

dan 0.9982 untuk kesemua analit. Had pengesanan (LODs) dalam matriks sebenar 

berada dalam julat 0.01-0.18 μg kg-1. Nilai sisihan piawai relatif (RSD) berada pada 

2.95%-5.34% (intra-hari, n=6) dan 4.37%-7.05% (antara hari, n=6). Penjerap 



 xxvi  
 

menunjukkan kebolehulangan yang memuaskan dalam julat 2.9% ke 9.9%  dan nilai 

perolehan semula yang boleh diterima pada 80.4% – 112.4% untuk sampel sebenar. 

Kaedah optimum magnetik µ-SPE-GC-FID kemudian berjaya diaplikasikan untuk 

mengakses kandungan keselamatan PAHs dalam 24 jenis beras komersial yang 

terdapat di Malaysia. Prestasi analitikal poli(βCD-IL)@Fe3O4 yang cemerlang dalam 

kaedah magnetik µ-SPE-GC-FID seterusnya menjadi dorongan untuk 

mengubahsuainya ke bentuk bendalir ferro dalam membangunkan teknik FF-DLPME 

di bahagian kedua kajian ini. Bendalir ferro ini telah digunakan untuk pengekstrakan 

mikro tujuh wakil PAHs yang mempunyai berat molekul rendah dan tinggi daripada 

makanan dan minuman. Dalam keadaan optimum, lekuk penentukuran telah 

menunjukkan kelinearan dalam kepekatan antara 0.1 dan 150 ng mL-1 dalam matrik air 

dengan R2 daripada 0.9970 ke 0.9982 untuk kesemua analit. LODs kaedah adalah 

dalam julat 0.02 dan 0.07 ng mL-1. RSD, % untuk intra-hari dan antara hari berada 

dalam julat 1.80%-7.56% dan 2.97%-8.23% dengan nilai kebolehulangan di antara 

1.72% dan 5.90%. Manakala, nilai perolehan semula adalah pada 84%-110% untuk 

sampel sebenar. Parameter yang sama turut disahkan dalam matrik beras dan minuman 

teh. Kaedah optimum FF-DLPME-GC-FID akhirnya diaplikasikan untuk menilai 

kandungan keselamatan PAHs dalam pelbagai jenis makanan dan minuman komersial 

di Malaysia. Perbandingan antara kedua-dua teknik pengekstratan mikro yang 

dibangunkan juga telah dibentang. Akhir sekali, mekanisma penjerapan berdasarkan 

kajian kompleks telah dijalankan untuk menyiasat kehadiran interaksi supramolecular 

host-guest yang menyumbang kepada prestasi cemerlang pengekstrakan mikro bagi 

kedua-dua teknik. Pembentukan kompleks pepejal telah berjaya dipantau oleh 

pengukuran teknik FTIR, TGA, DSC, 1D 1H NMR dan 2D NOESY NMR, manakala 

kompleks cecair berjaya dipantau oleh pengukuran spektroskopi UV-vis. Keputusan 
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menunjukkan bahawa Phenanthrene membentuk nisbah stoikiometri 1:1. Skema 

daripada proses pembentukan kompleks yang dicadangkan oleh kajian doking molekul 

menyerupai keputusan eksperimen.  
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DEVELOPMENT OF POLY(β-CYCLODEXTRIN FUNCTIONALIZED 

IONIC LIQUID) CONJUGATED MAGNETIC NANOPARTICLES AS AN 

ADSORBENT FOR MICROEXTRACTION OF POLYCYCLIC AROMATIC 

HYDROCARBONS FROM FOOD SAMPLES 

ABSTRACT 

Food contamination is a global food safety issue which pose a health concern. 

Analysis of food contaminants is essential to ensure consumer safety and compliance 

with regulatory limits. Thus, development of simple, miniaturize, and sensitive sample 

preparation techniques are always a choice of interest. This study aims to develop and 

investigate new nanomaterial, namely poly(βCD-IL)@Fe3O4 and their applications in 

the microextraction of low and high molecular weight polycyclic aromatic 

hydrocarbons (PAHs) that have been listed as priority pollutants by European 

Community (EC) and Environmental Protection Agency (EPA). In the first part of 

study, poly(βCD-IL)@Fe3O4 was successfully synthesized and characterized by 

various techniques including FT-IR, CHN elemental analysis, XRD, TEM, SEM, 

VSM, BET, TGA, DSC, zeta potential and wettability measurement. Thereafter, 

poly(βCD-IL)@Fe3O4 was applied in magnetic µ-SPE technique as an adsorbent 

coupled with gas chromatographic-flame ionization detection (magnetic µSPE-GC-

FID) for the determination of five selected low molecular weight PAHs in rice samples. 

Under optimized conditions, the calibration curves were linear for the concentration 

ranging between 0.1 and 500 μg kg-1 with coefficient of determination (R2) from 

0.9970 to 0.9982 for all analytes. Detection limits (LODs) ranged at 0.01–0.18 μg kg-

1 in real matrix. The RSD values ranged at 2.95%–5.34% (intra-day, n=6) and 4.37%–

7.05% (inter-day, n=6). The sorbent showed satisfactory reproducibility in 2.9% to 9.9% 

range and acceptable recovery values at 80.4%–112.4% for the real samples. The 
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optimized magnetic µ-SPE-GC-FID method was then successfully applied to access 

content safety of selected PAHs for 24 kinds of commercial rice available in Malaysia. 

