
i

SIMULATION OF PATH OPTIMISATION ALGORITHMS

SIM CHOON YEE

UNIVERSITI SAINS MALAYSIA

2017

ii

SIMULATION OF PATH OPTIMISATION ALGORITHMS

by

SIM CHOON YEE

Thesis submitted in fulfilment of the requirements

for the degree of

Bachelor of Electronic Engineering

JUNE 2017

iii

ACKNOWLEDGEMENT

Firstly, I will like to express my utmost gratitude to Dr. Nur Syazreen Ahmad,

my thesis advisor, and project supervisor, for providing me guidance and advice time to

time until the stage of the completion of this thesis. Her guided direction and constant

discussion have allowed this thesis to be completed successfully.

Secondly, I will like to thank to the School of Electrical and Electronic

Engineering for giving me this opportunity to apply the engineering knowledge in this

thesis and future work.

Lastly, my gratitude is extended to my family and friends, who have supported

all the way through this academic life.

iv

TABLE OF CONTENTS

TABLE OF CONTENTS

ACKNOWLEDGEMENT……………………………………………………………iii

TABLE OF CONTENTS…………………………………………………………… iv

LIST OF TABLES…………………………………………………………..……… vii

LIST OF FIGURES………………………………………………………………… viii

ABSTRAK………………………………………………………………………… x

ABSTRACK……………………………………………………………………… xi

1 INTRODUCTION 1

1.1 Overview 1

1.2 Problem Statement 1

1.3 Objective 2

1.4 Scope of Project 2

1.5 Thesis Organisation 3

2 LITERATURE REVIEW 4

2.1 Introduction 4

2.2 Background Study On Breadth First Algorithm (Queue) 4

2.3 Background Study of Depth First Search Algorithm (Stack) 6

2.4 Background Study On Dijkstra’s Algorithm 8

2.5 Background Study on Greedy Algorithm 10

2.6 Background Study On A* Algorithm 11

2.7 Varying Method Of Calculating H (Heuristic) Costs In A* Algorithm 12

2.8 Summary of Algorithm 16

2.9 Summary of Literature Review 17

3 METHODOLOGY 18

3.1 Introduction 18

v

3.2 Project Implementation Flow 18

3.3 Project Requirement 19

3.3.1 Data Collection And Measurement Methods 19

3.3.2 Methodology: Pathfinding Algorithm Implementation (A* Algorithm) 20

3.4 Data Analysis 22

3.5 Summary of Methodology 22

4 RESULTS AND DISCUSSION 23

4.1 Introduction 23

4.2 Initialization of Environment 23

4.3 Explanation example of simulations 23

4.4 Algorithm Implementation 24

4.5 Data benchmark 24

4.6 Results of grid environment 25

4.7 Comparison between A*, Dijkstra and Greedy algorithm 26

4.7.1 Results of Unidirectional Searching 26

4.7.2 Discussion of Unidirectional Searching 26

4.8 Comparison between A*, Dijkstra and Greedy algorithm with Replanning 27

4.8.1 Results of affected area of Second map simulations 27

4.8.2 Results of Unidirectional Searching Second map Simulations 27

4.8.3 Results of Unidirectional Searching with Replanning 28

4.8.4 Discussion of comparison between Unidirectional Searching on second

map and Unidirectional Searching on first map with Replanning on second map 28

4.9 Comparison between A*, Dijkstra and Greedy algorithm with Bidirectional 30

4.9.1 Results of Bidirectional Searching on first map 30

4.9.2 Discussion of comparison between Bidirectional Searching and

Unidirectional Searching 30

4.9.3 Discussion on the advantages of Bidirectional Searching 31

vi

4.10 Comparison between A*, Dijkstra and Greedy algorithm with Bidirectional,

Bidirectional and Replanning. 32

4.10.1 Results of Bidirectional Searching without Replanning on second map 32

4.10.2 Results of Bidirectional Searching with Replanning on second map 33

4.10.3 Discussion of comparison between Bidirectional Searching,

Unidirectional Searching with Replanning and Bidirectional Searching with

Replanning 34

4.11 Limitations of the simulations 34

4.12 Summary of Results and Discussion 34

5 CONCLUSION 35

5.1 Future work 35

6 APPENDIX 36

6.1 Unidirectional Searching Results (Maps) 37

6.1.1 Unidirectional searching Algorithm on first map 37

6.1.2 Simulation results of unidirectional searching 38

6.1.3 Affected area of second map simulations 39

6.1.4 Unidirectional searching Algorithm (second map) without replanning 41

