ASH CARBONATION USING CARBON DIOXIDE

CAPTURED BY CARBONATES

AIZAT BIN MOHD AMINUDDIN

UNIVERSITI SAINS MALAYSIA

2017

ASH CARBONATION USING CARBON DIOXIDE

CAPTURED BY CARBONATES

by

AIZAT BIN MOHD AMINUDDIN

Thesis submitted in partial fulfilment of the requirement for the degree of Bachelor of Chemical Engineering

May 2017

ACKNOWLEDGEMENT

Principally, I would like to uphold my greatest appreciation towards my supervisor, Associate Professor Dr. Leo Choe Peng for her continuous support, encouragement and guidance throughout my experimental studies. It is without doubt that her presence has positively driven me to complete my work.

I would also like to convey my sincere gratitude to the postgraduate students that continuously aid in my study and put aside their own research to help me complete mine. Not only that, I would also like to thank all the staffs and technicians of School of Chemical Engineering for lending me a helping hand and for their warmest cooperation.

My sincerest gratitude also to all my fellow friends and colleagues that relentlessly guide and help me throughout my research as well as for their valuable knowledge and input in various fields.

Last but not least to all that have aided me directly or indirectly either during my experimental works or report writing. All your contributions in terms of ideas, skills, knowledge and expertise are very much appreciated. Thank you very much.

Aizat bin Mohd Aminuddin

May 2017

TABLE OF CONTENTS

ACKN	OWLEDGEMENT	ii
TABL	E OF CONTENTS	iii
LIST (OF TABLES	vi
LIST (OF FIGURES	vii
LIST (OF SYMBOLS	viii
LIST (OF ABBREVIATIONS	ix
ABSTI	RAK	xi
ABSTI	RACT	xii
СНАР	TER ONE : INTRODUCTION	1
1.1	Carbon Dioxide Capture via Ash Carbonation	1
1.2	Problem Statement	3
1.3	Research Objective	4
1.4	Scope of Study	5
СНАР	TER TWO : LITERATURE REVIEW	6
2.1	Mineral Carbonation	б
2.2	Ash Carbonation	6
2.3	Ash Properties and Compositions	7
2.4	Methods of Carbonation	11
2.4	4.1 Direct Dry Carbonation	13
2.4	4.2 Direct Aqueous Carbonation	15

2.4.3	Indirect Carbonation	17			
2.5	Precipitated Calcium Carbonate				
2.6	2.6 Utilization of Mineral Ash				
CHAPTE	R THREE : MATERIALS AND METHODS	23			
3.1	Materials and Chemicals	23			
3.2	Equipment	23			
3.3	Project Management Plan	24			
3.4	Experimental Procedure	25			
3.4.1	Ash Preparation	25			
3.4.2	Preparation of POFA-Slurry	25			
3.4.3	Direct Aqueous Carbonation of POFA-Slurry	25			
3.4.4	Analysis	27			
3.4.5	Characterization of POFA	27			
CHAPTE	R FOUR : RESULTS AND DISCUSSION	28			
4.1 0	CO ₂ Capture Capacity	28			
4.1.1	The Effects of Calcination	28			
4.1.2	The Effects of Reaction Time	29			
4.1.3	The Effects of Reaction Temperature	31			
4.1.4	The Effects of Stirring Rate	33			
4.1.5	Summary on Effects of Different Operating Conditions	35			
4.2	Experimentation Method	35			
4.2.1	Equipment Comparison	35			

4.2.2	Microwave Synthesizer	37
4.3	Characterization of POFA	39
4.3.1	Optical Description	39
4.3.2	Surface Morphology	40
4.3.3	Surface Chemistry	42
CHAPTE	R FIVE : CONCLUSION	43
5.1 Conclusion		43
5.2 Recommendations		44
REFERENCES		45
APPENDICES		

LIST OF TABLES

Page

Table 2.1	Ash carbonation researches reported in literature	8
Table 2.2	Composition of different ash type	12
Table 2.3	Advantages and disadvantages of different carbonation methods	14
Table 2.4	CO ₂ storage capacity of direct and indirect wet-based application	19
Table 2.5	Application of different ash type	22
Table 3.1	List of chemicals used in ash carbonation experiment	23
Table 3.2	List of equipment used in ash carbonation experiment	24

LIST OF FIGURES

		Page
Figure 2.1	Basic principles of direct and indirect carbonation method	12
	(CaSiO ₃ as example)	
Figure 2.2	Basic principles of PCC production routes	21
Figure 3.1	Schematic flow diagram of experimental activities	24
Figure 3.2	Schematic diagram for open vessel configuration	26
Figure 4.1	Effect of calcination on carbonation performance	29
Figure 4.2	Effect of reaction time on carbonation performance at 30 $^{\circ}$ C	30
	and 150 rpm	
Figure 4.3	Effect of time on carbonation performance of un-calcined	31
	POFA at 30 °C and 150 rpm	
Figure 4.4	Effect of reaction temperature on carbonation performance for	33
	20 min at 150 rpm	
Figure 4.5	Effect of stirring rate on carbonation performance for 20 min	34
	at 30 °C	
Figure 4.6	Effect of equipment type on carbonation performance for 20	36
	min and at 60 °C and 150 rpm	
Figure 4.7	Effect of microwave synthesizer time on carbonation	38
	performance at 75 °C (stirred)	
Figure 4.8	Optical image of POFA (a) before; and after calcination at	40
	(b) 500 °C (c) 600 °C (d) 800 °C	
Figure 4.9	SEM micrograph of POFA (a) before calcination; (b) after	41
	500 °C calcination and (c) after 800 °C calcination (x100)	
Figure 4.10	FTIR spectrum of (a) un-calcined and (b) calcined POFA	42