The excellent analytical performance of poly(βCD-IL)@Fe3O4 in magnetic µ-SPE 

technique further became a driven force to modify it into ferrofluid turning out with 

ferrofluid based dispersive liquid phase microextraction (FF-DLPME) technique, 

which was covered in the second part of this study. The ferrofluid was applied for the 

microextraction of seven representative PAHs including low and high molecular 

weight PAHs from food and beverages. Under optimized conditions, the calibration 

curves were found to be linear in water matrix from range of 0.1-150 ng mL-1 with R2 

between 0.9944 and 0.9986. The LODs of the proposed method were between 0.02 

and 0.07 ng mL-1. The intra and inter-day precision (RSD, %) were in the range of 

1.80%-7.56% and 2.97%-8.23% with sorbent reproducibility between 1.72% and 5.90% 

and acceptable recovery values at 84% -110% for real sample. Same validation 

parameters also have been conducted in rice and tea beverages matrices. The optimized 

FF-DLPME-GC-FID method was finally applied to evaluate the content safety of 

studied PAHs in variety of commercial foods and beverage in Malaysia. Comparison 

between both developed microextraction techniques is been presented. Lastly, 

adsorption mechanism based on inclusion complex study was conducted to investigate 

the presence of supramolecular host-guest interaction that contribute to the excellent 

extraction performance for both developed microextraction techniques. The formation 

of solid kneaded inclusion complex was successfully monitored by FTIR spectroscopy, 

TGA, DSC, 1D 1H NMR and 2D NOESY NMR measurement whereas liquid inclusion 

complex was monitored by UV-vis spectroscopy. Results revealed that Phenanthrene 

formed 1:1 stoichiometry ratio. A schematic representation of the energetically 
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favorable inclusion process is proposed by molecular docking studies which is in good 

agreement with the experimental results.
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 General background 

In recent years, there has been a growing concern among the general public 

over the issue of food contamination by toxic compounds, particularly polycyclic 

aromatic hydrocarbons (PAHs). Generally, PAHs tend to accumulate in food products 

such as dairy, vegetables, fruits, oils, rice, cereals, grilled meat, smoked food, coffee, 

and tea (Bansal & Kim, 2015; Boon et al., 2019; Chung et al., 2011; Escarrone et al., 

2014; Farhadian et al., 2010; Iwegbue et al., 2016; Jimenez et al., 2014; Lochan et al., 

2016; Pincemaille et al., 2014; Plaza-Bolaños et al., 2010; Smoker et al., 2010; Yun et 

al., 2017; Zachara et al., 2018; Zelinkova & Wenzl, 2015; Zheng et al., 2016) due to 

their hydrophobic and lipophilic characteristics (Pensado et al., 2005). Many works 

have identified food as major contributor to human direct exposure to PAHs and 

therefore, their presence in food is a matter of concern.  

PAHs are compounds that contain two or more fused benzene rings in a linear, 

angular or cluster arrangement (Shi et al., 2016). They are formed from the incomplete 

combustion (engine exhaust, industrial outlet, crude oil) or pyrolysis of organic matter 

(Chen & Chen, 2001; Zhao et al., 2011) and are widespread in the environment as 

organic pollutants (Jiao et al., 2007; Xu et al., 2014). Sixteen priority PAHs have been 

listed as persistent organic pollutants (POPs) by the U.S. Environmental Protection 

Agency (US EPA) due to their substantial toxicity and possible carcinogenic properties 

(Aguinaga et al., 2007; Fei et al., 2011; Jimenez et al., 2014). Furthermore, PAHs are 
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also highly resistant to natural degradation due to their stable molecular structures (Lau 

et al., 2014). 

The occurrence of PAHs in food can be ascribed to diverse pathways that 

include both natural (as environmental) and synthetic sources (e.g. cooking practices 

and industrial food processing). Upon ingestion, PAHs will activate the mammalian 

cells to produce diolepoxides that will react with the DNA in tissue cells to cause 

mutation (Bansal & Kim, 2015).  

Numerous efforts have been directed to address how precisely and accurately 

one can qualify and quantify the level of PAHs present in food products and this is 

non-trivial since food is typically non-homogenous and complex that make it hard to 

isolate and determine the analyte of interest.  

