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PRESTASI DINDING YANG DIPERTINGKATKAN PCM UNTUK 

PENGURANGAN SUHU DALAMAN PUNCAK DI IKLIM TROPIKA 

ABSTRAK 

Bangunan di Malaysia mengalami suhu dalaman yang tinggi kerana iklim 

tropika panas dan lembap, yang mengakibatkan penggunaan penyaman udara yang 

berlebihan untuk penyejukan. Sektor bangunan adalah salah satu penyumbang utama 

penggunaan tenaga yang tinggi dan dikaitkan dengan pelepasan gas rumah hijau. 

Walaubagaimanapun, hasil penyelidikan dan piawaian keselesaan menunjukkan 

bahawa penduduk Malaysia lebih bertolak ansur terhadap cuaca panas dengan julat 

suhu selesa mencapai hingga 30-32 ℃ dalam bangunan dengan keadaan semula jadi. 

Oleh itu, jurang antara tahap suhu dalaman dan tahap keselesaan yang diperlukan dapat 

diatasi dengan strategi reka bentuk pasif yang baik. Kajian ini bertujuan untuk 

mengkaji potensi penggunaan PCM sebagai strategi penyejukan pasif untuk bangunan 

kediaman berkeadaan semula jadi di Malaysia. Pelbagai kaedah telah dilaksanakan 

dalam kajian ini, termasuk kajian lapangan dalam bangunan yang sedia ada untuk 

menentukan julat yang sesuai bagi suhu peralihan PCM, penyelidikan simulasi dan 

mengoptimumkan pengaplikasian PCM di permukaan dalaman dinding, kerja 

eksperimen makmal untuk pengintegrasian PCM ke dalam permukaan kemasan 

luaran, dan penilaian eksperimental untuk kemasan luaran berasaskan PCM dalam 

keadaan cuaca sebenar. Hasil kajian menunjukkan bahawa PCM dengan suhu 

peralihan antara 26 ℃ hingga 30 ℃ boleh disarankan untuk pengaplikasian dalaman, 

sementara PCM antara 30 ℃ hingga 36 ℃ disarankan untuk aplikasi kemasan luaran. 

Malah, penerapan kepingan PCM di bawah kemasan dalaman dinding menunjukkan 

keberkesanan sepanjang tahun dalam mengurangkan suhu puncak dalaman  dan suhu 
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puncak permukaan dalaman dinding, yang masing-masing mencapai sehingga 4.9 ℃ 

dan 8.9 ℃. Sehubungan itu, masa ketidakselesaan terma telah menurun sepenuhnya 

berbanding 59% pada bulan dengan panas melampau dan 34% untuk sepanjang tahun. 

Prestasi bertambah baik ketika menggunakan PCM dengan suhu peralihan yang lebih 

rendah, kuantiti yang lebih tinggi, dan ketika digabungkan dengan pengudaraan 

malam. PCM yang optimum harus mempunyai suhu dan julat pencairan yang lebih 

rendah, sementara suhu pemejalan harus cukup tinggi untuk melengkapkan proses 

pemejalan tersebut. Begitu juga dengan memasukkan PCM ke dalam kemasan luaran 

dinding menunjukkan keberkesanan dalam mengurangkan kenaikan haba luaran. Oleh 

itu, pengurangan suhu dalaman dan suhu permukaan dalaman dinding masing-masing 

mencapai 5.95 ℃ dan 7.25 ℃. Penggunaan bahan ringan, seperti konkrit berbusa, 

untuk menggabungkan PCM menunjukkan prestasi termal yang lebih baik berbanding 

dengan lepaan simen. Pelapisan berasaskan PCM berkesan untuk semua orientasi 

bangunan dan prestasinya telah meningkat dengan ketara semasa menggunakan 

kaedah pemasangan kering, terutama dengan rongga udara yang lebih besar. 
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THE PERFORMANCE OF PCM-ENHANCED WALLS FOR THE 

REDUCTION OF PEAK INDOOR TEMPERATURE IN TROPICAL 

CLIMATE 

ABSTRACT 

Buildings in Malaysia suffer from high indoor temperatures due to the hot and 

humid tropical climate, which results in extensive use of air-conditioning for cooling. 

The building sector is one of the main contributors to high energy consumption and 

the associated greenhouse gases emissions. However, the literature and comfort 

standards showed that Malaysians have more tolerance for hot weather and that the 

upper limit of comfort range can reach an average of 30 to 32℃ in naturally 

conditioned buildings. Therefore, the gap between the indoor temperature level and 

the required comfort level can be tackled by proper passive design strategies. This 

study aims to investigate the potential use of the PCMs as a passive cooling strategy 

for naturally conditioned multi-story residential buildings in Malaysia. Various 

methods have been implemented in this study, including field measurements in the 

existing buildings to determine suitable ranges for the PCM’s transition temperatures, 

simulation investigation and optimization for the PCMs application in walls’ interior 

surfaces, laboratory experimental work to incorporate the PCMs into the façade’s 

exterior finishing, and experimental evaluation for the PCM-based exterior finishing 

under the actual weather condition. The results showed that PCMs with transition 

temperatures between 26℃ and 30℃ can be suggested for interior applications, while 

between 30℃ and 36℃ are suggested for exterior finishing applications. Furthermore, 

applying the PCM sheets under the walls’ interior finishing showed year-round 

effectiveness and the peaks of indoor temperature and internal surface temperature 
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decreased by up to 4.9℃ and 8.9℃, respectively. Therefore, the thermal discomfort 

time has completely decreased compared to 59% and 34% for the extreme month and 

the year-round, respectively. The optimum PCM must have a lower melting 

temperature and melting range, while the solidification temperature should be high 

enough to complete the solidification process. Likewise, incorporating PCMs into the 

wall’s exterior finishing showed effectiveness in reducing the external heat gain. 