LIST OF SYMBOLS

	Symbol	Unit
А	Arrhenius factor	-
Ea	Arrhenius activation energy	J/mol
K	Rate costant	-
M _{CO2}	Mass of carbon dioxide	g
Mpofa	Mass of palm oil fuel ash	g
R	Ideal gas constant	J/mol K
Т	Absolute temperature	Κ
T _B	Bulk temperature	Κ
T _i	Instantaneous temperature	Κ

LIST OF ABBREVIATIONS

AAS	Atomic absorption spectroscopy
CCS	Carbon dioxide capture and storage
CDIAC	Carbon Dioxide Information Analysis Centre
CFA	Coal fly ash
CO_2	Carbon dioxide
CPOA	Coarse palm oil fuel ash
EBT	Eriochrome Black T
EDTA	Ediaminetetraacetic acid
EFB	Empty fruit bunch
FA	Fly ash
FBC	Fluidized bed combustion
FGD	Flue gas desulphurization
FPOA	Fine palm oil fuel ash
FTIR	Fourier transform infrared
L/S	Liquid-to-solid
MEA	Monoethanolamine
MPOA	Medium palm oil fuel ash
MSWI	Municipal solid waste incinerator
OPA	Oil palm ash
PCC	Precipitated calcium carbonate
PCFA	Petroleum coke combustion fly ash
PI	Process intensification
POFA	Palm oil fuel ash

- rpm Rotation per minute
- SEM Scanning electron microscope

PENGKARBONAN ABU MENGGUNAKAN KARBON DIOKSIDA DISERAP OLEH KARBONAT

ABSTRAK

Peningkatan bahan cemar alam sekitar seperti karbon dioksida (CO_2) dan sisa kelapa sawit telah menjadi satu kebimbangan di Malaysia. Dalam usaha untuk mengurangkan bahan cemar terbabit, pengkarbonan abu minyak kelapa sawit (AMKS) menggunakan CO₂ dari kalium hidrogen karbonat (KHCO₃) telah diselidik pada situasi operasi dan setup yang berbeza. AMKS mentah telah dirawat terlebih dahulu melalui pengeringan, pengisaran dan pangkalsinan dan seterusnya dikarbonat oleh KHCO₃ dalam keadaan akueus menggunakan penangas air. Kesan pengkalsinan (500-800 °C selama 90 & 180 minit), masa tindak balas (2-30 minit), suhu tindak balas (30-75 °C) dan kadar pengadukan (100-250 rpm) juga dinilai. Pembolehubah terbaik yang diperoleh menggunakan pentitratan kompleksometri Ca²⁺ ialah pada 800 °C (180 minit) pengkalsinan, 75 °C (20 minit) tindak balas dan 250 rpm yang memberi penyerapan 0.0023, 0.0079 and 0.0043 g CO₂/g AMKS masing-masing. Menggunakan keadaan yang sama (60 °C), tindak balas pengkarbonan telah diulang dan dibandingkan menggunakan penggoncang inkubator dan pensintesis gelombang mikro dengan pelesapan haba yang berbeza. Pensintesis gelombang mikro merupakan peralatan terbaik untuk pengkarbonan, dengan penyerapan CO₂ sebanyak 0.0067 g/g AMKS. Pada 75 °C, AMKS telah berjaya menyerap 0.0098 g CO₂/g AMKS. Masa tindakbalas kemudiannya dipelbagaikan menggunakan pensintesis gelombang mikro yang menunjukkan prestasi yang tetap mulai minit ke-10. AMKS juga telah dicirikan menggunakan mikroskop imbasan electron (SEM) yang memaparkan pengurangan karbon dan bendasing di dalam abu setelah proses pengkalsinan.

ASH CARBONATION USING CARBON DIOXIDE CAPTURED BY CARBONATES

ABSTRACT

Rise of environmental pollutants such as carbon dioxide (CO₂) and oil palm waste have been a grave concern in Malaysia. In an effort to reduce the pollutants, carbonation of palm oil fuel ash (POFA) using CO₂ locked in potassium hydrogen carbonates (KHCO₃) was investigated at different operating conditions and setup. Raw POFA was first prepared by drying, grinding and calcining. After preparation, the ash was subsequently carbonated with $KHCO_3$ in aqueous condition using water bath shaker. The effect of calcination (500-800 °C at 90 & 180 min), reaction time (2-30 min), reaction temperature (30-75 °C) and stirring rate (100-250 rpm) were also evaluated. The best conditions obtained using complexometric titration of Ca²⁺ were at 800 °C (180 min) calcination, 75 °C (20 min) reaction as well as 250 rpm which have resulted in 0.0023, 0.0079 and 0.0043 g CO₂ captured/g POFA used respectively. Using similar operating conditions (60 °C), the carbonation reaction was repeated and compared using incubator shaker and microwave synthesizer with different heat dissipation. Microwave synthesizer demonstrates the best equipment to be used for carbonation, with CO_2 capture of 0.0067 g/g POFA. At 75 °C, POFA was able to capture 0.0098 g CO₂/g POFA. The reaction time was then varied for the microwave synthesizer which shows the constant performance starting from the 10th min. The POFA were characterized using scanning electron microscope (SEM) that shows a reduced carbon and impurities present in the ash after calcination.