“Direct and shoot” concepts using chromatography or spectroscopy method 

may experience some sensitivity issues which can lead to poor analysis result besides 

increasing the instrument maintenance. Subsequently, by considering the food matrix 

effects, many analytical methods that have been developed for monitoring and 

determining the food contaminations generally involve a pre-treatment step prior to 

instrumental analyses. Sample pre-treatment or sample preparation is regarded to be 

an important step in a chemical analysis as it aims to extract, pre-concentrate, and 

clean-up from interference apart from the advances in analytical instrumentation for 

analyte separation and detection. Sample preparations also improve the analysis results 

by enhancing the sensitivity, precision and instrument detection limits which could not 

be achieved by direct determination at a very low concentration. Thus, a good sample 

preparation can be economically valuable as well as analytically important.  
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1.2 Problem Statements 

The level of PAHs in food have been regulated by the World Health 

Organization (WHO) due to their toxicity to human (Registry, 2008). For instance, 4 

high molecular weight PAHs namely PAH4 (benzo(a)pyrene, benz(a)anthracene, 

benzo(b)fluoranthene and chrysene) have been selected as food markers by the 

Commission Regulation (EU) No 835/2011 with their maximum limits between 1 and 

30 µg kg-1 (Food Safety Authority of Ireland, 2015). However, there’s still a need for 

reliable data on other PAHs, especially those with low molecular weight as they are 

more commonly found compared to high molecular weight PAHs that listed in food 

legislation (Escarrone et al., 2014; Matin et al., 2014; Plaza-Bolaños et al., 2010). 

Indeed, the Scientific Committee on Food (SCF) has urged the collection of data based 

on other types of PAHs in assessing food contamination and to monitor the changes of 

PAHs profile in food (Zelinkova & Wenzl, 2015).  

By narrowing the scope of PAHs investigation in Malaysia, surprisingly, 

number of study regarding to the PAHs determination in food and beverage samples 

are far less compared to environmental samples. This reveals that inadequate attention 

has been paid, likely due to the absence of legislation concerning the safety levels of 

food PAHs in our country. Since PAHs can accumulate in the human body through 

food consumption, their analysis is essential to ensure the consumers’ safety. 

Different sample preparation techniques and separation methods have been 

developed and reported for PAHs determination. Among the sample preparations 

techniques, sorbent-phase based extraction technique stands out the most popular one. 

Various types of adsorbents have been designed to satisfy the applications. However, 

most of these adsorbents are tuned with the focus on their affinity for target analytes, 
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but with little consideration on their compatibility towards the sample matrices. 

Furthermore, PAHs usually exhibit low solubility and bioavailability (Ren et al., 2015), 

which limits their removal or extraction from the contaminated food.  

Herein, supramolecular cyclodextrins (CDs) appear to be particularly 

promising agent through host-guest interaction as reported in previous works (Choi et 

al., 2017; Topuz & Uyar, 2017b, 2017a). This could be contributed by the merit of 

CDs which are able to reduce the toxicity, enhance the solubility and catalyse the 

degradation of contaminants (Bardi et al., 2000; Boving & Brusseau, 2000; Kamiya et 

al., 2001; Manolikar & Sawant, 2003). Moreover, CDs prevail other adsorbents due to 

their biocompatibility, non-toxic and environmentally friendly properties (Choi et al., 

2017).  

Recently, microextraction techniques have been developed as an alternative 

method for the determination of trace level compounds and are gaining much interests 

since these techniques greatly reduce the volume of organic solvent, sorbent dosage, 

and extraction times coupled with inexpensive instruments. Nonetheless, there is still 

a need to develop microextraction techniques that comply with the principles of green 

chemistry.  

In the attempt to comprehensively address the above-mentioned issues, this 

study is systematically conducted.  

We hope the findings in this study could be a preliminary benchmark or added 

value to the existing data for the establishment of the maximum permissible limits of 

food PAHs to Food Safety and Quality Division (FSQD), Ministry of Health Malaysia. 

In addition, we anticipate that the study outcomes provide insight and awareness into 

the rational diet suggestions to maintain or improve public health. 
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1.3 Scope of research  

This study involves the synthesis of a nanocomposite, namely poly(βCD-IL) 

conjugated magnetic nanoparticles which combines the merits of polymeric β-CD, IL, 

and magnetic nanoparticles. It is important to highlight the rationality for such a design 

and fabrication of the nanocomposite since different organic moieties possess their 

own unique properties that contribute to the extraction efficacy. For this, β-CD is 

chosen instead of α- and γ- cyclodextrin due to its low cost, stability and is 

commercially available. Besides, it is well known that β-CD are guest friendly that is 

able to interact with various kinds of organic molecules by forming inclusion complex. 

In addition, the odd number of glucose rings present in its structure decreases the 

symmetry of the cavity, hence, increasing the resolving power of β-CD. This unique 

property has received great attention and is fully exploited by researchers in the field 

of separation sciences. On the other hand, IL is employed as modifier to increase the 

active sites of the nanocomposite. Due to the presence of double bonds, it can be used 

to extract the analytes through π to π adsorption mechanism. Herein, 1-vinylimidazole 

was selected in the modification process to give rise to 1-vinylimidazolium-β-CD as 

the unique functional monomer. However, the chemically modified cyclodextrins are 

soluble, which limit their applications in water, therefore, conversion of modified CD 

to polymeric materials is of great values. To attain this property, cross-linker agent 

(toluene-2,4-diisocyanate) was utilized to produce water insoluble IL modified 

cyclodextrin polymers. This polymer host networks are further grafted on the surface 

of magnetic nanoparticles in order to promote the developed sample preparation 

techniques.  