6.1.5 Unidirectional searching Algorithm (second map) before replanning 42

6.1.6 Unidirectional searching Algorithm (second map) after replanning 43

6.2 Bidirectional Searching Results (Maps) 44

6.2.1 Results of Bidirectional Searching Algorithm on first map 44

6.2.2 Affected area of second map simulations 45

6.2.3 Bidirectional Searching Algorithm (second map) without replanning 47

6.2.4 Bidirectional searching Algorithm (second map) before replanning 48

6.2.5 Bidirectional searching Algorithm (second map) after replanning 49

6.3 Matlab Code for A* algorithm 50

7 REFERENCES 55

vii

LIST OF TABLES

Table 4-1 Analysed Results of Unidirectional Searching 26

Table 4-2 Effect of random walls towards Nodes Searched 27

Table 4-3 Analysed Results of Unidirectional Searching on second map 27

Table 4-4 Analysed Results of Unidirectional Searching with Replanning 28

Table 4-5 Analysed Results of Bidirectional searching 30

Table 4-6 Analysed Results of Bidirectional Searching on second map 32

Table 4-7 Analysed Results of Bidirectional Searching with Replanning on second map

 33

viii

LIST OF FIGURES

Figure 1-1 Example of nodes and lines (self-drawn) 1

Figure 2-1Breadth First Search Example 4

Figure 2-2 Depth First Search Example 6

Figure 2-3 Showing the pseudocode of Dijkstra algorithm[6] 8

Figure 2-4 Showing UCS is the subset of Dijkstra 9

Figure 2-5 UCS algorithm: Concerning about the edges cost 9

Figure 2-6 Greedy Algorithm: Decision making based on Heuristic score 10

Figure 2-7 Cost of each tile (self-drawn) 11

Figure 2-8 Euclidean Distance 13

Figure 2-9 shows that (left) is the shortest path for A* while (right) is the shortest path

without limiting the angle of reaching each vertex, namely A*PS method 14

Figure 2-10 Field D* method showing that the bloackage of FD* method. (top) line is

FD*path while blue line is the shortest path 14

Figure 2-11 Overall concept of path searching 16

Figure 2-12 Different type of A* variation 16

Figure 3-1 Implementation flowchart 18

Figure 3-2 Different types of grid or non-grid diagram. Retrieved from [20] 19

Figure 3-3 Coordinates of all nodes in a grid 20

Figure 3-4 Detailed cost of each nodes. 21

Figure 4-1 A* Bidirectional Re-planning 23

Figure 4-2 Control environment of maze simulation 25

Figure 6-1 Astar and Dijkstra Unidirectional searching (first map) 37

Figure 6-2 Greedy Unidirectional searching (first map) 37

Figure 6-3 Simulation results of Nodes Searched vs Iterations Unidirectional 38

Figure 6-4 Simulation results of Time vs Iterations Unidirectional 38

Figure 6-5 Second map for Replanning simulations 39

Figure 6-6 Affected Nodes for A* algorithm during Replanning (Unidirectional) 39

Figure 6-7 Affected Nodes for Dijkstra algorithm during Replanning (Unidirectional) 40

Figure 6-8 Affected Nodes for Greedy algorithm during Replanning (Unidirectional) 40

Figure 6-9 Astar and Dijkstra Unidirectional searching w/o Replanning (second map) 41

Figure 6-10 Greedy Unidirectional searching w/o Replanning (second map) 41

ix

Figure 6-11 Astar and Dijkstra Unidirectional searching before Replanning (second

map) 42

Figure 6-12 Greedy Unidirectional searching before Replanning (second map) 42

Figure 6-13 Astar and Dijkstra Unidirectional searching after Replanning (second map)

 43

Figure 6-14 Greedy Unidirectional searching after Replanning (second map) 43

Figure 6-15 A* and Dijkstra Bidirectional searching w/o Replanning (first map) 44

Figure 6-16 Greedy Bidirectional searching w/o Replanning (first map) 44

Figure 6-17 Affected Nodes for A* algorithm during Replanning (Bidirectional) 45

Figure 6-18 Affected Nodes for Dijkstra algorithm during Replanning (Bidirectional) 45

Figure 6-19 Affected Nodes for Greedy algorithm during Replanning (Bidirectional) 46

Figure 6-20 A* and Dijkstra Bidirectional searching w/o Replanning (second map) 47

Figure 6-21 Greedy Bidirectional searching w/o Replanning (second map) 47

Figure 6-22 Astar and Dijkstra Bidirectional searching before Replanning (second map)