Therefore, the indoor temperature and wall internal surface temperature decreased by 

up to 5.95℃ and 7.25℃, respectively. The use of foamed concrete, to incorporate 

PCM showed better thermal performance compared to cement render. The PCM-based 

cladding was effective for all orientations and performance has improved when using 

the dry installation method, especially with larger and ventilated air cavity. 
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CHAPTER 1  
 

INTRODUCTION 

1.1 Background 

Buildings were originally built to provide shelter from the outdoor climatic 

conditions. Their envelope is what separates the internal environment from the outdoor 

climatic conditions (Lei et al., 2016). They were constructed from the available local 

materials, which can protect from the local climate and respond to the ambient 

environment. For example, they were constructed from stone masonry to protect 

against harsh weather. In this regard, the materials, which are used in the building’s 

envelope, have a direct impact on the building’s thermal performance (Dyball, 2013).  

Traditional buildings were more climatic responsible. The traditional Malay 

house, for instance, was built to ensure the best control and utilization of the climate 

factors for the inhabitants’ comfort. The main causes of climatic stress in Malaysia are 

high temperatures, solar radiation, humidity, and glare (Yuan, 1987; Kamal et al., 

2004). Therefore, the envelope of the traditional house was constructed from 

lightweight materials with low thermal capacity (i.e., timber and attap) to reduce the 

conduction and storage of heat, while the house was raised on stilts with large openings 

and minimal interior partitions to encourage natural and cross ventilation, Figure 1.1. 

Besides, the large overhangs with the low height of walls effectively protect from 

direct solar radiation and provide great shadings on the external walls and windows. 

Similarly, the ambient environment has been arranged to facilitate the natural flow of 

wind, while shading from large green areas, vegetation, and trees help to keep these 

houses in a cooler environment.  
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Figure 1.1 Traditional Malay House  

Source: (Yuan, 1987; Kamal et al., 2004). 

During the industrial revolution, due to the invention of new materials and 

technologies for buildings, and to urban migration, which caused the rapid growth of 

the urban population, the focus of the building sector had altered to productivity and 

economic considerations (Dyball, 2013; Costa et al., 2015; Hassan and Khozaei, 

2018). As a result, the building’s envelope has become a light layer of materials 

separating indoor spaces from the outdoor environment, while the air-conditioning 

systems have been used to provide thermal comfort for occupants. However, as a result 

of the energy crisis and the negative impacts associated with massive energy use, such 

as climate change, global warming, and greenhouse gases emissions (GHGs), humans 

realised that they should reduce energy consumption to achieve the sustainability of 

the planet (Dyball, 2013). 

Worldwide, buildings are responsible for 40% of global energy consumption 

and, therefore, they are linked to the high GHGs emissions since about 80% of the 

energy is produced from fossil fuels (Sovetova et al., 2019). Moreover, up to 70% of 

the consumed energy is used by buildings’ air-conditioning and artificial lighting (Wu 
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et al., 2019). Therefore, buildings provide a great opportunity to minimize the high 

energy consumption and the associated negative impacts through the reduction of 

cooling and/or heating demands. According to Fateh et al. (2017), a 20% reduction in 

building energy consumption can decrease the associated CO₂ by 50%. Reducing 

energy consumption in buildings can be achieved by different approaches and 

technologies. This can begin with the implementation of passive strategies for the 

design, cooling, and enhancement of buildings, followed by the use of energy-efficient 

cooling systems and the integration of renewable energy-based systems (Ascione et 

al., 2019). Since the building’s envelope is the key element that influences the heating 

and cooling loads of buildings, they are the main target in addressing the energy 

consumption in buildings (Lei et al., 2016). 

Passive design strategies utilize the energy available from the natural 

environment and, therefore, can be used in buildings for heating or cooling purpose by 

heat absorption, prevention, or dissipation (Akeiber et al., 2016). They are promising 

alternatives to conventional heating and cooling systems (Akeiber et al., 2016; Solgi 

et al., 2019). They may become more helpful for some types of buildings (i.e., 

residential buildings and some small commercial buildings), which are associated with 

a low density of lighting, equipment, and occupants (Bradshaw, 2010).  

The thermal performance of the buildings depends on the ability of their 

envelopes to improve air temperature and thermal comfort of the internal spaces by 

heat exchange (Dyball, 2013). Since the buildings envelop plays a major role in heat 

gain and/or loss (Nardi et al., 2018), it should be designed to provide more thermal 

stability for the internal environment. Therefore, it is linked with many passive 

techniques that address the wall and roof insulation, fenestration areas, and type of 

glazing. Generally, multiple passive design strategies should be integrated into 
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building design to achieve the optimum result. Besides, incorporating these strategies 

in the early design stage can reduce the cost compared to in the post-occupancy stage, 

(Bradshaw, 2010). 