In short, the application of β-CD and IL are to provide multiple binding sites 

to the nanocomposite while the employment of toluene-2,4-diisocyanate is to 
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polymerize the soluble entities. Meanwhile, magnetic nanoparticles are decorated to 

make the nanocomposites separate easily by means of external magnetic field and to 

improve the adsorption capacity by its large specific surface area. The synthesized 

nanocomposite is expected to exhibit few unique properties such as high surface area, 

high supramolecular recognition capability, superparamagnetism and large 

delocalized π-electron system.  

The successful synthesis of this nanocomposite was confirmed by various 

characterization techniques such as Fourier transform infrared (FTIR), elemental 

analysis, Brunauer-Emmett-Teller (BET), vibrating sample magnetometer (VSM), 

scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray 

powder diffraction (XRD), thermogravimetric analysis (TGA), differential scanning 

calorimetry (DSC), zeta potential and wettability analysis. Thereafter, it was being 

applied in magnetic µ-SPE for the determination of selected low molecular weight 

PAHs from rice samples coupled with GC-FID. The excellent analytical performance 

of the developed nanocomposite in magnetic µ-SPE technique was encouraging and 

further became a driven force to modify the nanocomposite into ferrofluid turning out 

with FF-DLPME technique. Due to the merits of ferrofluid, it was successfully applied 

for the analysis of selected low and high molecular weight PAHs in various food and 

beverage samples. Subsequently, the extraction performances of both developed 

magnetic µ-SPE and FF-DLPME methods were then compared. Investigation on the 

adsorption mechanism by means of inclusion complex study was also conducted. A 

schematic representation of the energetically favorable inclusion process is proposed 

by molecular docking studies using PatchDock server.  
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1.4 Research Objectives  

The objectives of this work are summarized as follows: 

(i) To synthesize and characterize Ts2O, βCD-OTS, βCD-Vinyl-OTS, Fe3O4, 

poly(βCD)@Fe3O4, and poly(βCD-IL)@Fe3O4 

(ii) To develop, optimize, and validate poly(βCD-IL)@Fe3O4 based magnetic µ-

SPE techniques coupled with GC-FID analysis for the determination of low 

molecular weight PAHs in rice samples  

(iii) To develop, optimize, and validate poly(βCD-IL)@Fe3O4 based FF-DLPME 

techniques coupled with GC-FID analysis for the determination of low and 

high molecular weight PAHs in food and beverage samples  

(iv) To compare the analytical performance of poly(βCD-IL)@Fe3O4 based 

magnetic µ-SPE and FF-DLPME techniques 

(v) To investigate the adsorption mechanism of Phenanthrene via inclusion 

complex study between the native β-CD and ionic liquid modified β-CD 
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1.5 Organization of thesis 

The present thesis is organized into five chapters. Chapter 1 outlines a brief 

introduction on the research background, problem statement, scope of research, 

research objective, and a structural organization of the whole thesis. A review of 

related literature is summarized in Chapter 2. Chapter 3 discusses the experimental 

procedures for the whole study and subdivided into five parts. Part one to part three 

describe about the synthesis methods and characterization techniques of adsorbents 

whereas part four reports the method development, validation and applications of the 

adsorbents in magnetic µ-SPE and FF-DLPME techniques, respectively. While 

investigation on the adsorption mechanism by means of inclusion complex and 

molecular docking are presented in final part. Chapter 4 consists of six parts that 

discuss the findings and outcomes of the study accordingly. The overall conclusions 

and further recommendations are presented in Chapter 5.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Magnetic nanoparticles (MNPs) 

2.1.1 Synthesis of MNPs 

Researches and development of nano-based materials have gained a lot of 

attractions within the scientific community. The focus is primarily on designing 

particles that have uniform shape, arrangement, and nano-meter size. For this, metallic 

and metal oxides NPs have been widely exploited in the field of analytical chemistry 

due to their tuneable properties which are able to offer promising applications in terms 

of sensitivity, selectivity and reliability.  

Magnetic nanoparticles (MNPs) are a type of metal oxides NPs, which can be 

handled by using an external magnetic field. Their large surface areas to volume ratio, 

high dispersibility (Amirhassan et al., 2015), quantum size effects, supraparamagnetic 

behaviour, and easiness of surface modification allow them to be used in a wide range 

of applications, including magnetic drug target (Pecina, 1978), nano-sorbent in 

environmental engineering (Awwad & Salem, 2013), magnetic resonance imaging 

(Anbarasu & Balamurugan, 2014; Yugandhar et al., 2013), biomedicine (Barrera et al., 

2009), and magnetic sensing (Jun-Hua et al., 2007) 

Maghemite (Fe2O3) and magnetite Fe3O4 are the most common iron oxides 

used to synthesize MNPs due to their biological compatibility, high magnetic moment, 

and easy to prepare. For this, ferrite oxide magnetite (Fe3O4) that possess large surface 
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area with nano-size dimension, excellent sorption capability, and strong response 

under an applied external magnetic field have been the focus of many research works.  