 48

Figure 6-23 Greedy Bidirectional searching before Replanning (second map) 48

Figure 6-24 Astar and Dijkstra Bidirectional searching after Replanning (second map)

 49

Figure 6-25 Greedy Bidirectional searching after Replanning (second map) 49

x

ALGORITMAS SIMULASI OPTIMASI RUTE PERJALANAN

ABSTRAK

Matlamat kertas kerja ini adalah untuk mencari dan mengira jarak yang singkat

dari satu nod yang lain dengan cara yang paling berkesan. 3 algoritma (algoritma A *,

algoritma Dijkstra dan algoritma Greedy) dan 2 konsep (Pencarian Dua Arah dan

perancangan semula) akan diterokai dan simulasi. Penanda aras untuk perbandingan

keberkesanan setiap algoritma dengan teliti ditakrifkan dengan niat mencari algoritma

yang terbaik dalam persekitaran yang direka. Semua simulasi Matlab dilakukan dalam

2D, 300x300 piksel imej dengan hanya satu permulaan yang tetap dan nod akhir. Bagi

kaedah Dua Arah Mencari, ia ditetapkan untuk berhenti apabila kawasan pencarian dari

titik permulaan dan kawasan mencari titik akhir bertemu. Selain itu, bagi maksud simulasi

menggunakan konsep perancangan semula, peta asal akan dimasukkan dengan 4 dinding

dan 39 Ruang putih. Sebanyak 4 eksperimen akan dilakukan untuk membandingkan sama

ada 2 konsep digabungkan sebenarnya meningkatkan prestasi pencarian 3 algoritma itu,

iaitu Pencarian Satu Arah tanpa perancangan semula, Pencarian Satu Arah dengan

perancangan semula, Pencarian Dua Arah tanpa perancangan semula dan Pencarian Dua

Arah Mencari dengan perancangan semula. Setiap keputusan akan dimasukkan dengan

perbincangan tentang persamaan dan perbezaan keputusan setiap algoritma. Secara

ringkasnya, jumlah Nod Dicari untuk Pencarian Dua Arah dengan perancangan semula

mempunyai pengurangan keseluruhan (28%, 37% dan 51%) berbanding jumlah Nod

Dicari untuk Pencarian Dua Arah tanpa perancangan semula. Di samping itu, jumlah

masa algoritma ditunjukkan mempunyai pengurangan sebanyak 73,69%, 64% dan 4.62%

berdasarkan simulasi peta kedua. Begitu juga jika dibandingkan antara Pencarian Dua

Arah dengan perancangan semula dan Pencarian Satu Arah dengan perancangan semula,

penurunan sebanyak 41.08%, 25.57% dan 14.41% ke atas jumlah masa algoritma dapat

dilihat. Oleh itu, dalam projek tahun akhir ini, algoritma optimum untuk digunakan adalah

A * algoritma dengan kaedah Cari dwiarah dan kaedah perancangan semula termasuk

semasa proses pencarian. Kod lengkap termasuk dalam Lampiran untuk tujuan

kebolehulangan.

xi

SIMULATION OF PATH OPTIMISATION ALGORITHMS

ABSTRACT

The main concern is to find and calculate the shortest distance from one node to

another in the most efficient way. 3 algorithms (A* algorithm, Dijkstra algorithm and

Greedy algorithm) and 2 concepts (Bidirectional Searching and Replanning) are explored

and simulated. The benchmark for comparing the effectiveness of each algorithm are

thoroughly defined with the intention of finding the best algorithm in the designed

environment. All Matlab simulations are done in a 2D, 300x300 image pixel with only a

fixed start and an end node. For the Bidirectional Searching method, it is set to stop when

the searching area from starting point and the searching area of end point are met. Next,

for the purposes of simulating using Replanning concept, the original map is introduced

with 4 walls and 39 whitespaces. A total of 4 experiments are done to compare whether

the 2 concepts combined do actually improve the searching performance of the 3

algorithms, namely, Unidirectional Searching without Replanning, Unidirectional

Searching with Replanning, Bidirectional Searching without Replanning and

Bidirectional Searching with Replanning. Each result of the simulations is included with

a discussion of the similarities and difference of the results of each algorithm. In summary,

the total Nodes Searched of Bidirectional Searching with Replanning has an overall

reduction (28%, 37% and 51%) when compared to total Nodes Searched of Bidirectional

Searching without Replanning. In addition, the algorithm total time is shown to have

decrement of 73.69%, 64% and 4.62% based on the second map simulations. Likewise,

when comparing between Bidirectional Searching with Replanning and Unidirectional

Searching with Replanning, a decrease of 41.08%, 25.57% and 14.41% on algorithm total

time can be seen. Thus, in this final year project, the optimum algorithm to use is A*

algorithm with Bidirectional Searching method and Replanning method included during

the searching process. The complete code is included in Appendix for reproducibility

purposes.