Using thermal insulations is the common passive strategy that is being applied 

for buildings’ envelope to reduce the heat gain or losses (Axaopoulos et al., 2014). It 

works by increasing the thermal resistance (R-value) of the envelope (Al-Sanea et al., 

2012). Achieving an optimum performance requires a proper thickness of the thermal 

insulations, which is influenced by many factors, including building location, 

construction materials, climatic conditions, and thermal insulation type. However, 

some of their drawbacks are the required thickness, fire safety, and initial cost (Khalifa, 

2013; Axaopoulos et al., 2014; Zhu et al., 2018). Furthermore, they can cause more 

internal heat to retain inside the house during the summer hot days, which causes 

buildings to suffer from overheating (Ramakrishnan et al., 2017a). 

Thermal energy storage (TES) is a useful sustainable passive technology that 

can be used in buildings to improve heat exchange, practise energy efficiency, and 

minimize energy consumption (Barzin et al., 2015). TES capture (charge), store, and 

reuse (discharge) thermal energy, which may otherwise be wasted or underused 

(Akeiber et al., 2016; Guarino et al., 2017). For example, the daytime solar energy can 

be stored by TES to heat the cold nights in locations that require night heating, 

whereas, the coolness of the night-time can be stored for cooling the warm air in 

locations that require cooling during the daytime (Iten et al., 2016). One type of TES 

works through latent heat storage, which depends on the materials’ ability to store or 

release the heat when changing their phase (Akeiber et al., 2016). These materials, that 

change their phase, known as phase change materials (PCMs).  
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PCMs can help to lower the temperature and reduce the total hours of thermal 

discomfort (Akeiber et al., 2016). Besides, reductions in the energy used for cooling 

purposes could be reached by integrating PCMs into buildings (Chaiyat, 2015). PCMs 

are attractive for many researchers and have been successfully implemented in 

buildings for thermal management (Iten et al., 2016). For example, Ascione et al. 

(2019) achieved a reduction of 11.7% of the summer energy consumption and an 

increase of 215 h of the summer comfort by retrofitting a building with PCM on the 

inner surface of the external walls. Sun et al. (2019) achieved up to 23.1% annual 

average energy reduction by applying the micro-encapsulated PCM in the walls. 

Ramakrishnan et al. (2017a) refurbished a residential house by applying macro-

encapsulated PCM mats on the inner linings of the house’s walls, which resulted in a 

lower severe discomfort period by 65%. Evola et al. (2013) found a reduction in the 

seasonal thermal discomfort up to 35% with PCMs application in combination with 

night ventilation (NV). However, PCMs application for buildings in the tropical 

climate of Malaysia, and particularly for naturally conditioned spaces, has not been 

investigated well. 

1.2 Problem Statement  

In Malaysia, the rapid development of urban areas, the huge demand for urban 

housing, and the sharp increase in land price have caused the housing sector to be 

designed and constructed in many cases with small and tight spaces, irrespective of 

the site and climate’s requirements, and using low quality and thermal performance 

materials (Isa et al., 2010). The conventional construction method for buildings uses 

concrete for the structural parts while bricks and plaster are used as non-structural infill 

materials (Abdul Kadir et al., 2006).  These materials have high thermal conductivities 
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(i.e., average K-values of 1.11-1.95 W/m.k, 0.72-0.89 W/m.k, and 0.72 W/m.k for the 

concrete, brick, and plaster, respectively), which increases the heat gains and/or losses 

in buildings (ASHRAE Handbook, 2013). Since Malaysia’s climate is tropical (i.e., 

hot and humid), and due to global warming impacts, the indoor environment of 

buildings, which do not incorporate any measures to reduce the effects of outdoor 

weather, becomes hot and thermally uncomfortable. Therefore, occupants tend to use 

air-conditioning to reduce the temperature and restore their comfort (Tuck et al., 2019).  

As people spend most of their time in indoor environments (Shaikh et al., 

2017), buildings air-conditioning become one of the major contributors to the total 

electricity consumption in Malaysia. For instance, electricity consumption has 

increased by 200% between 1997 and 2018. The commercial and residential sectors 

are responsible for 49.5% of the total electricity consumption in 2018 (National Energy 

Balance, 2018). Besides, around 45% of the total electricity consumed in buildings 

goes to building cooling (Sadeghifam et al., 2015; Mirrahimi et al., 2017). Moreover, 

the need for cooling is increasing continuously due to climate change and global 

warming (Huang and Hwang, 2015). Wang et al. (2010) estimated that the cooling 

demand by 2100 would increase by 350% compared to its level in 1990, whereas 

heating demand would decrease by 48%.  

The problem arises when the energy sector in Malaysia is responsible for 76% 

of the GHGs emissions (Tang, 2019), which is due to the large part of the energy 

production that comes from the combustion of fossil fuels, i.e., up to 83.1% (Malaysia 

Energy Statistics Handbook, 2019). As a result, efforts were made in Malaysia to 

reduce the GHGs emissions associated with the energy sector. For instance, it was 

mentioned in the Eleventh Malaysia plan 2016-2020 that a voluntary target was set in 

2009 to reduce the GHGs emission by 40% in 2020 compared to its level in 2005. 
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Therefore, steps have been taken to increase the use of clean and more environmentally 

friendly energy sources since the energy sector is the major contributor to this emission 

(Eleventh Malaysia plan, 2015). In line with these efforts, therefore, buildings and 

construction sectors offer a high potential to reduce energy consumption and the 

associated GHGs emission. 