Fe3O4 nanoparticles can be prepared using different ways such as laser ablation, 

mechanical grinding, chemical precipitation, high temperature decomposition of 

organic precursor, and microelmusion (Sun et al., 2004). The most employed method 

is chemical precipitation due to their low cost and simplicity preparation. This method 

involves mixing ferrous (II) and ferric (III) ions in molar ratio of 1:2 in highly basic 

solution at elevated or room temperature (Cabrera et al., 2008). Equation 2.1 explains 

the synthesis route of magnetite nanoparticles through co-precipitation process. 

Fe2+ + 2Fe3+ + 8OH-              Fe3O4 + 4H2O                          (2.1) 

2.1.2 Surface modification of MNPs 

Basically, MNPs tend to agglomerate due to their high surface energies 

resulting from their large surface area and volume ratio. Besides, unmodified MNPs 

also easily undergo oxidation which can cause the loss in their magnetic and 

dispersibility property, as well as difficulty to control their shape, size, and stability. 

To address this problem, surface modification has been introduced to the 

design and fabrication of Fe3O4 with specific functionality and activity. Surface 

modifications are not only able to improve the stability of MNPs and their dispersion, 

but also enhance their compatibility in solid, liquid or biological matrices. In addition, 

surface modification also provides channel for further immobilizing, grafting and 

coating of additional organic or inorganic moiety (Ríos & Zougagh, 2016). Surface 

modification generally involves three steps, including the synthesis of core (magnetite 

or maghemite), the coating of the magnetic core and the modification of the resultant 
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core-shell structure. Figure 2.1 shows different types of shells and functional groups 

or final coatings that can be anchored/coated onto the MNPs surfaces. 

 

 

 

 

 

 

Figure 2.1: Structure of the core, shell of various composition, and the coating with 

different functional groups (Ríos & Zougagh, 2016) 

 

2.1.3 MNPs in analytical chemistry  

In the context of analytical chemistry, modified MNPs have been widely 

applied in sample preparation, analyte separation and electrochemical sensing.  

2.1.3(a) Modified MNPs in sample preparation 

Lately, magnetic solid phase extraction (MSPE) has become a favorable 

technique among researchers because it simplifies the overall extraction procedures. 

Instead of packing the sorbent into SPE cartridge, the sorbent are being dispersed in 

the sample solution. This greatly facilitate the extraction rate due to better surface area 

of contact between analyte and sorbent. Furthermore, MSPE also avoid laborious steps 

such as filtration or centrifugation as the sorbents can be easily collected by using an 

external magnet. The applications of modified MNPs in MSPE are tabulated in Table 

2.1.
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Table 2.1: Selected examples of modified MNPs used in MSPE 

Core/Shell Functional group/ Coating Analyte Sample Reference 

Fe3O4/SiO2 2-mercapto-4-methyl-5-

thiazoleacetic acid bonding Au 

(MMTA-Au) 

polycyclic aromatic 

hydrocarbons 

river water and 

rainwater 

(Xiupei et al., 2019) 

Fe3O4 ferric sulfate hexahydrate and 

ferric 

chloride hexahydrate 

polycyclic aromatic 

hydrocarbons 

produced water from 

wells 

(De Barros Caetano et al., 

2019) 

Fe3O4 - rivastigmine bulk and capsules (Mohamed et al., 2019) 

Fe3O4 curcumin loaded magnetic 

graphene oxide 

parabens toothpaste and 

mouthwash samples 

(Razavi & Es’haghi, 2019) 

Fe3O4@APTES silicone-ethylene-oxide copolymer 

(DC193C)  

parabens river water, seawater 

and lake water 

(Marinah et al., 2019) 

Fe3O4 polydopamine human genomic DNA human whole blood (Min et al., 2019) 

Fe3O4@APTES polyamidoamie dendrimer tetrabromo- bisphenol 

A and 4-nonylphenol 

environmental water (Yalin et al., 2019) 

Fe3O4/SiO2 mesoporous silica nanoparticles 

(MCM-41) 

biogenic amines traditional dairy 

product 

 

(Molaei et al., 2019) 

 

Fe3O4 reduced graphene oxide (rGO) phenolic compounds oilseeds (Lang et al., 2019) 
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2.1.3(b) Modified MNPs in separation science 

Modified MNPs have also been studied in improving the resolution of 

electrophoretic and chromatographic separations. MNPs are typically being modified 

into stationary or pseudostationary phases which can achieve better outcomes 

compared to traditional phases. This can be attributed to their high adsorption capacity, 

longer lifetime and excellent surface chemistry. Table 2.2 presents the application of 

MNPs in analyte separation.   