1

1 INTRODUCTION

1.1 Overview

The shortest problem is essentially how to calculate the shortest distance from one

place to another. The problem itself normally is represented in the form of a graph as an

input[1].

Generally, before the searching for shortest distance, a representation of graphical

input need to be called upon. Most of the graph can be represented by a collection of

‘nodes’ and ‘edges’. The ‘nodes’ are represented as physical locations. It can be squared,

grid, circles. The lines that connect those nodes are called ‘edges’, which has a number,

and is called edges’ weight. The number is a determining factor of how expensive it is to

walk or cross that edge. In the same analogy of the actual world, it can be roads connecting

to different locations and the numbers are how long it took to drive on that particular road

from one place to another.

 Pathfinding begins by searching the graph from one place (starting point known

as vertex) to another neighbouring node. Given the coordinates or locations of the starting

vertex and final vertex, different strategies can be implemented to link the destination.

Each of the edges can be either bidirectional or unidirectional.

1.2 Problem Statement

The primary interest in this project is focused on finding the shortest path in the

smallest amount of time. However, in reality, in order to find the ideal path, multiple

algorithms are needed and applied in finding the shortest path. The real challenge of this

Start

End
12

17 4

2

3

8

1

12
13

Figure 1-1 Example of nodes and lines (self-drawn)

2

project lies in deciding the optimum pathfinding method and improve A*, Dijkstra and

Greedy algorithms.

The optimum way of finding the shortest problem needs to be analysed from

different degrees of complexity, ranging from single node source to single node

destination, single node source to multiple nodes destination and vice versa and multiple

nodes sources to multiple nodes destination.

1.3 Objective

Based on a few main concern of the problem, the aim of this final year project is to

simulate different search technique by using edges’ information to find the fastest route

towards the destination in an efficient way. In pursuance of optimising the most efficient

path, comparison and findings for the best-optimised method are taken into account in

this project.

1.4 Scope of Project

The project is aimed to test out 3 common pathfinding algorithms in a 20x20 grid which

are as the following:

 Greedy Best First Search

 A* pathfinding algorithm

 Dijkstra’s Algorithm

Next, the 3 algorithms are incorporated with concepts of Bidirectional Searching and

Replanning to show if there is any improvement of the algorithm performance.

Comparison of the 3 algorithms performance is needed to be done to show the best

pathfinding algorithm in different situations. [2]

Mainly, the judging criteria are as follows, taking account length as the cost to travel:

 The total number of times each node was visited during the sequence of the path

calculation including repeated visit.

 Successful of linking begin to end.

 Total number of nodes travelled from the starting node to ending node.

 Total time needed to simulate the algorithm

 Number of nodes that are needed to store for the next search (Replanning purposes)

 Number of iterations run during the execution of the code

3

Results are expected to be gathered and further improvement can be possibly made by

tweaking the original algorithms.

1.5 Thesis Organisation

The thesis of this project is organised as such. Chapter 2 is presented with related previous

work done by past researchers. Literature review and history on the following above

strategies are also included. Chapter 3 is encompassed with methodologies on showing

possible path using pathfinding algorithms. Chapter 4 is presented with the results and

discussion for the simulations. The conclusion and future work is included in Chapter 5.

4

2 LITERATURE REVIEW

2.1 Introduction

 In this literature review, previous work of researchers and improvement are stated

in here. Some explanation of how the algorithm works, its advantage and disadvantage

are also included.

2.2 Background Study On Breadth First Algorithm (Queue)

To begin with pathfinding algorithm, Breadth First search is one of the Search

algorithm used to find all nodes in the graph. It starts at the root or first vertex and explore

second level nodes before moving into further into third-level nodes.[3]1

In this example, the Breadth First Search has a Q (queue) containing nodes to be

searched. The starting node, in this case will be node A and it is in the queue. For Breadth

First Search, the neighbouring nodes are found which are node B and node C. Since node

A

C B

H D

I

G

F E

Figure 2-1Breadth First Search Example

5

A has no more expanding nodes besides node B and C, it is taken out from the queue. The

output result is A->B->C.

Following the alphabetical order, neighbouring nodes of B node is explored.

However, node B does not contain any neighbouring nodes. Then, it is discarded from

the queue. Node C has neighbouring node D and node H. Node C is also discarded while

node D and node H is included in the queue. The current output result is A->B->C->D->H.