Several field studies of buildings in the hot-humid climate of Malaysia have 

reported the peak indoor temperature generally averaging around 31℃ to 35℃ 

(Kubota et al., 2009; Hassan and Ramli, 2010; Omar and Syed-Fadzil, 2011; Hafizal 

et al., 2012; Djamila et al., 2013; Omar and Fadzil, 2016; Tuck et al., 2019). 

Furthermore, field thermal comfort studies have shown that Malaysian have more 

tolerance for hot weather. For instance, thermal comfort studies have reported comfort 

temperature averaging around 28℃ and an acceptable temperature range up to 30-

32℃ (Abdulshukor, 1993; Dahlan et al., 2008; Hussein et al., 2009; Djamila et al., 

2013; Damiati et al., 2016). Similarly, international and local standards and guidelines 

for thermal comfort in naturally conditioned buildings, such as (BS EN 15251, 2007; 

BSEEP, 2013; ANSI/ASHRAE Standard 55, 2017; MS 2680, 2017), provide models 

that estimate the thermal comfort temperatures for Malaysian climate in the same 

range. Comparing the indoor temperature of buildings with the required comfort 

temperature in the hot-humid climate of Malaysia indicates that implementing proper 

building design and passive measures to improve the thermal performance of 

buildings’ envelope can lower the indoor temperatures and decrease the need for air-

conditioning cooling. Therefore, the associated energy consumption and GHGs 

emission can be decreased. 

One of the passive cooling strategies, which has been implemented in buildings 

worldwide, and its usage is increasing more and more, is the use of PCMs (Ascione et 
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al., 2019). This strategy has shown effective improvement in buildings’ indoor thermal 

environment and, therefore, reduction in total energy consumption. However, within 

the context of Malaysia, PCMs application in buildings is still regarded as a new and 

promising area of research, particularly for the country’s hot-humid climate, which is 

categorized by a uniform diurnal temperature throughout the year. Therefore, 

opportunities can be seized to benefit from the PCMs year-round, unlike other 

climates, in which PCMs can function seasonally (Lei et al., 2017). Moreover, 

previous studies have shown the effectiveness of NV in cooling down buildings in 

Malaysia (Kubota et al., 2009; Aflaki et al., 2014; Tuck et al., 2019), and that its 

performance improves with a high level of thermal mass (Solgi et al., 2019). Therefore, 

by combining NV and PCMs, the passive cooling of PCMs for the naturally 

conditioned buildings projected potentials and can be further improved. The benefits 

of using PCMs for the buildings in the tropical climate of Malaysia and the required 

characteristics for PCMs to work efficiently to achieve optimal performance remain 

uncertain and, therefore, require more investigation. 

1.3 Research Questions  

1. What are the most appropriate temperature ranges according to which the 

PCM’s transition temperatures can be selected to function effectively in 

naturally conditioned buildings within the tropical climate of Malaysia? 

2. What are the optimum transition temperatures and quantity of PCMs that are 

applied to the interior surfaces of the walls in naturally conditioned buildings 

in the tropical climate of Malaysia?  

3. How are the performance and the effectiveness of PCMs that are applied to the 

interior surfaces of the walls in reducing the peak temperature and thermal 
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discomfort year-round in naturally conditioned buildings in the tropical climate 

of Malaysia? 

4. What is the recommended composition of an external PCM-based finishing 

layer for the building’s façade?  

5. How are the performance and the effectiveness of the external PCM-based 

finishing layer in improving the wall’s thermal performance to reduce the 

external heat gain and indoor temperature? 

 

1.4 Research Objectives 

This research aims to investigate the PCMs application as a passive cooling 

strategy for naturally conditioned buildings in the tropical climate of Malaysia to 

reduce indoor temperatures and thermal discomfort time. Therefore, the main 

objectives of this research are as follows: 

1- To determine the most appropriate temperature ranges of the PCM’s transition 

temperatures for the application in buildings in the tropical climate of Malaysia 

based on investigating the existing buildings. 

2- To investigate the optimum transition temperatures and quantity of PCMs and 

their performance and effectiveness in reducing the peak temperature and 

thermal discomfort year-round when applied on the interior surfaces of the 

walls. 

3- To investigate the performance and effectiveness of PCMs incorporated into 

the exterior finishing of the building’s façade in improving the wall’s thermal 

performance to reduce the external heat gain and indoor temperature. 
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1.5 Research Methodology and Framework   

This study uses the quantitative approach, which involves a series of methods 

that are carefully selected to achieve the objectives and to answer the questions of the 

study. These methods include field measurements, simulation work, and experimental 

work. The research framework and the implemented methods are elaborated as 

follows: 

1- Literature review: Reviewing and understanding the available literature is an 

essential step in any scientific research to ensure having a comprehensive 

knowledge and strong background on the area to identify a research problem 

and solve it using scientific methods. Therefore, the background of Malaysia, 

TES, PCMs, and various recent studies that addressed PCMs application in 

buildings were reviewed, analysed, and discussed. Based on this, the research 

problem, objectives, and the required methods to accomplish this research were 

identified.  