CHAPTER ONE

INTRODUCTION

1.1 Carbon Dioxide Capture via Ash Carbonation

The world's population is expected to increase by 0.9 % from year to year. To meet the rising demands of energy consumption due to this population growth, the power plants are increasing their energy production through more combustion of fossil-fuel. As of the year 2001, 13.5 TW energy were consumed with 86 % of such energy coming from fossil fuel (Lewis and Nocera, 2006).

However, with the combustion of fossil fuel, carbon dioxide (CO_2) is expected to be released as a product. CO_2 which is a greenhouse gas have the ability to absorb reflected solar radiation; trapping and emitting them back to the earth's surface. As a result, heat is unable to escape the outer space causing rise in the planet's temperature (Raval and Ramanathan, 1989). This phenomenon is known as global warming. As a result, CO_2 emission rate is also expected to double from year 2001 to 2050 (Lewis and Nocera, 2006). Carbon Dioxide Information Analysis Centre (CDIAC) reported that the amount of atmospheric CO_2 to have reached 400 ppm in 2015 (Dlugokencky and Tans). CO_2 which is believed to be associated to global warming, can potentially cause adverse environmental, social and economic impacts. A greener solution has been long searched (Borhani et al., 2015).

 CO_2 is the major greenhouse gas emitted at global scale due to human activities. It is relatively higher than other gases amounting to 76% of global greenhouse gas emission in 2010 (IPCC, 2014). As of 2015, the global CO_2 concentration reaches 400 ppm with an increase of approximately 1.8 ppm per year. Through prediction of climate modelling, it is estimated that 450 ppm is the top cap of CO₂ concentration with 2034 being the expected end time (OECD, 2012). However, many leading scientists predicted that the safe CO₂ concentration level is only 350 ppm (Hansen et al., 2013). At the 15th Conference of Parties, Malaysia's current Prime Minister, Datuk Seri Najib Tun Razak announced that Malaysia will take steps for a voluntary reduction of up to 40% in terms of emissions intensity of GDP by the year 2020 compared to 2005 levels (COP15, 2009). In order to achieve such target, intensive carbon emission controls have to be implemented by the Malaysian society.

Although CO_2 is one of the major greenhouse gases, it is still useful in several industrial applications such as in urea production, methanol synthesis and as natural refrigerants (Borhani et al., 2015). Hence, a proper CO_2 capture and storage (CCS) technology that is not only cost-effective but also environmentally friendly must be employed. The modern CCS consists of three basic stages of CO_2 separation, transportation and storage. The CO_2 separation can be further classified into precombustion, oxy-fuel combustion and post-combustion capture (Wang et al., 2015). These capture methods including absorption, adsorption and membranes have been implemented to reduce the carbon emission (Zhang and Lu, 2015).

Absorption using amine has been established more than 60 years in oil and chemical industries. Although use of chemical absorbent such as monoethanolamine (MEA) is considered a benchmark of the field, it raises serious drawbacks including strong equipment corrosion rate and high energy requirement during regeneration (Borhani et al., 2015; Wang et al., 2015; Zhang and Lu, 2015; Saeed and Deng, 2016). Therefore, carbonate absorption method is introduced and offers an alternative to a reduced energy in CO_2 capture.

Carbonate absorption uses the alkaline components (absorbent) such as Ca, Mg, Na and K, where the CO₂ absorbed is incorporated into its chemical compounds. It provides easier regeneration, lower solvent cost as well as lower toxicity (Borhani et al., 2015). There are two routes for carbonation namely direct and indirect route (He et al., 2013). The former route directly injects the raw source materials into the carbonation process whereas needed alkaline components are extracted from source materials prior to carbonation for the latter route (Han et al., 2015). Additionally, carbonation can be divided into dry and wet processes.

Different materials are suitable for carbonation, for example silicate rocks, serpentine, olivine minerals, slag and ash (Mazzotti et al., 2005). In this case, ash is used due to its cheap and easy availability, thus able to meet requirements for large quantity treatment (Guo et al., 2015). Several CO₂ carbonation based on solid residue has been studied which includes municipal solid waste incinerator (MSWI) bottom ash, fluidized bed combustion (FBC) ash, flue gas desulphurization (FGD) spray dryer ash and fly ash (FA) (Huijgen and Comans, 2005).

1.2 Problem Statement

Ash carbonation can be performed by direct dry as well as direct and indirect aqueous route. From previous studies, direct dry routes are generally used due to its simplicity in reaction and heat generation. However, its slow reaction rate and low carbonation ratio makes it less favourable (Han et al., 2015). Indirect carbonation route enables production of purer precipitated calcium carbonate (PCC) that has an added market value (Eloneva, 2010). Unfortunately, it is considered to be energy and chemical intensive (Bobicki et al., 2012). On the other hand, direct aqueous carbonation have recorded high carbonate conversions and acceptable reaction rates in majority of its studies. Even though it is deemed as energy intensive due to the pretreatment processes, many researchers thought this route to be the most promising technique for CO₂ mineralization (Bobicki et al., 2012). Wood ash such as palm oil fuel ash (POFA) is also favoured as it is recognized as an environmental pollutant hence solving two pollution problems simultaneously (Guo et al., 2015). Various studies have been done in order to evaluate the performance of ash carbonation on CO₂ capture. Majority of the study done is to investigate the effects of different parameters change such as solid-to-liquid ratio, reaction time as well as extraction agent type and concentration on the carbonation efficiency (He et al., 2013; Han et al., 2015; Guo et al., 2015; Rendek et al., 2016). Studies in other important parameters such as effect of ash calcination temperature, carbonation reaction temperature and stirring rate are lacking.