After that, the node D is analysed in the queue. Neighbouring nodes of node D

which are node E,F and G is included in the queue while node D is discarded. The current

queue is sorted as following: H->E->F->G. The output result is

A->B->C->D->H->E->F->G.

Next, the node H is analysed in the queue. Neighbouring nodes of node H which is

only node I is included in the queue while node H is discarded. The current queue is sorted

as following: E->F->G->I. The output result is A->B->C->D->H->E->F->G->I.

Finally, node E,F,G and I do not has any unexplored nodes. Therefore, the searching

has stop and each node from the queue is discarded. All nodes in the graph is found.

6

2.3 Background Study of Depth First Search Algorithm (Stack)

For the method of Depth First Search Algorithm, the way of traversing graphs is to

go as deep as possible before backtracking. A root vertex is needed as the place to begin

the searching. However, it is different from Breadth First Search, it will move along the

current path until all nodes are searched. If none of the nodes is available, backtrack from

the same path until all there are available nodes.[4]

The basic idea of tracking the nodes in Depth First Search is using Stack. In this

example, node A is picked as the starting node and node A is pushed into Stack. Then,

node B is pushed into the Stack. However, node B does not have any neighbouring nodes.

Pop B from Stack. The output result is A->B.

Next, backtrack to node A. Now, node C is pushed into Stack. Following the

alphabetical order, node D is pushed into stack followed by node E. The output result is

Figure 2-2 Depth First Search Example

A

C B

H D

I

G

F E

7

A->B->C->D->E. Node E does not have any neighbouring nodes so it is pop from the

Stack. Backtracked to node D, node F is pushed into Stack. Next, it will be the following

order: node I, node H and node G. The output result is A->B->C->D->E ->F->I->H->G.

Since after node G, there are no neighbouring nodes, it is pop from the stack, continue

with node H, node I, node F, node D, node C and node A.

Finally, all nodes are visited and the Depth First Search may be considered

completed.

8

2.4 Background Study On Dijkstra’s Algorithm

Dijkstra’s algorithm works by prioritising the lowest cost to find the shortest path.

It is done by choosing the vertex nearest to the current vertex. Formulated by Dijkstra[5],

it is started by adding all vertices into a list. If the list is not empty, continue searching

the minimum cost of the vertex and add it to the closed list. After that, the neighbouring

vertex surrounding the newest vertex need to be updated of its cost. Continue the steps

until the final goal is found.[6]

Figure 2-3 Showing the pseudocode of Dijkstra algorithm[6]

 To reduce the implementation time of Dijkstra’s algorithm, it is suggested that to

use Decrease-key method in the algorithm. [7] Instead of containing all vertices in the

grid itself, the Decrease-key method only includes the new vertices when the algorithm

explore through the grid. If the minimum cost of the vertex is in the included list, then it

can be discarded from the list and treated as one of the closed-vertex.

 There is another variant of Dijkstra’s algorithm which is UCS (Uniform Cost

Searching). Instead of loading all vertices and search through each node, UCS is one of

the best-first search schemes that is similar to Dijkstra’s algorithm. The difference in UCS

is that it stops searching once the final goal is reached during the exploration of nodes.

The route found for UCS might not be the shortest path. However, it has significant

advantages over Dijkstra’s algorithm which are in the pseudo code, in its time and

memory needs and behaviour in practice according to [8].

9

Figure 2-4 Showing UCS is the subset of Dijkstra

From the figure above, all the unknown nodes in Q (Queue in Dijkstra) are =∞. The

opened nodes (which are neighbouring nodes of closed nodes) is ≠∞. The closed nodes

in UCS is S which is the same as in Dijkstra.

 In terms of improving the algorithm through hardware, a parallel analysis has

done before in terms of serial and parallel execution.[9] The method of UCS is shown as

below:

Figure 2-5 UCS algorithm: Concerning about the edges cost

10

2.5 Background Study on Greedy Algorithm

In the case of the Greedy algorithm, it has the similar concept as Dijkstra’s

algorithm. However, instead of choosing the shortest path based on the lowest cost

incurred for travelling through edges, its decision is based on an estimate called heuristic

to determine whether it should include the node. As long as the cost of any vertex found

is nearer to the final goal, the vertex will be chosen as the next vertex. This means that

Greedy algorithm does not always find the shortest path.

 For this algorithm, the edges cost is ignored. Instead, the algorithm will choose

the shortest path based on the h value. As long as the goal target (node g in this case) is

in the open list, then the algorithm is considered completed.