2- Field measurement: Field measurements were performed in various spaces of 

different existing buildings to examine their indoor thermal environment and 

façade thermal performance in order to determine the most proper temperature 

ranges of the PCMs’ transition temperatures for the application in naturally 

conditioned buildings in the tropical climate of Malaysia. 

3- Simulation work: This method was selected to investigate PCMs application to 

the interior surfaces of the building’s walls. It can facilitate performing an 

optimization investigation for the PCMs transition temperatures and quantity 

to achieve optimum performance. Besides, this method makes it possible to 

investigate the effectiveness of PCMs application all year-round.  
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4- Experimental work: This method was selected to investigate the effectiveness 

of PCMs incorporated into the exterior finishing of the building’s façade. 

Firstly, several PCM-based composites were developed in the laboratory and 

tested for various properties as well as for the thermal performance in 

comparison to the reference composites, i.e., without PCM. Subsequently, 

fieldwork was performed in which the developed PCM-based composites were 

tested and evaluated as an external finishing for the walls under the actual 

outdoor climatic conditions. 

Figure 1.2 displays the research framework.  
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1.6 Scope of the Study  

This research covers the following: 

- The hot-humid climate in Malaysia and, particularly, in Penang Island. 

- Multi-story residential buildings are the main target of this research. They are 

occupied and operated 24 hours a day. Besides, they are the current trends in 

urban areas, especially the high-rise buildings, which can overcome the 

increased population by maximizing land use (Gao et al., 2020). Moreover, 

they are under direct exposer to solar radiation and more susceptible to 

overheating compared to landed houses, which are shaded by surrounding trees 

and large overhang.  

- Only naturally conditioned spaces are considered in this research (i.e., spaces 

in which the occupants are free to adapt by opening windows, fans, clothing, 

and other adaptive measures without using air-conditioning) (ANSI/ASHRAE 

Standard 55, 2017). In other words, the space can be naturally and 

mechanically ventilated but is not air-conditioned. 

- Buildings with conventional construction materials such as concrete, bricks, 

and cement plaster, without thermal insulation, are targeted in this research. 

Besides, the spaces are cubical rooms that are separated from kitchens’ 

activities. 

- PCMs are applied to buildings’ walls since they are the favoured component in 

buildings to explore the potential benefits of PCMs application (Cunha et al., 

2015; Rao et al., 2018). They provide a large area to incorporate the PCMs. 

Besides, most of the spaces in multi-story residential buildings are separated 

from the outdoor environment by the walls. 
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- Although multiple passive design strategies should be integrated into buildings 

to achieve the optimum result, this research focuses only on evaluating the 

effectiveness of the PCMs application as one of the passive design strategies 

to be considered for the hot-humid climate in Malaysia.  

- The effects of different floor levels in the multi-story buildings on the indoor 

environment and PCMs performance is not in the scope of this research. 

Therefore, it was treated as a constant variable for all cases. 

- The effect of wall colours on the indoor environment and PCMs performance 

is not in the scope of this research. Therefore, it was treated as a constant 

variable for all cases. 

1.7 Limitations of the Study 

Some limitations were faced throughout the various stages of this research as 

follows: 

- Field measurements in the existing buildings: The aim was to conduct field 

measurements for the indoor environment and the external walls of various 

multi-story residential buildings. However, there were some difficulties in 

finding the buildings and getting the required permissions and approvals from 

the owners, especially when the rooms were needed to be not in use during the 

measurements. Besides, no measurements were conducted in a space with the 

absolute west orientation due to difficulties in finding an accessible west-

oriented space for the measurements. Additionally, the measurements were 

conducted for each space during different periods and, therefore, each space 

might have slightly different weather conditions. Although the target was to 

conduct the measurements in mostly sunny conditions, it was difficult to 
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achieve this in some cases due to the continuous changes in the sky and weather 

conditions and the limited period and time that were given by the owners. 

However, this did not influence the overall result since the aim was to get an 

overview of the indoor environments rather than comparing the investigated 

spaces.  

- PCMs materials: Searching and finding a suitable commercially available 

micro-encapsulated PCM within the suggested temperature range to be 

incorporated into the exterior finishing of the building’s façade has taken a long 

time until the product was found and purchased from a company overseas.  

- Equipment and instruments: Limitations were found during the field 

measurements and laboratory testing due to limited instruments, sensors, 

and/or equipment, which caused some delay in the work in some cases and 

difficulties in conducting the testing simultaneously in other cases. However, 

efforts were made to design and arrange the field measurements and laboratory 

testing for maximum utilization of the available instruments, sensors, and 

equipment.  

1.8 Significance of the Study 

This study is significant research due to the following aspects: 

- The study highlights the significant implementation of passive design 

strategies for buildings in hot-humid climate regions to improve the indoor 

thermal environment and avoid the extensive use of air-conditioning, which 

can reduce energy consumption and the associated GHGs emission. This meets 

the requirements of several Malaysian standards, such as MS 1525 (2014), MS 
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2680 (2017), Building energy efficiency technical guideline for passive design 

(BSEEP, 2013), and the Green Building Index (2013). 

- PCMs application to buildings is one of the recent attractive methods for 

passive cooling and energy efficiency of buildings with widely and 

increasingly use and implementation around the world. However, this 

technology is still new in the Malaysian context with very limited 

investigations of its effectiveness under the climatic conditions of Malaysia. 

