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EKSTRAK KULIT POKOK KAPUR BARUS (Dryobalanops aromatica) 

SEBAGAI PERENCAT KAKISAN BAGI KELULI LEMBUT DALAM 

LARUTAN BERASID 

ABSTRAK 

Matlamat kajian ini adalah untuk mengekstrak tanin daripada kulit pokok kapur 

barus (Dryobalanops aromatica) dan mengkaji keupayaan perlindungan kakisan 

daripada ekstrak tanin pada keluli lembut dalam larutan 0.5 M HCl. Pengekstrakan 

dilakukan melalui kaedah rendaman dan memberikan peratusan hasil secara tertib 

ekstrak metanol > ekstrak air > ekstrak etil asetat > ekstrak heksena. Ekstrak methanol 

tanin (TME) dan ekstrak air tanin (TWE) dicirikan secara kualitatif dan kuantitatif.  

Spektra spektroskopi infra merah Fourier (FTIR) menunjukkan kehadiran kumpulan 

berfungsi yang mencirikan sifat perencat kakisan. Resonans magnetik nuklear karbon-

13 tanin (13C NMR) menunjukkan bahawa kedua-dua TME dan TWE mempunyai 

signal karbon-13 bagi prosianidin tanin. Jumlah kandungan fenolik (TPC) ditentukan 

dengan kaedah Folin-Ciocalteau, jumlah kandungan flavonoid (TFC) melalui kaedah 

kolorimetri aluminium klorida dan jumlah kandungan tanin (TTC) dengan kaedah 

Stiasny didapati lebih tinggi pada TME daripada TWE. Ujian antioksida mendapati 

bahawa kuasa penurunan dan kapasiti pemulungan radikal bebas adalah lebih kuat 

pada TME berbanding dengan TWE.   Kajian perencatan kakisan yang dilakukan 

dengan menggunakan teknik spektroskopi impedans elektrokimia (EIS), 

potensidinamik (PD) dan hingar eletrokimia (EN) mendapati bahawa kecekapan 

perencatan (IE) TME dan TWE meningkat dengan kepekatan hingga 1000 ppm dan 

kecekapan perencatan menggunakan tiga teknik berbeza adalah dalam julat 80 - 93 % 

bagi TME dan 80 - 92 % bagi TWE. Kesemua data eksperimen dipadankan dengan 
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isoterm penjerapan Langmuir, mekanisma penjerapan fizikal menerangkan proses 

perencatan. Penglitup sol-gel hibrid (GPTMS-TEOS) yang didopkan dengan TME dan 

TWE menunjukkan peningkatan perlindungan keluli lembut dengan IE sedikit tinggi 

(IETME = 93.68 %, IETWE = 93.64 %) berbanding dengan penglitup sol-gel hybrid tanpa 

dopan (53.66 %). Penglitupan keluli lembut dengan sol-gel didopkan TME 

memberikan sifat hidrofobik yang baik dengan sudut sentuhan air 122.73˚ berbanding 

dengan keluli lembut terlitup sol-gel hybrid didopkan TWE dengan sudut sentuhan air 

88.68˚. Tambahan pula, lebih dari 90% transformasi kepada ferik tannat telah berjaya 

dicapai pada keadaan optimum 6 % TME pada pH 4 selama 1 hari. Pembentukkan 

ferik tanat telah ditentukan menggunakan analisis FTIR dan pembelauan sinar-X. Oleh 

yang demikian, TME telah terbukti sebagai perencat terbaik berbanding TWE bagi 

keluli lembut dalam 0.5 M HCl daripada kajian perencat kakisan, penglitup sol-gel 

hybrid serta berpotensi sebagai pengubah karat.  
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CAMPHOR TREE (Dryobalanops aromatica) BARK EXTRACT AS 