Figure 2-6 Greedy Algorithm: Decision making based on Heuristic score

11

2.6 Background Study On A* Algorithm

Generally, for A* algorithm, there are 2 costs are involved in calculating the cost

of each node in the grid: G cost, the cost incurred for current tiles or nodes from the

starting point and H cost, that can be represented as cost calculated from current nodes to

goal. [10]

F	ሺtotal	costሻ ൌ ܩ ൅ 	ܪ

Equation 2-1 A* algorithm node cost

To calculate the cost for each tile, mostly the tiles for left, right, up and down are treated

as 1 unit while diagonal tiles are treated as 1.4. Diagonal tiles’ cost actual value is√2, but

for simplicity, the value is treated as 1.4. The cost can be later multiplied into the unit to

get the desired cost of each tile.

Figure 2-7 Cost of each tile (self-drawn)

From previous research, the standard way of G cost is calculated is summing up the

cost of each tile using the lowest cost route. For H cost, multiple strategies can be used to

calculate it.

1.4 1.4

1.4 1.4

1.0

1.0

1.0

1.0 S

12

2.7 Varying Method Of Calculating H (Heuristic) Costs In A* Algorithm

 The standard way of calculating heuristic costs is Manhattan method which allows

computing of heuristic costs without any diagonal.

݄ ൌ 10ሺܽ݊ݕ	ݐݏ݋ܿ	݀݁ݎ݅ݏ݁݀ሻ ∗ ሺܾܽݏሺܿܺݐ݊݁ݎݎݑ െ ݂݈݅݊ܽܺሻ

൅ ܻݐ݊݁ݎݎݑሺܿݏܾܽ െ ݂݈ܻ݅݊ܽሻሻ

Equation 2-2 Manhattan method for H cost

 Another featured method of calculating is the Diagonal shortcut method. With a

little slower than Manhattan method, it is more balanced in the sense that it considers the

diagonal cost. The equation is:

xDistance	 ൌ 	absሺcurrentX െ targetXሻ	

yDistance	 ൌ 	absሺcurrentY െ targetYሻ

Equation 2-3 Diagonal shortcut method

if (xDistance>yDistance)

{

h = 14*yDistance + 10*(xDistance-yDistance)

}

else h = 14*xDistance + 10*(yDistance-xDistance)

end if

13

The third method is using the Chebyshev distance as calculating heuristic cost. It takes

account that the diagonal distance is 1 unit instead of 1.4. It is used in chess AI where the

piece ‘King’ moves in such way where all cost surrounding it is the same.[11]

Another method is using Euclidean Distance which is similar to Pythagorean Theorem.

xDistance	 ൌ 	absሺcurrentX െ targetXሻ	

yDistance	 ൌ 	absሺcurrentY െ targetYሻ

݄ ൌ 	ඥ݁ܿ݊ܽݐݏ݅ܦݔଶ ൅ ଶ݁ܿ݊ܽݐݏ݅ܦݕ

Figure 2-8 Euclidean Distance

However, A* method does not always provide the shortest path in a realistic graph.

If the movements of the nodes are not entirely constrained on a grid, which means

diagonal path with different angles are possible, then Basic Theta * can be used for this

purposes. A comparison between these two algorithms have been made from previous

research and it is found out that Basic Theta* algorithm is slightly more advantageous for

shortest route.[12].

1.0 1.0

1.0 1.0

1.0

1.0

1.0

1.0 S

Equation 2-4 Chebyshev

14

In order to improve A* algorithm, the whitespace between grid is needed to be

passable from vertex to another vertex. [13]

Figure 2-9 shows that (left) is the shortest path for A* while (right) is the shortest path without
limiting the angle of reaching each vertex, namely A*PS method

 First, A* algorithm can be further improved with post smoothing path. A* with

Post-smoothed Paths (A*PS) [13]. It can be described as collecting all vertices found

during the A* algorithm and trying to connect those vertices that are in line of sight of

the current vertices. Therefore, in this method, the lines can be connected passing through

the whitespace between the vertices.

Figure 2-10 Field D* method showing that the bloackage of FD* method. (top) line is FD*path
while blue line is the shortest path

15

Secondly, the A* can be also possibly improved by FD*(Field D*) pathfinding

method. Basically, the method itself consider the value between edges to connect vertex.

However, there might be some mistake in this method as blockage cell might make them

longer resulting non-true shortest path.