Therefore, this research can offer the foundation for the potential use of this 

technology and the design parameters that are needed to be considered to 

achieve optimum performance. It can provide buildings’ architects and 

designers with essential information for the effective use of this technology. 

- The PCMs technology can be implemented in the construction of new 

buildings, as well as the retrofitting of the existing buildings without the need 

for any additional space or major renovation. This provides an opportunity to 

improve the thermal performance and energy efficiency of the existing 

building stock. 

- This research investigates the effectiveness of a newly developed exterior 

cladding system to reduce external heat gain, which is achieved by 

incorporating micro-incapsulated PCMs into foamed concrete. This is a new 

area for research and can be a valuable contribution to the body of knowledge.  

1.9 Thesis Outline  

This thesis is organized into six chapters as follows: 

- Chapter 1 presents an introduction to the research, which includes a brief 

background on buildings’ design and construction, energy consumption in 
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buildings, and the needs for passive design strategies such as TES and PCMs. 

Then, it presents the research problem followed by the research objectives and 

questions. After that, the research methodology, scope, limitations, and 

significance are presented with an outline of the thesis organization. 

- Chapter 2 presents a review of the literature associated with the area of 

research. It starts with a description of Malaysia’s location and climate, 

buildings’ indoor thermal environment, thermal comfort requirements, and 

energy consumption patterns, which highlights the role of buildings cooling in 

increasing electricity consumption and GHGs emissions and the need for 

passive design strategies. Then, TES and PCMs concepts and principles, 

categories, required characteristics for application in buildings, and the 

methods of PCMs’ integration were discussed. After that, PCMs application in 

buildings is presented highlighting the methods of PCMs application into the 

walls and the role of NV in improving PCMs performance. Following that, 

numerous recent works, which incorporated PCMs into the building’s walls, 

are discussed and analysed concerning the achieved thermal performance, 

PCMs position, PCMs transition temperatures, and PCMs quantity, in order to 

understand their role to achieve the optimum performance. Finally, the 

available literature for PCMs application in Malaysia is presented.  

- Chapter 3 discusses the research methodology, which describes the methods 

and techniques adopted and used to collect the required data. The chapter starts 

with an overview and the research direction followed by a detailed research 

methodology flowchart. Then, the methods that are used for investigating 

PCMs application for interior and exterior of the building’s walls and the 

involved instruments, programs, and evaluation parameters are presented.  
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- Chapter 4 provides the results’ analysis and discussion of the PCMs 

application to the interior surfaces of the building’s walls. This includes the 

data collected through the field measurements of the indoor thermal 

environment in the existing buildings and the data obtained from the simulation 

work, i.e., simulation validation, effects of NV, PCMs application and 

optimization, and the PCMs’ performance and effectiveness year-round. 

- Chapter 5 provides the results’ analysis and discussion of the PCM 

incorporation into exterior finishing of the building’s façade. This includes the 

data collected through the field measurements of the façade’s performance in 

the existing buildings and the data obtained from the experimental study, 

including materials properties, developed composites’ properties and thermal 

performance, and the thermal performance of the developed PCM-based 

external cladding under the actual climatic conditions. 

- Chapter 6 provides the overall findings of the study in relation to the PCMs 

application and its thermal performance and effectiveness in tropical climatic 

conditions. The chapter also advances recommendations for further studies. 
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CHAPTER 2  
 

LITERATURE REVIEW 

2.1 Introduction 

This chapter provides an overview of Malaysia’s location and climatic 

conditions, characteristic of buildings indoor thermal environment, thermal comfort 

requirements, energy consumption patterns, and the need for practising building 

passive design. Subsequently, the theoretical background of thermal energy storage 

(TES), particularly phase change materials (PCMs), and their roles in the sustainability 

of our planet and buildings are presented. The various types of PCMs, the required 

criteria for selecting PCMs for the building application, and the methods to integrate 

PCMs into buildings are discussed. Finally, numerous previous studies for PCMs 

application in buildings, particularly in the walls, are reviewed and discussed 

highlighting the importance of PCM’s position, transition temperatures, and quantity 

as the design parameters, the link between them, and the influential parameters in 

achieving optimal performance, such as the climatic condition and seasons, the target 

of the application, wall orientation, wall materials, and indoor environmental 

condition. Finally, previous studies that addressed the PCMs application in Malaysia 

are reviewed. 

2.2 Malaysia  

2.2.1 Location and Climate 

Malaysia, with an area of 329,750 sq. km, lies at the latitude of 1º - 7º and 

longitude of 100º - 119º.  It is located within the Tropic of Cancer and Capricorn in 

South-eastern Asia and consists of two regions, i.e., Peninsular Malaysia and East 

Malaysia (Malaysian Borneo) (Jawi et al., 2009; Jamaludin et al., 2015; Tang, 2019).  
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Figure 2.1 Map of Malaysia 

Source: (Maps of World, 2020). 

 

Malaysia is a tropical country with an equatorial climate, i.e., being hot and 

humid. The local climate is characterized by the annual southwest monsoon (May to 

September) and northeast monsoon (November to March) (Tang, 2019; Malaysian 

Meteorological Department, 2020). Generally, there are three characteristics for the 

climate; uniform temperature patterns throughout the year with less than 2℃ annual 

difference, high humidity averaging around 80%, and abundant rainfall (Jawi et al., 

2009; Malaysian Meteorological Department, 2020).  