Conventionally, the carbonation process is done using either a water bath or simple reactor system to supply the required heat and mixing to the reaction (He et al., 2013; Guo et al., 2015; Han et al., 2015). All of this methods apply a conventional heating process with an external heat source. This method is slow and inefficient method of transferring energy compared to microwave–accelerated heating which uses microwave irradiation (Hayes, 2004).

1.3 Research Objective

The main objectives of this research are:

i. To study the CO₂ storage capacity of direct aqueous carbonation route of POFA at different operating parameters.

ii. To compare the ash carbonation performances using different experimental setups namely water bath shaker, incubator shaker as well as microwave synthesizer.

1.4 Scope of Study

In this work, the POFA was used to capture CO₂ from carbonates. The POFA was prepared physically via drying, grinding and sieving to allow better contact and reaction between the ash and carbonates. The POFA was calcined (500-800 °C), mixed with carbonates and allow to react at different time. At the optimum time achieved for carbonation of POFA, the experiment was proceeded at varying temperature (30-75 °C) and stirring rate (100-250 rpm) using a water bath shaker. The best operating parameters were then used for subsequent experiments. Using similar parameters from previous part, the carbonation efficiency of POFA with carbonates was then determined using incubator shaker and microwave synthesizer. The time of reaction was varied once again using the best mode of carbonation to determine its optimum value.

CHAPTER TWO

LITERATURE REVIEW

2.1 Mineral Carbonation

Mineral carbonation is a reaction whereby CO_2 is fixed to metal oxide-bearing minerals (Ca, Mg and etc.) to form a stable carbonate as the end product. CO_2 mineral carbonation or sequestration is a technique first mentioned in 1990 by Seifritz (1990). He suggested that we should copy a natural phenomenon which involves the reaction between atmospheric CO_2 and water to form soluble carbonic acid that forms insoluble carbonates with alkaline rocks subsequently. Following that, the first major research on mineral carbonation was later developed by Lackner et al (1995).

Calcium carbonate is the thermodynamically stable product of mineral carbonation (Newall et al., 200). Thus, CO₂ can be stored for a very long time without the necessary of CO₂ monitoring (Lackner, 2003). However, mineral carbonation is exothermic in overall, requiring a large amount of additives or energy to speed up the reaction (Eloneva, 2010). Due to recent alarming development in global warming, many studies have been conducted to curb the problem particularly by carbon capture. One of the technologies that received much attention is mineral carbonation using solid residue such as ash.

2.2 Ash Carbonation

In general, calcium and magnesium oxides or hydroxides are the most suitable raw materials for storing CO_2 through mineral carbonation. Unfortunately, these resources are too rare in nature for any large-scale CO_2 sequestration (Eloneva, 2010). Therefore, other readily available source of raw materials had been widely researched for mineral carbonation process. Currently, industrial waste materials, such as steelmaking slags, de-inking ash from paper recycling, ashes from various power plants and MSWI had been considered (Eloneva, 2010). Industrial wastes are also favourable as they tend to be more reactive than natural minerals (Teir et al., 2007).

Several studies have proven that usage of FA can successfully capture CO₂ during the carbonation reaction (Soong et al., 2006; Ukwattage et al., 2013; González et al., 2014; Dananjayan et al., 2016). Valuable carbonate products have also been successfully produced due to the presence of alkaline components present inside the ash. Similarly, bottom ash (Rendek et al., 2006) and biomass ash (Guo et al., 2015) also showed positive CO₂ captured by these ash. Bottom ash from MSWI was able to capture CO₂ generated from aerobic respiration of microorganisms inside the wastewater potentially eliminating the need of disinfection in wastewater treatment plant. Table 2.1 shows various ash used for the carbonation reaction.

2.3 Ash Properties and Compositions

The characterisation of ash is important to determine the success of carbonation. The ash availability, properties, compositions, solubility and reactivity must be taken into detailed consideration. The physical size of the ash plays an important role in its pozzolanic properties. Coarser particle size ash leads to a weak pozzolanic material that will not affect much on its application as a cement additive (Al-mulali et al., 2015).

FA is a fine, powdery particles that is spherical in shape. It is mostly amorphous in nature; and can be either solid or hollow. The particle size distribution of a CFA is usually less than 75 micron. FA surface area may vary from 170 to 1000 m²/kg and

2.1 to 3.0 in specific gravity (Ahmaruzzaman, 2010). Amount of unburned carbon in the ash result in variation from tan to black colour of the ash. On the other hand, POFA or oil palm ash (OPA) is produced due to the incineration of palm oil biomass. Similar to FA, amount of carbon present affects the visual of the ash. Lower burning temperatures leads to a black to dark grey colour due to the high amount of unburned carbon. Increasing the burning temperature causes a lighter coloured ash production. POFA is a large particle sized substance with a porous texture. Due to its large size, grinding process is needed to produce a smaller size. This will increases both the finesse and specific gravity of the ash (Al-mulali et al., 2015).