Table 2.2: Selected examples of modified MNPs used in separation science 

 

 

 

 

 

 

Material Functional group/ 

Coating 

Detection Analyte Reference 

Molecularly 

imprinted 

magnetic 

nanoparticles 

 

methacrylic acid and 

ethylene glycol 

dimethacrylate on 3- 

(methacryloyloxy)pro

pyltrimethoxysilane 

 

CE racemic 

ofloxacin 

(Qu et al., 

2010) 

Carboxyl 

functionalized 

magnetic 

cores 

 

UiO-67 metal–

organic frameworks 

HPLC phenol (Weiwei et 

al., 2015) 

Magnetic 

nanoparticles 

β-cyclodextrin and 

mono-6-deoxy-6-(1-

methylimidazolium)-

β-cyclodextrin 

tosylate 

CE dansylated 

amino 

acids 

(Xuan et 

al., 2019) 
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2.1.3(c) Modified MNPs in electrochemical sensing 

Another important application of MNPs is in electrochemistry to enhance the 

electrochemical detection of analytes. Low electronic transmission resistance, large 

surface area, and ability to detect biological and chemical compounds are among the 

advantages offered by MNPs-modified electrodes. Moreover, the application of MNPs 

in the electrode composite also helps to reduce the surface deterioration, to increase 

the electrocatalytic activity and to simplify the immobilization process of functional 

molecules. Table 2.3 summarizes some of the applications of MNPs in 

electrochemical sensors.  
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Table 2.3: Selected examples of modified MNPs used in electrochemical sensor 

 

 

Magnetic Material Detection Analyte Reference 

Enzyme modified magnetic nanoparticles 

 

amperometric glucose (Sheng et al., 2012) 

Ferromagnetic carbon encapsulated iron 

nanoparticles 

 

linear scan voltammetry and  

electrochemical quartz 

microbalance 

haemoglobin (Matysiak et al., 2015) 

Chitosan coated Fe3O4 magnetic nanoparticle 

 

amperometric morphine (Dehdashtian et al., 2016) 

 

Magnetic nanoparticles decorated with monoclonal 

antibodies 

 

linear scan voltammetry transferrin (Matysiak et al., 2017) 

 

Magnetic nanoparticle decorated graphene cyclic voltammetry hydrogen 

peroxide 

 

(Waifalkar et al., 2018) 

Silica embedded magnetic nanoparticles 

 

amperometric nitrite (Ispas et al., 2018) 

 

Zinc iron oxide modified screen printed electrode 

 

amperometric sertraline (Tajik et al., 2019) 

Haemoglobin immobilized with magnetic 

molecularly imprinted nanoparticles 

cyclic voltammetry, differential 

pulse voltammetry and 

electrochemical impedance 

spectroscope 

3-chloro-1, 2-

propandiol 

(Yuan et al., 2019) 
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2.2 Cyclodextrin  

2.2.1 Properties of cyclodextrin 

Supramolecular chemistry is a discipline in chemistry that has recently 

received a great deal of attention. It provides a thorough understanding that there are 

no covalent bonds between the interacting species as most interactions involve host-

guests interaction. Among various hosts, cyclodextrins (CDs) have been recognised as 

the most popular host as it can fit various types of guest molecules with suitable 

polarity and dimensions in their cavities (Ain et al., 2015; Malefetse et al., 2009; Raoov 

et al., 2013, 2014; Sambasevam et al., 2013; Sharifah et al., 2011; Singh & Bharti, 

2010; Surikumaran et al., 2014). Example of guests molecules include straight or 

branched chain of aliphatics, aldehydes, ketones, alcohols, ionic liquid, organic acids 

or fatty acids, and polar compounds such as amines, oxyacids, and halogens 

(Charoensakdi et al., 2007). Due to their versatile nature, CDs are readily modified or 

functionalized in order to improve their complexation capability (Song & Purdy, 1992), 

leading to remarkable advances in analytical applications. 

CDs belong to the series of macro cyclic torus-shaped oligosaccharides which 

are compose of α (6), β (7), and γ (8) -CD (Figure 2.2) connected by α-1,4 

glucopyranose units) (Figure 2.3). Due to the presence of carbon and hydrogen atoms, 

they have a hydrophobic interior cavity (Figure 2.4) and this feature enables them to 

host various hydrophobic compounds in their cavities without having to form chemical 

bonds (Figure 2.5). Whereas the presence of hydroxyl groups on the outer part of the 

torus surface cause the exterior to be hydrophilic. β-CD is less soluble in water 

compared to to α-CD and γ-CD. The is because in α-cyclodextrins, the hydrogen belt 

is incomplete since one of the glucopyranose unit is distorted and only four out of six 

possible H-bonds can be formed. Meanwhile, γ-CDs have a non-coplanar and flexible 
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structure causing it to be the most soluble among the three CDs. Several characteristics 

of the three different CDs are summarize in Table 2.4. 

 

 

Figure 2.2: Chemical structure of α-CDs, β-CDs and γ-CDs 

 

Figure 2.3: α-1,4 glucopyranose units linkages and the numbering system in a CD 

molecule 

 

 

Figure 2.4: Hydrophobic cavity and hydrophilic exterior of a CD molecule 
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Table 2.4: Characteristics of α, β, γ- cyclodextrins (Szejtli, 1988) 

 

 

 

Figure 2.5: Schematic illustration of the association of free host (cyclodextrin) and 

guest molecules to form inclusion complex 

 

 

2.2.2 Toxicological considerations 

Generally, natural CDs and their hydrophilic derivatives can hardly permeate 

through biological membranes which are lipophilic such as the eye cornea (Del Valle, 

2004). Besides, toxicity tests have shown that orally ingested CDs is essentially 

harmless because absorption through gastrointestinal tract is unlikely to occur (Irie & 

Uekama, 1997).  