It is not common to have a day without clouds cover in Malaysia, even during 

dry periods. Therefore, it receives an average of 6 hours of sunlight per day (Malaysian 

Meteorological Department, 2020). The solar radiation received by any typical 

location is greater than 5.0 kWhm⁻². In 2019, the average temperature was 27.63℃, 

while the average maximum and minimum temperatures were 32.67℃ and 24.24℃, 

respectively. However, the highest and lowest recorded temperatures were 38℃ and 
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17.2℃, respectively, compared to 37.5℃ and 12.9℃ in 2018. Besides, the highest and 

lowest temperatures’ variation in a single day during 2019 were 17.2℃ and 0.8℃, 

respectively (MMD Annual Report, 2018; MMD Annual Report, 2019). 

2.2.2 Buildings Indoor Thermal Environment 

Generally, the indoor thermal environment of buildings is influenced by 

external parameters, mainly the outdoor air temperature and incident solar radiation, 

as well as internal parameters such as occupants, lighting, cooking and appliances. Due 

to the tropical climate of Malaysia, the hot-humid weather and, especially, the high 

solar radiation, buildings in Malaysia can experience high indoor temperatures.  

Various studies have measured and reported the indoor thermal environment, 

mainly indoor air temperature (Tᵢ), of various types of buildings in Malaysia. For 

example, Kubota et al. (2009) conducted measurements in two identical and adjacent 

typical two-storey terraced houses located in Johor Bahru, which are constructed of 

reinforced concrete and plastered brick walls. The measurements were performed from 

June to August 2007, while the houses were unoccupied and empty. This work aimed 

to compare the effect of various ventilation strategies, which includes without 

ventilation (WV), day ventilation (DV), night ventilation (NV), and full-day 

ventilation (FV). The peak and min outdoor air temperatures (Tₒ) were about 34-36℃ 

and 24-25℃, respectively, while the mean monthly was 28℃. Based on the results, 

the peak-Tᵢ was on average 33-34℃ with DV, while it reduced to 30.5-31.7℃ without 

DV. On the other hand, the min-Tᵢ was on average 26.8-27.6℃ with NV, while it 

increased to 28.6-29.5℃ without NV. Applying natural ventilation has caused the Tᵢ 

to follow the Tₒ patterns. Furthermore, they noticed that the NV decreased the daytime 

Tᵢ if no DV was applied.  
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Tuck et al. (2019) conducted measurements between 15 February and 11 

March 2018 in a two-storey corner terrace house in Kuala Lumpur. The house was 

constructed of reinforced concrete frame and floors, brick walls, and cement board 

ceiling and concrete roof tiles for the roof (i.e., without thermal insulation). The mean 

Tₒ was 28 ± 2℃, while it ranged between 24℃ and 38℃. The mean relative humidity 

was 80 ± 7% with maximum and minimum records of 97% and 34%, respectively. The 

study aimed to compare various cooling strategies including WV, DV, NV, and FV, 

which were used in free-running (FR) mode or mixed-mode (MM), i.e., FR + cooling 

mode (CL) and FR + ceiling fan. The results showed that Tᵢ was fluctuating between 

27℃ and 37℃ in the rooms with FR ventilation on the first floor, while it fluctuated 

between 27℃ and 33℃ on the ground floor. The high Tᵢ on the first floor was 

attributed to solar radiation on the roof. The results also indicated that opening 

windows at night with NV and FV had better cooling effects than opening them during 

the daytime.  

Omar and Fadzil (2016) conducted field measurements in nine spaces from 

five different heritage buildings in Penang Island. These buildings have thick clay 

brick exterior walls with lime plaster, which provides a high thermal mass. The 

average Tₒ during the study period for all spaces ranged between 27.8℃ and 30℃. 

The results showed that Tᵢ was greatly reduced during the day, while it exceeded Tₒ 

during the night. Besides, the peak-Tᵢ occurred 2-3 hours later to the peak Tₒ. The peak-

Tᵢ ranged between 29℃ and 32℃. However, buildings with the lowest peak-Tᵢ showed 

the highest min-Tᵢ during the night due to the high thermal mass.  

Djamila et al. (2013) conducted field measurements as part of a study for 

thermal comfort in residential buildings at Kota Kinabalu city within 2007-2008. The 

results showed a mean Tᵢ of 30.7℃ with a standard deviation of 1.47℃. Moreover, the 
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Tᵢ throughout the study varied from 26.5℃ to 35.3℃ with 95% of all Tᵢ lied between 

27.81℃ and 33.68℃.  

Hafizal et al. (2012) conducted field measurements in six houses (i.e., 

including terrace house, townhouse, and Malay traditional house) located in Penang 

Island and Sungai Petani, Kedah. The data was collected from June 2010 to January 

2011. The results showed that the traditional house had higher peak-Tᵢ, up to 35.5℃, 

and lower min-Tᵢ compared to other houses. This was attributed to the main strategy 

of the traditional houses that utilize the maximum ventilation with the use of lots of 

openings and gaps causing the Tᵢ to follow the Tₒ. 