Type of Ash	Remarks	Reference
FA	Two years old coal fly ash (CFA)	Dananjayan et al., 2016
	from a power plant	
	Petroleum coked fly ash from power	González et al., 2014
	plant in Chile	
	Combustion of Victorian brown coal	Ukwattage et al., 2013
	Victorian brown CFA from an	Sun et al., 2012
	electrostatic precipitator	
	Co-utilizes brine and FA from coal	Grace et al., 2012
	burning power plant	
	Class C FA and FGD FA	Soong et al., 2006
Bottom ash	From a mass burn MSWI in France	Rendek et al., 2006
Wood ash	Various preparation methods deriving	Guo et al., 2015
	from broad-leaved tree, rice stalks,	
	wheat and sunflower	

 Table 2.1
 Ash carbonation researches reported in literature

Ash can be categorized differently based on the techniques used for its handling and storage. Generally, its properties depend on the heating value, chemical composition, ash content and geological origin. Commonly, the major components of FA consists of silica (SiO₂), aluminium (Al₂O₃), iron (Fe₂O₃) and calcium (CaO). (Ahmaruzzaman, 2010). In contrast, biomass ash varies depending on type of biomass, type of soil and harvesting. Different sources produce ashes with different characteristics. In general, calcium (Ca), potassium (K), sodium (Na), silicon (Si), and phosphorus (P) are abundant. Certain ash such as rice husk are rich in silicon whereas wood ash has high alkali metal content. Similarly, POFA differs in properties based on its production process. In order to obtain its optimal condition, prior processing is required to remove any impurities present. Firstly, POFA needs to be sieved in order to obtain ash particles without any unburned fibres and to increase its pozzolanic reactivity. Unburned carbon can also be removed via heating in an electrical furnace (Al-mulali et al., 2015).

In 2006, Soong et al. (2006) studied the CO₂ sequestration using FA and brine solution. In this study, FA taken from Lignite, Freeman, Columbia, Waukegan, Muskogee and Montose in United States were used. Detailed analysis done using ICP-AES shows diverse compositions, but with generally higher amount of SiO₂ and CaO in all ashes. Due to the presence of CaO, Ca(OH)₂ is formed when exposed to brine. As it is readily oxidize, OH⁻ is released and produced CaCO₃ in presence of CO₃²⁻. A study by Rukzon and Chindaprasirt (2009) was done for POFA from a power plant in south of Thailand. XRD analysis for three different sample of coarse (CPOA), medium (MPOA) and fine POFA (FPOA). The analysis shows major composition of SiO₂ (64.5, 62.8 and 63.6 %) followed by CaO (7.8, 7.7 and 7.6 %). As the CaO content increases, more CaO can be used as the cement additives. Thus, strength of the cement

can be improved. Another study on interaction between CO₂ and MSWI bottom ash is done by Rendek et al. (2006). Major elements of the MSWI from Lyon, France analysed is SiO₂ (49.3 wt. %) and CaO (16.3 wt. %) using both ICP-AES and ICP-MS. As CO₂ is released from respiration of microorganisms in wastewater, CaO from the bottom ash are able to be self-carbonated to form CaCO₃. Hence, two major environmental problems were suggested to be solved. In 2012, Sun et al. (2012) tested a dry sample CFA collected directly from an electrostatic precipitator in Victoria, Australia. The sample contains mainly 29.7 wt. % CaO and 25.5 wt. % MgO. High amount of CaO compared to MgO aid in the formation of CaCO₃ compared to magnesium carbonate. From this study, it is stated that increasing the CO₂ concentration also lead to more calcium carbonation than magnesium.

 CO_2 sequestration via indirect carbonation of CFA was conducted by He et al (2013). During this study, FA sample from China was used and analysed using XRF and XRD to give major compositions of 30.47 wt. % CaO and 20.64 wt. % SiO₂. The presence of SO₃ indicates that part of CaO occurs as sulphate. In 2014, CO_2 carbonation using petroleum coke combustion fly ash (PCFA) taken from Chile was evaluated by González et al. (2014). Using ICP-MS and ICP-AES, 34.1 % Ca was detected as the main element. Guo et al. (2015) has done a study on CO₂ capture and sorbent regeneration performances of wood ashes in 2015. In his study, five samples of wood ashes were obtained from dry stalks of rice, wheat, sunflower as well as branches and leaves of broad-leaved trees. All the samples were prepared by either sampled from biomass-fired power plants, collected from farmers or prepared manually. Composition analysis of wood ash using XRF shows similar elements present but with varying amount. Si content was noted to be higher in stalks of rice or wheat. On the other hand, broad-leaves tree and sunflower is highly enriched in Ca

while content of K is higher in stalks of sunflower. Combustion temperature was also noted to have an effect in its composition. At high temperature, losses of silica and silicates is minimum leading to higher SiO₂ component compared to the rest. Different compositions can then lead to formation of various carbonate end products. A CFAwater solution system indirect mineral carbonation's performance was also recently done by Han et al. (2015). In this experiment, FA generated from South Korea was used as raw material with water as the solvent. The element composition calculated based on EDX recorded 42.28 mg Ca/g fly ash as its main composition. Based on its findings, not all CaO from the FA will be carbonated to CaCO₃. Other carbonate materials such as tetra calcium aluminium carbonate was also found during the product analysis. Table 2.2 below summarizes the analytical results of various studies done.

2.4 Methods of Carbonation

Currently, mineral carbonation research is mainly at the level of laboratoryscale research. Figure 2.1 illustrates the two basic mineral carbonation process concepts that is direct and indirect methods. Various pre-treatment methods, such as grinding, heat activation, magnetic separation, and surface activation, have been suggested in order to speed up the carbonation rate.

In direct methods, the mineral is carbonated in just a one step process. The raw source materials which contain alkaline components (Ca or Mg) can be directly reacted with CO_2 . Direct gas-solid method is generally preferred as it is simple and cheap. Not only that, it is possible to upgrade the waste material to a more useful product. However, since the process is one step, it is unlikely for the product to be a pure carbonate and usually require a high pressure CO_2 (Eloneva, 2010). The direct method can be further classify into direct dry and direct aqueous routes.