Another way to improve the A* algorithm bidirectional searching is to implement

parallel bidirectional searching by using multicores in the computer itself, namely using

2 cores.[14] This method is based on during the bidirectional pathfinding process, the

start node and end node has their own cores running simultaneously instead using one

core which is using shared memory to calculate the shortest distance. Two threading is

created for this parallel approach and is stopped when both nodes met.

In pathfinding, there are plenty of examples of using A* algorithm. In games, there

have been studies showing how to control the AI players to move in the fastest way

possible.[15] A-star algorithm is one of the common algorithm in finding the shortest path

in maps. Previously there have been works done in Unity 3D to showcase the functionality

of A-star in games. [10]

16

2.8 Summary of Algorithm

The whole literature review is based on Graph Searching Algorithm an A* path

searching variation. Figure 2-11 and Figure 2-12 shows the overall algorithms that are

discussed in the literature review.

Figure 2-11 Overall concept of path searching

Figure 2-12 Different type of A* variation

Graph searching Algorithm

BFS DFS

Dijkstra
(G cost)

Greedy
(H cost)

A*
(F cost)

A
*
va
ri
at
io
n

Manhattan

Diagonal Shortcut

Chebyshev
Distance

A*PS

FD*

Bidirectional

Parallel

17

2.9 Summary of Literature Review

 After understanding of past research done, the main purpose of this literature

review is to act as a guideline direction for this thesis.

18

3 METHODOLOGY

3.1 Introduction

The whole project is divided into 3 parts. At the beginning, the first step is the need

to collect data, specify the range of data and determine the field of data the author will

like to work on. After we have initialised the input, there is a need to specify the number

of methods to be used, memory space for each method, variation of each pathfinding

method. Then, a comparison of different methods is needed to be done which has certain

detail criteria. Furthermore, limitation of each method is needed to be shown and the

solution suggested to overcome it.

3.2 Project Implementation Flow

Figure 3-1 shows the overall flow of the whole process of simulating the

pathfinding algorithm.

Data mining

from actual or

artificial data

Import data into

the holding

cache or known

Determine the

starting node

and ending node

in the data

Implement the

search function

Implement the

search function

concepts

(Bidrectional

and Replanning)

Keep iterate the

loop with data

until final node is

found or none is

Collect results

and compare

each pathfinding

method by the

judging criteria

Formulate the

method to

overcome the

limitation of

each pathfinding

Optimise each

pathfinding

Collect the

results and

improve the

pathfinding

Figure 3-1 Implementation flowchart

19

3.3 Project Requirement

Software – MATLAB

3.3.1 Data Collection And Measurement Methods

Before implementing the pathfinding method, the field of work is needed to be

set. The area of analysing is needed to determine whether is in a 2D/3D environment. The

working environment is needed to be represented in proper form, grid or non-grid

representation for the navigation of the pathfinding method (tile movement, edge

movement, and vertex movement or hybrid movement) later on. Each vertex node can be

even represented by hexagonal, squares or circles for path travelling. The working

environment can be included with ‘fog of sight’ which prevent the pathfinding method to

lookup before searching or it could be completely exposed to the line of sight of the

pathfinding method. There is also the concern of each edge or traversable path properties

whether it is unweighted edges, weighted edges or negative edges.

Figure 3-2 Different types of grid or non-grid diagram. Retrieved from [20]

20

3.3.2 Methodology: Pathfinding Algorithm Implementation (A* Algorithm)

For the sake of simplicity, 2D grid area is used as the area representation of the

working area. Before executing the algorithm, the grid is first defined and the cost of the

blocked cell is set to infinity (Inf). The starting point and ending point is loaded into our

list. Therefore, the ending coordinates are known to the algorithm.

Starting off, the current node is set to the starting node coordinate (1, 4). The current

node is kept updated as soon as a new minimum F cost node is found. The neighbouring

nodes are added into an “open list” which has cost included. Blocked nodes such as

inaccessible terrain is ignored as the cost is infinity.

For the 8 neighbouring nodes (since it is a grid), the lowest F cost is chosen as the

next node (F = G + H from Equation 2-1) as mentioned above.

Figure 3-3 Coordinates of all nodes in a grid

From here, if neighbouring nodes of starting node is analysed, a few facts can be observed:

 The node (square) on the right has the lowest F cost = 10 + 20

 The starting node is added into ‘Closed’ list

 The 8 neighbouring nodes are added into ‘Open’ list

 The node (2, 4) is assigned as the current node.

S G

21

For the detailed costs of all neighbouring nodes:

 For the part of H cost calculation (as an example), the Manhattan method is used

for only calculating Heuristic cost, which means the diagonal path is not allowed. As an

example. H cost of the node (2, 3) is calculated by moving 2 nodes right and one node up.