 

 

Cyclodextrin 

Molecular 

weight  

(g mol-1) 

Solubility in 

water at 

25℃  

(g/100 mL) 

Volume 

of cavity 

(Å𝟑) 

Cavity 

diameter 

(Å) 

Outer 

diameter 

(Å) 

Torous 

height 

(Å) 

α 

 
972 14.5 174 4.7-5.3 14.6 7.9 

β 

 
1135 1.85 262 6.0-6.5 15.4 7.9 

γ 

 
1297 23.2 427 7.5-8.3 17.5 7.9 
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2.2.3 Cyclodextrin derivatives  

2.2.3(a) Modification reactions of cyclodextrins 

CDs can be chemically modified to enhance both their physical and chemical 

properties. They can be modified by one of these four methods (Szejtli, 1988): 

(a) Substitution of one or more H-atom of the primary and/or secondary hydroxyls 

(b) Substitution of one or more primary and/ or secondary hydroxyls 

(c) Elimination of the hydrogen atom from the C5-CH2OH group 

(d) Splitting one or more C2 and C3 bonds by periodate oxidation 

There are two important factors that need to be taken into consideration when 

modifying cyclodextrin: the nucleophilicity of the hydroxyl groups at the C2-, C3- and 

C6 carbon and the tendency of cyclodextrins to form complexes with the reagent used. 

Among the hydroxyl groups, C6-OH is the most basic and nucleophilic, whereas, C2-

OH is the most acidic and C3-OH is the most inaccessible. Consequently, electrophilic 

reagents will initially and primarily attack the C6-OH groups. However, more reactive 

groups will attack C6-OH groups and also with C2-OH and C3-OH. Apart from that, 

the orientation, structure, and the strength of the intermediate complex is also affected 

by the size of the cyclodextrin cavity (Hattori & Ikeda, 2007).  

2.2.3(b) Mono-modification at the C6-position 

Mono-modification of CDs involves regioselective reaction of only one 

targeted hydroxyl group, while per-modification involves the whole set of hydroxyl 

groups (Sutyagin et al., 2002). In mono-modification, C6 carbon normally will be 

targeted. An example modification is the reaction of β-CD with tosyl chloride in an 
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aqueous alkaline medium to give mono-6-tosylated β-CD. During the modification, 

the electrophilic tosyl chloride attacks the primary side C6-OH groups of β-CD by 

substituting one H-atom to form C6-tosyl-β-CD as shown in Figure 2.6.  

 

Figure 2.6: Tosylation of β-CD to form C6-tosyl- β-CD 

It is interesting to point out that C6-tosyl-β-CD are important precursors for a 

variety of modified CDs because the tosylate group can be easily replaced by 

nucleophile (e.g. halogens, azides and acetates) (Mahlambi et al., 2011) that can 

contribute its corresponding functionality to the β-CD (Hattori & Ikeda, 2007).  
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2.3 Ionic liquid 

Ionic liquids (ILs) are referred as liquefied organic salts at room temperature 

(RTIL) and are poorly coordinated. The first IL was synthesized in 1914 but its 

importance in the chemistry was not realised until the late 70s and 80s. Generally, ILs 

consists of organic cations and inorganic anions. They are designed to have a 

delocalized charge and one component is organic in order to prevent the formation of 

stable crystal lattice (Devi, 2015). ILs have been labelled as green recyclable 

alternatives to the conventional organic solvents and are developed to be 

environmentally friendly in line with the concept of sustainable chemistry (Devi, 2015; 

Hallett & Welton, 2011; Hernández-Fernández et al., 2010; Rahim et al., 2011; Zaijun 

et al., 2011). They are widely used in analytical chemistry due to their fascinating 

properties such as non-flammability, non-volatility, high polarity, low viscosity, and 

great electrochemical stability. In addition, ILs can be tuned to have desired properties 

by altering the combinations of cationic and anionic constituents. Because of this 

versatile nature, ILs are regarded as “designer solvents” and finds use as extraction 

solvents, catalysts, electrode modifiers (Anping et al., 2011; Mohamad et al., 2015; 

Mohd Rasdi et al., 2016; Sinniah et al., 2015; Yu et al., 2013), modified sorbents in 

sample pre-treatment and modified chiral stationary phases or additives in separation 

chemistry (Galán-cano et al., 2013; Huang et al., 2010; Jieping & Zhu, 2016; Jingjing 

et al., 2011; Miyi et al., 2016; Songqing et al., 2016; Tokalıoğlu et al., 2016; Zhiming 

et al., 2010). 