Type of Ash	Analysis	Major composition	Reference
	Method		
CFA	EDX	42.28 mg Ca/g fly ash	Han et al., 2015
Wood ash	XRF	Si, Ca and K	Guo et al., 2015
PCFA	ICP-MS and	Ca (34.1%)	González et al., 2014
	ICP-AES		
CFA	XRF and	CaO (30.47 wt. %)	He et al., 2013
	XRD	SiO ₂ (20.64 wt. %)	
Victorian	-	CaO (29.7 wt. %)	Sun, et al., 2012
brown CFA		MgO (25.5 wt. %)	
POFA	XRD	SiO ₂ (62.8-64.5 %)	Rukzon and Chindaprasirt,
		CaO (7.6-7.8 %)	2009
MSWI	ICP-AES	SiO ₂ (49.3 wt. %)	Rendek et al., 2006
bottom ash	and ICP-MS	CaO (16.3 wt. %)	
FA	ICP-AES	SiO ₂ and CaO	Soong et al., 2006

Table 2.2Composition of different ash type

Figure 2.1 Basic principles of direct and indirect carbonation method (CaSiO₃ as example) (Eloneva, 2010)

In indirect methods, the reactive, alkaline element is first extracted from the ash prior to carbonation. Due to use of extraction agents, dry raw materials cannot be used in this route. It is a more favourable route since the end product of indirect mineral carbonation is usually a high purity PCC which is very valuable (He et al., 2013) due to its prior removal of the reactive element. However, additional chemicals for the extraction is needed in this route. Brief pros and cons of both carbonation routes are concluded in Table 2.3.

2.4.1 Direct Dry Carbonation

Ash and other additives are used as direct CCS materials in the dry process. The ash is used to support the catalytic sorbent for CO_2 capture and as a raw material of zeolite. Dry sorbents can be effectively used for CO_2 capture as the sorbents are generally regenerated. In this method, dry solid is directly bubbled with CO_2 gas at suitable operating conditions.

In 2010, Olivares-Marín et al. (2010) utilizes SiO_2 in FA to produce Li_4SiO_4 via solid state method. The Li_4SO_4 was then reacted with CO_2 at 950 °C as shown:

$$Li_4SO_4 + CO_2 \rightarrow Li_2SiO_3 + Li_2CO_3$$
(2.1)

The authors claimed that the sorbent regeneration improved but at the cost of capture performance. Addition of carbonates (K_2CO_3) also enhances the capture capacity up to 600 °C.

Method	Route	Ash Used	Advantages	Disadvantages
Direct	Gas-solid	Silicate	Upgrading of the	Slow with natural
		minerals	waste material	minerals
		MSWI ash		
	Aqueous	Silicate	Simple process	End product not
		minerals		pure carbonate
		Steel slag		High pressure
		Oil shale ash		Require pure CO ₂
Indirect	Gas-solid via	Silicate	High heat produced	Heat requirement
	Mg(OH) ₂	minerals		of Mg(OH) ₂
				production
	Acid solvent	Silicate	Reactive element	Requires addition
		minerals	extracted efficiently	of base
			Pure end product	
	Caustic	Silicate		Consumes
	alkali-metal	minerals		chemicals
	hydroxide			
	Acid-base	Steel slag	Pure end product	
	salt			
	Pressure	Waste	Pure end product	Requires pure CO ₂
	change	cement		

 Table 2.3
 Advantages and disadvantages of different carbonation methods

A direct FA-flue gas carbonation reaction was performed by Reddy et al. (2011) in a pilot-scale plant. The results showed a CO_2 decrease from 13 % to 9.6 %. It is claimed that the CO_2 in the flue gas will react with Ca in the FA to generate CaCO₃ and various other carbonates. The study shows that 90% of the CO₂ emitted was captured, which compares to a CO₂ storage capacity of 0.207 g CO₂/g of FA. In 2015, Guo et al. (2015) uses wood ash to capture CO₂. At the end of carbonation process, the

(Eloneva, 2010)

maximum capacity of 0.54 mmol CO_2/g was achieved. After that, the effects of reaction conditions such as temperature, H₂O concentration and gas flow rate were also studied. The results show that increasing the concentration and temperature will raise up the capacity whereas increasing the reaction temperature will cause the opposite effect.

Although the process is relatively simple, this direct gas-solid reaction is too slow even at optimized conditions (Bobicki et al., 2012). As mentioned earlier, the product of is not a pure carbonate making it a valueless product that can only be disposed in a landfill or sometimes used in construction sectors.

2.4.2 Direct Aqueous Carbonation

In contrast to the direct dry method, direct aqueous mineral carbonation reacted the CO₂ with aqueous alkaline material in a single stage. The CO₂ will react with water forming bicarbonate ion. This ion will then react with metal ion contained inside the mineral ash to produce carbonate precipitate. The operating conditions such as temperature and pressure plays an important role in this route (Bobicki et al., 2012). Optimizing these parameters can easily lead to a high carbonate conversion and reaction rate. Despite its many advantages, this route is considered too expensive to be utilized in large scale due to the required pre-treatment process which is very energy intensive. However, many studies have been done with reduced energy requirement but with similar advantages.

In 2008, Back et al. (2008) studied the mineral carbonation of alkaline lignite FA with CO_2 in aqueous state at varying conditions such as CO_2 concentration and temperature. From their findings, it is found that the carbonation occurs at three stages.

During the first stage, Ca and CO₂ begins to dissolve, initiating CaCO₃ formation. In the second stage, carbonation process was dominant while formation of bicarbonate occurs during third stage. The CO₂ dissolution in first stage is determined to be the rate controlling step. Reaction time and acidity was manipulated to enhance the CO₂ capture. From the mechanism, the CO₂ capture was calculated to be 90% of the acid neutralizing capacity value of FA. In addition, the carbonation CaCO₃ conversion efficiency was over 75%.