In total, 30 = 20 + 10 is the cost

 As for the part of G cost, for node (2, 3), it is 14 since it is directly diagonal from

the starting node. The number 14 is chosen as approximation for Pythagorean distance

(√10ଶ ൅	10ଶ).

 The whole process is repeated until the final G (goal) is reached. If during the loop,

there is an adjacent open list square that has discovered before, the algorithm is needed

to check whether there is a better path for it and assign the cost accordingly.[20]

G H

F

Figure 3-4 Detailed cost of each nodes.

S

14 50

64

10 50

60

14 50

64

10 20

30

14 30

44

10 40

50

10 40

50

14 30

44

22

3.4 Data Analysis

The idea of data analysis is to represent the data in a tabular format for easier

identification, comparison and optimisation. Performance evaluation is crucial for the use

of path optimisation. The data obtained from the pathfinding results should be comparable

so further improvement can be done. If there is no obvious gain for the optimisation, the

best results during the data analysis are expected. The trade-off between each algorithm

needs to be stated down for the usage of data analysis. In this project, a few of the

performance index are recorded for the use of judging criteria[21][22]:

 The total area searched either during searching process (Nodes Searched)

 The nodes stored after simulating the algorithm for next replanning purposes.

(Closed Nodes)

 The nodes that are still in priority list after the algorithm simulation (Open Nodes)

 The successful linking of nodes from start to end. (Completion of the algorithm)

 The time taken for the completion of the simulating algorithm (Algorithm total

time)

 Average time taken for running each iterations (Average time per loop)

 Number of node visitations. (Iterations)

 Total nodes affected due to the external walls and whitespaces introduced in the

first map. (Total affected nodes)

 The nodes that are required to store in memory for the next replanning searching

process. (Old Closed Nodes)

 The total nodes searched during the forward Bidirectional Searching and

backward Bidirectional Searching (Nodes Searched FW and Nodes Searched

BW)

3.5 Summary of Methodology

 Path optimisation and verification of algorithm are expected to be achieved in this

thesis.

23

4 RESULTS AND DISCUSSION

4.1 Introduction

This chapter presents the results of 5 concepts, namely, Dijkstra, Greedy, A*,

Bidirectional, Dynamic planning and combination of A*, Bidirectional with Dynamic

planning.

4.2 Initialization of Environment

For these simulations of path algorithm, the environment is needed to be defined so

that each algorithm produce results with controlled variables. The map for path simulation

is obtained from [23]. The maze is cropped and reduced to a 200x200 pixels image for

faster simulation process. The path algorithms are used to find a single source starting

point to a single goal. The field of this environment will be 10, this means the environment

has same weighted edge cost.

4.3 Explanation example of simulations

An example of A* Bidirectional Re-planning is shown below

Figure 4-1 A* Bidirectional Re-planning

In this figure:

1. Black colour nodes are represented as walls.

2. White colour nodes are represented as passable path.

3. Blue colour nodes are represented as the simulation of algorithm(in this case:

A* Bidirectional Re-planning) from start position towards goal position

4. Purple colour nodes are represented as the simultaneous simulation of the

algorithm from goal position towards start position (Bidirectional purposes)

24

4.4 Algorithm Implementation

In these simulation, algorithms of different variant are simulated as follows:

1. A* algorithm

2. Dijkstra algorithm

3. Greedy algorithm

4. A* algorithm with replanning

5. Dijkstra algorithm with replanning

6. Greedy algorithm with replanning

7. A* algorithm with bidirectional searching

8. Dijkstra algorithm with bidirectional searching

9. Greedy algorithm with bidirectional searching

10. A* algorithm with bidirectional searching and replanning

11. Dijkstra algorithm with bidirectional searching and replanning

12. Greedy algorithm with bidirectional searching and replanning

Each movement from one node to another node is set to 10. ‘Mahattan distance’ is the

heuristic method used to calculate the cost from start to goal.

4.5 Data benchmark

In these simulation, a few benchmark is set to analyse the competency of the

algorithm.

1. Total number of nodes searched during the algorithm.

(matlab code: numFinalTotalNodes)

2. Total number of nodes from starting position to end

(matlab code: numNodesVisited)

3. Completion of the path

4. Total time required to run the algorithm

(matlab code: AlgoEnd).

5. Average time of loop execution

(matlab code: AvgTotaltElapsed)

6. Memory space used by the algorithm

	Simulation of path optimisation algorithms_Sim Choon YeeE3_2017_MJMS