Common examples of cations and anions that have been investigated with 

regard to ionic liquid phase formation are shown in Figure 2.7. 
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Figure 2.7: Common structures of cations and anions (Hua & Baker, 2013) 

2.4 Cyclodextrins and ionic liquids-based material in analytical chemistry 

Presently, the combination of CDs and ILs as advanced novel materials has 

received much interests as versatile tool in analytical applications. When CD-IL 

complexes are used, such as, in separation studies, the functional group of the ionic 

liquid is able to improve the extraction performance of cyclodextrin besides retaining 

the hydrophobic cavity of cyclodextrin molecule (Raoov et al., 2013). The behaviour 

of these materials are mainly dependant on the separation mechanism, which cover 

multiple interactions (electrostatic, hydrophobic, and 𝜋 − 𝜋). Generally, there are two 

types of CD-IL complex formation processes known as functionalization and physical 

loading process as illustrated in Figure 2.8.  
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Figure 2.8: Formation of CD-IL complex through (a) functionalization process (b) 

physical loading process 

 

The following part describes some applications of CD-IL materials in various 

separation techniques such as capillary electrophoresis (CE) (Table 2.5), high-

performance liquid chromatography (HPLC) (Table 2.6), gas chromatography (GC) 

(Table 2.7), and sample preparation techniques including cloud point extraction (CPE) 

(Table 2.8), solid phase extraction (SPE) (Table 2.9), and microextraction (ME) 

(Table 2.10), as well as application in electrochemical sensor (Table 2.11). 

Furthermore, CD-IL modified magnetite materials also have been listed Table 2.12, 

accordingly. 

Based on the reported literatures, it is interesting to point out that CD-IL based 

materials have combined the unique properties of cyclodextrin, ionic liquids, and 

magnetic nanoparticles. Therefore, they should deserves more considerations when 

developing excellent materials, particularly in analytical chemistry.   
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Table 2.5: CD-IL modified materials in CE 

  

Type of IL Type of CD Analytes Sample BGE/Buffer References 

1-hexyl-3-methylimidazolium 

 

α-CD 

 

metal ions and 

ammonium 

 

standard 

stock solution 

 

 

7.5 mM lactic 

acid, 0.6 mM 18-

crown-6, 12 mM 

α-CD at pH 4.0 

 

(Qin & Li, 2004) 

 

1-butyl-3-methylimidazolium 

tetrafluoroborate 

 

β-CD 

 

anthraquinones 

 

chinese Herb 

(Paedicalyx 

attopervensis 

Pierre ex Pitard) 

 

1B-3-MI-TFB 

[20-80 mM] and 

β-CD [1-6 mM] 

 

(Qi et al., 2004) 

 

Alkylimidazolium chlorides 

where alkyl= methyl, butyl, 

decyl, 1,2-dimethyl 

 

β-CD dansyl amino acid 

 

standard solution 

 

 

acid BGE at pH 

6.0 and basic BGE 

at pH 9.6 

phosphate/acetate 

buffer 

 

(Ong et al., 2005) 

 

Ethyl and phenylcholine of 

bis(trifluoromethylsulfonyl)imide 

Di or 

trimethyl-β-

CD 

 

2-arylpropionic acids anti-inflammatory 

drugs 

acetic acid/sodium 

acetate (5 mM and 

6 mM) at pH 5.0 

 

(François et al., 

2007) 

3-methylimidazolium chloride 

 

β-CD dansyl amino acids 

 

 

standard solution 

 

50 mM of 

NaH2PO4 

titrated with 

NaOH or H3PO4 at 

pH (6.5–9.6) 

 

(Tang et al., 2007) 
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Alkylimidazolium chloride 

where alkyl= methyl, ethyl, 

propyl, butyl, and hexyl 

 

 

β-CD 

 

dansyl amino acid 

 

standard solution 

 

50 mM acetic acid 

in deionized water 

at pH 5.0 and 6.0 

 

(Weihua et al., 

2007) 

N-undecenoxycarbonyl- 

L-leucinol bromide (L-UCLB) 

 

2,3,6-tri-o-

methyl-β-CD 

ibuprofen, fenoprofen, 

indoprofen, suprofen, 

and ketoprofen 

standard solution 35 mM TM-β-CD, 

5 mM sodium 

acetate at pH 5.0 

 

(Wang et al., 2009a) 

 

N-undecenoxycarbonyl- 

L-leucinol bromide (L-UCLB) 

 

2,3,6-tri-o-

methyl-β-CD 

ibuprofen, fenoprofen, 

indoprofen, suprofen, 

and ketoprofen 

standard solution 5 mM NaOAc at 

pH 5.0 with TM-

β-CD and without 

TM-β-CD 

 

(Wang et al., 2009b) 

6-O-2 

hydroxpropyltrimethylammonium 

tetrafluoroborate 

 

β-CD 

 

bifonazole 

brompheniramine 

chlorpheniramine, 

liarozole 

pheniramine, 

promethazine, 

tropicamide, warfarin 

 

eight racemic drugs NaH2PO4 

(pH 2.5-5.0) 

(Jia et al., 2013) 

 

L-alanine and L-valinetert butyl 

ester bis (trifluoromethane) 

sulfonimide 

 

Me-β-CD, 

HP-β-CD, 

and Glu-β-

CD 

naproxen, 

pranoprofen,warfarin, 

carprofen, ibuprofen 

and ketoprofen 

 

standard solution 30 mM sodium 

citrate/citric acid 

buffer containing 

organic modifier 

(20%v/v) 

 

(Jinjing et al., 2013) 

Table 2.5 (continued) 
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