Montes-Hernadez et al. (2009) investigated the CO₂ storage capacity of coal combustion FA-water slurry conducted in an autoclave. The reaction was first done by dissolving CaO in the FA with water. This leads to a rapid carbonation to produce CaCO₃. The study claimed that carbonation efficiency is independent of initial CO₂ pressure. Reaction temperature and L/S ratio also does not affect the efficiency significantly. The best conversion was found to be 82 % with CO₂ storage capacity of 0.026. It is stated that CO₂ sequestered is smaller when compared to using steel slag. In similar year Uliasz-Bocheńczyk et al. (2009) researched on the mixed slurry of water and lignite FA. The results yield that the CO₂ storage capacity was very strongly dependent on the reaction time with highest storage capacity of 0.055 at 24 h. The authors stated that FA is a good material for CO₂ sequestration by means of mineral carbonation as well as solve problem of deposition of carbonation products.

By manipulating the L/S ratio, Ukwattage et al. (2013) researched on use of CFA on carbonation reaction. Temperature and time was kept constant at 40 °C and 12 h respectively. From the findings, zero moisture lead to an insignificant carbonation reaction at low duration. However, by increasing the moisture content, the carbonation reaction can proceed efficiently but then decreases gradually after a set point. It is also claimed that the ash can potentially reduce mass quantity of CO_2 emitted by power

plant annually. González et al. (2014) conducted carbonation with aqueous PCFA. PCFA were first blended with deionized water before being contacted with CO₂. Resulting experiments show that the carbonation efficiency reaches 84 %. However, according to the study, specific optimizations have to be done prior to achieving this value.

2.4.3 Indirect Carbonation

For this aqueous technology, two or more stages are required for the mineral carbonation. Usually, alkaline components in FA are first leached out by using aqueous (acidic or other solvents) solution and then reacted with CO₂ in either gas or aqueous state during the carbonation reaction. Numerous technologies can be used as the extraction agent such as HCl extraction, molten salt process, bioleaching, ammonia extraction and caustic extraction (Bobicki et al., 2012).

For FA-brine carbonation by Soong et al. (2006), presence of CaO in both ash and brine allow formation of CaCO₃ when reacted with CO₂. The data presented a high purity of CaCO₃ product generated (>90 wt. %). However, no calculation was performed on its capacity to store CO₂. According to the study, both single and multistage process can be done to achieve formation of CaCO₃ from CO₂ sequestration. However, using extraction process (NaOH), more CO₂ can be sequester. The study implied that CaO in the FA contributes to the carbonation process.

A study by He et al. (2013) for indirect aqueous carbonation of CFA was done in 2013. During extraction, different agents that is NH₄Cl, NH₄NO₃ and CH₃COONH₄ were used with the latter being the most efficient. The effect of temperature and concentration lead to increased extraction efficiency. During carbonation, reaction with NH₄HCO₃ instead of CO₂ yields a higher product purity of 97-98 %. The NH₄HCO₃ used was formed in the ammonia–water CO₂ capture process. From the research, increasing temperature and agent concentration increases the extraction performance which in turn increases the carbonation efficiency. Similar effect can be seen when increasing the L/S ratio. Replacing the conventional method of bubbling CO₂ with aqueous hydrogen carbonate (HCO₃) also improves the carbonation efficiency and CO₂ capture. The authors note that applying this technology to an ammonia-water CO₂ capture facility can help in on-site application.

Han et al. (2015) stated in their research on CFA that both the extraction and carbonation reactions were carried out in ambient temperature and pressure. 15 and 33 mol % CO₂ were supplied for the carbonation process. It is found that both leaching and carbonation efficiency increases with increasing CO₂ concentration. The performance of the FA suspension solutions was found out to be higher than the filtrate as the mineral carbonation was carried out simultaneously with the leaching. They also declared that the process has great potential to be applied on-site such as in CFPP, cement and steel industries. Table 2.4 below demonstrates storage capacity of ash carbonation both direct and indirect aqueous carbonation.

Carbonated System	Liquid/Solid	Operating Condition	Storage Capacity	Reference
	(L/S) Ratio (g/L)		$(g CO_2 / g ash)$	
FA-brine solution ^a	-	20 °C, 1.36 MPa, 2 h	-	Soong et al., 2006
CFA-water slurry ^b	0-0.7	40 °C, 3-6 MPa, 12 h	0.00766	Ukwattage et al., 2013
FA-water slurry ^b	100	30-60 °C, 40 bar,	0.026	Montes-Hernandez et al., 2009)
		450 rpm, 2 h		
CFA-water slurry ^a	50	25 °C, 300 rpm, 2 h	0.0311	Han et al., 2015
Lignite FA-water slurry ^b	1.5 (w/w)	35 °C, 1 MPa, 24 h	0.055	Uliasz-Bocheńczyk et al., 2009
CFA ^a	20	25 °C, 1 atm, 500	0.111	He et al., 2013
		rpm, 2 h		
PCFA-deionized water ^b	12	90 °C, 600-1500	0.21	González et al., 2014
		rpm, 10-90 min		
Lignite FA-water slurry ^b	50	25-75 °C, 0.01-0.03	0.23	Back et al., 2008
		MPa, 600 rpm, 4.5 h		

Table 2.4CO2 storage capacity of direct and indirect wet-based application

a Indirect carbonation

b Direct carbonation

2.5 Precipitated Calcium Carbonate

Due to high calcium content of ash, the carbonate product would typically consist of CaCO₃. The produced CaCO₃ can potentially replace limestone used in industries and be sold at a high price if meeting its standard. Natural CaCO₃ is used for varying purposes such as manufacturing concrete, producing lime, glassmaking, water treatment or flue gas desulphurization. Synthetic or PCC can be used as a filler and coating pigment in plastics, rubbers, paints, and papers.