Omar and Syed-Fadzil (2011) conducted measurements in a heritage 

shophouse in George Town, Penang during October 2010. The results reported Tᵢ with 

a peak ranged between 30.5℃ and 31℃ and a minimum average of 28.5℃. In contrast, 

the Tₒ had a peak of 33℃ and a minimum of 25℃. The results demonstrate lower Tᵢ 

fluctuations and high min-Tᵢ due to the high thermal mass of the walls. 

Hassan and Ramli (2010) performed measurements in a traditional Malay 

house in Penang Island. The measurements were performed from 6.00 am to 6.00 pm 

for four cloudy days within July and August 2008. The results showed a very small 

variation between Tᵢ and Tₒ. For instance, the measured Tᵢ was between 27.3℃ and 

34.3℃, while the Tₒ fluctuated between 27.3℃ and 34.5℃. The peak-Tᵢ was recorded 

between 2.00 pm and 3.00 pm.  

Table 2.1 summarizes the above measured Tᵢ. As can be seen, the Tᵢ reached a 

maximum peak of 35.5℃, while the lowest minimum was 26.5℃. Besides, the mean 

Tₒ was around 28℃ in most cases. High peak-Tᵢ was found in spaces that were affected 

directly by the incident solar radiation, such as on the top floor space, while lower 

peak-Tᵢ was obtained in buildings with high thermal mass. Furthermore, applying DV 
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showed high Tᵢ due to the high Tₒ. On the other hand, low min-Tᵢ was observed with 

NV, while high min-Tᵢ was found in buildings with high thermal mass.  

Table 2.1 Summary of the measured indoor air temperature (Tᵢ) based on 

different studies conducted in various buildings in Malaysia 

Study  Measurement 

period 
Peak-Tᵢ Min-Tᵢ Tₒ 

(Kubota et al., 2009) All day  34 26.8 28 (Avg.) 

(Tuck et al., 2019) All day 33-37 27 28 ±2 (Avg.) 

(Omar and Fadzil, 2016) All day 32 29 27.8 - 30 

(Djamila et al., 2013) All day 35.3 26.5 - 

(Hafizal et al., 2012) All day 35.5 - - 

(Omar and Syed-Fadzil, 2011) All day 31 28.5 25.5 - 32 

(Hassan and Ramli, 2010) 6.00 - 18.00 34.3 27.3 27.3 - 34.5 

 

2.2.3 Thermal Comfort in the Tropical Climate of Malaysia 

According to the American Society of Heating, Refrigerating and Air-

Conditioning Engineers (ASHRAE), thermal comfort is “the condition of mind that 

expresses satisfaction with the thermal environment”. Generally, it is difficult to 

satisfy all people in space due to the large variations between them, i.e., 

physiologically and psychologically. Therefore, any space can be rated as thermally 

acceptable if it satisfies 80% of the occupants (ANSI/ASHRAE Standard 55, 2017).  

Thermal requirements for naturally conditioned spaces differ from those 

required for other indoor spaces (ANSI/ASHRAE Standard 55, 2017). Therefore, the 

adaptive model was developed for naturally conditioned buildings. This model 

depends on the active relationship between people and their environment, i.e., people 

react to restore their thermal comfort if discomfort conditions occurred (Toe and 

Kubota, 2013; Al-Absi and Abas, 2018). Moreover, people were found to prefer a high 

range of temperatures in warm to hot climates (Djamila et al., 2013). According to Luo 

et al. (2016), the comfort perception of the individuals is closely linked to their thermal 

history and that a long-term thermal experience might shift their thermal expectation.  
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Generally, field thermal comfort studies are conducted, either in chambers or 

real buildings with various types of indoor conditions, to establish the comfort 

temperature and comfort range for people in various climatic conditions. Based on the 

field studies, thermal comfort models are developed and proposed to calculate the 

comfort temperature and comfort range. The following subsections present various 

field thermal comfort studies that were conducted in Malaysia and the comfort models 

that were developed for naturally conditioned buildings and hot-humid climate.  

2.2.3(a) Field Thermal Comfort Studies 

In Malaysia, field studies were conducted in chambers and real buildings and 

have reported neutral and comfortable temperatures and comfort ranges. For instance, 

Abdulshukor (1993) studied the thermal comfort of Malaysians and found that the 

neutral temperature in a chamber was 28.3℃, while the comfort temperature was 

28.2℃. Furthermore, the study reported differences in the thermal comfort 

temperatures between Malays and Chinese, i.e., 28.7℃ and 27.6℃, respectively, and 

between males and females, i.e., 28℃ and 28.3℃, respectively. Besides, this study 

found that the Malaysian comfort zone is between 25℃ and 28.5℃ to 29.5℃ (i.e., 

depending on relative humidity). 

Dahlan et al. (2008) conducted a field thermal comfort study in naturally 

ventilated high-rise hostels near Kuala Lumpur. They reported a neutral temperature 

of 30.93℃ when using linear regression of subjects’ thermal sensation votes (TSV) 

with the operative temperature (Tₒₚ) and 29.87℃ when using the optimum thermal 

comfort model. Hussein et al. (2009) conducted a field thermal comfort study in air-

conditioned and non-air-conditioned buildings (i.e., mechanically ventilated with fans) 

located in Selangor and Johor Bahru. The obtained neutral temperature using linear 

regression of TSV with Tₒₚ were 24.4℃ and 28.4℃ for the air-conditioned and non-
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