The advantage of PCC over limestone is that the properties of the produced calcium carbonate can be controlled. The CaCO₃ content of PCC is generally higher while the SiO₂ and MgO contents are lower in the limestone (Eloneva, 2010). The utilization of ash to replace limestone in PCC industry can save material resources, reduce CO₂ emissions, and solve problem of waste ash abundance all together.

Referring to Figure 2.2, there are three basic methods to produce PCC; namely the carbonation process, lime-soda process, and calcium chloride-sodium carbonate double salt decomposition process (Casey, 1983). All of these methods use milk of lime (Ca(OH)₂) produced from limestone (CaCO₃) by calcination and slaking.

At high temperature, limestone is decomposed into lime (CaO) and CO₂ gas. Ca(OH)₂ is then produced by slaking the CaO in water. The purity, activity, particle size, concentration, and temperature of the Ca(OH)₂ will affect the quality of the PCC (Eloneva, 2010). Since ash already contains significant amount of CaO, the calcination can be skipped altogether leading to a more effective PCC production.

In carbonation process, Ca(OH)₂ is bubbled with CO₂ producing CaCO₃. The lime soda process uses sodium carbonate (Na₂CO₃) to react with milk of lime to produce CaCO₃ and sodium hydroxide (NaOH). However, recovery of NaOH result in unsuitable practice. Milk of lime is first reacted with ammonium chloride (NH₄Cl) to produce calcium chloride (CaCl) during the double salt decomposition process. The CaCl is then reacted with soda ash solution producing $CaCO_3$ and sodium chloride (NaCl).

Figure 2.2 Basic principles of PCC production routes (Eloneva, 2010)

2.6 Utilization of Mineral Ash

Currently, FA is widely used as a cement additive. SiO₂ and Al₂O₃ in FA will react with slaked lime and water according to the Pozzolan reaction when FA is mixed with the Portland cement. As a result, calcium silicate and calcium aluminate hydrates are produced. These substances can considerably increase the resistance and strength of the cement (Wee, 2013). Besides cement additive, FA can also be used for the purpose of ceramic balls for water purification, zeolite synthesis, polish materials of steel plate, anti-flaming, building and fill materials. Nonetheless, these applications does not have much impact in terms of CO_2 emission reduction.

Conversely, POFA which originated from the incineration of palm oil empty fruit bunch (EFB) and fibres can be used as a soil fertilizer due to its high potassium content (Al-mulali et al., 2015). In addition, POFA is also used as low cost adsorbent for gaseous pollutants (Mohamed-Noor et al., 2004; Lee et al., 2005) as well as an absorbent for dispersed dyes in an aqueous solution (Chu and Hashim, 2002). Similar to FA, POFA can also be used as supplementary cementing material (Chindaprasirt and Rukzon, 2009). Table 2.5 shows the applications of the industrial waste ash.

Ash Type	Application	Reference
FA	Cement additive	Wee, 2013
	Water purification, zeolite	Wee, 2013
	synthesis, polish materials, anti-	
	flaming, building and fill	
	materials	
POFA	Solidification/stabilization of	Yin et al., 2008
	nickel hydroxide	
	Removal of flue gas	Mohamed-Noor et al., 2004;
	contaminants	Lee et al., 2005
	Removal of zinc ions	Chu and Hashim, 2002
	Cement additives	Chindaprasirt and Rukzon, 2009

Table 2.5Application of different ash type

CHAPTER THREE

MATERIALS AND METHODS

3.1 Materials and Chemicals

In this study, POFA was used as raw material for the ash carbonation reaction with potassium hydrogen carbonates (KHCO₃) used as the source of CO₂. Ediaminetetraacetic acid (EDTA), Eriochrome Black T (EBT) and potassium chloride (KCl) were used in complexometric titration of the carbonated solution for determination of Ca²⁺ content. Table 3.1 shows the list of chemicals used throughout the experiments.

Chemicals	Purity	Supplier
POFA	-	Palm Oil Mill Boiler in Selangor, Malaysia
KHCO ₃	>99 %	R&M Chemicals
EDTA	98 %	Ajax Chemicals
EBT	65 %	Sigma Chemical Company
KCl	99.5 %	R&M Chemicals

 Table 3.1
 List of chemicals used in ash carbonation experiment

3.2 Equipment

Oven, grinder and sieve shaker were used to prepare the POFA to the desired conditions while furnace was used to calcine the ash. Three equipment settings were used for carbonation reaction that is water bath shaker, incubator shaker and microwave synthesizer. Finally, scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the POFA. The list of equipment and its general use is tabulate in Table 3.2 below.

Equipment	Purpose
Oven	Drying of POFA
Grinder	Grind POFA to smaller size
Sieve shaker	Sieve only desired size of POFA to be used
Furnace	Calcination of POFA
Incubator shaker	Setting for carbonation reaction
Water bath shaker	Setting for carbonation reaction
Microwave synthesizer	Setting for carbonation reaction
SEM	Characterization of POFA
FTIR	Characterization of POFA

Table 3.2List of equipment used in ash carbonation experiment

3.3 Project Management Plan

The overall experimental activities will be carried out as presented below.

Figure 3.1 Schematic Flow Diagram of Experimental Activities