CORROSION INHIBITOR FOR MILD STEEL IN ACIDIC MEDIUM 

ABSTRACT 

The goal of the study is to extract tannin from the bark of camphor tree 

(Dryobalanops aromatica) and to study the corrosion inhibition potential of the tannin 

extracts on mild steel in 0.5 M HCl. The extraction was carried out through maceration, 

gave percentage yield in the order of methanol extract > water extract > ethyl acetate 

extract > hexane extract. The tannin methanol extract (TME) and tannin water extract 

(TWE) further characterized qualitatively and quantitatively. The Fourier transformed 

infrared spectroscopy (FTIR) spectra for both extracts revealed the presence of 

functional groups that characterise good corrosion inhibitor. The carbon-13 nuclear 

magnetic resonance (13C NMR) showed that both TME and TWE contain carbon-13 

signals for procyanidin tannin. The total phenolic content (TPC) carried out by Folin-

Ciocalteau method, total flavonoid content (TFC) by aluminium chloride colorimetric 

method, total tannin content (TTC) assay by Stiasny method were found to be higher 

in TME than TWE.  The antioxidant assays revealed that TME has more reducing and 

antiradical power than TWE. The results from the corrosion inhibition studies 

conducted via electrochemical impedance spectroscopy (EIS), potentiodynamic 

polarization (PD) and electrochemical noise (EN) techniques showed that, inhibition 

efficiencies (IE) of TME and TWE increased with concentration up to 1000 ppm and 

the IE from the three different techniques were within the range of 80 - 93 % for TME 

and 80 - 92 % for TWE. All the experimental data for both tannin extracts fitted best 

into the Langmuir adsorption isotherm and physisorption mechanism described the 

inhibition process. The hybrid sol-gel coating (GPTMS-TEOS) doped with TME and 
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TWE revealed greater enhancement protection of the mild steel, having higher IE 

(I.ETME = 93.68 %, I.ETWE = 93.64 %) than the undoped hybrid sol-gel coating (53.66 

%). The TME doped hybrid sol-gel coated mild steel exhibited better hydrophobic 

property with contact angle of 122.73˚ than TWE doped hybrid sol-gel coated mild 

steel with contact angle of 88.68˚. Additionally, more than 90 % rust transformation 

into ferric tannates was achieved with 6 % TME at pH 4 and after 1 day. The formation 

of ferric tannates was confirmed by FTIR and X-ray diffraction (XRD) analyses. 

Therefore, TME has proven to be a better inhibitor than TWE for mild steel in 0.5 M 

HCl from the corrosion inhibition and hybrid sol-gel coating studies, as well as a 

potential rust converter. 
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CHAPTER 1 

INTRODUCTION 

1.1  Background of the study 

As an engineering tool, mild steel or carbon steel remains the backbone for a 

spectrum of industries such as automobile, aviation, automotive, building, 

construction, machinery, transportation, oil, and gas (Shainy et al., 2016). Mild steel 

has become a valuable material for most industrial processes and manufacturing due 

to its ease of availability, low cost and outstanding mechanical properties (Saeed et al., 

2020). In the petroleum industry, the use of acids in industrial cleaning, acid pickling 

and acid descaling create an aggressive environment leading to the corrosion of mild 

steel (Finšgar and Jackson, 2014). Moreover, due to the less amount of alloy, mild 

steel is prone to high corrosion with not more than 2 per cent carbon of its total weight 

(Qian et al., 2009). 

One of the most feasible corrosion mitigation methods, especially in acidic 

media, is the use of inhibitors (Anupama et al., 2016). Although available conventional 

synthetic organic inhibitors have proven to be very effective, they are to some degree, 

toxic and very expensive. The recent strict environmental legislation and increasing 

awareness among scientists on the hazard of such inhibitors to both humans and the 

environment have shifted the focus of modern researchers, to the development of 

“green” alternatives to mitigate corrosion (Bourazmi et al., 2018). 

The use of sol-gel coating can serve as a replacement for phosphating and 

chromating treatments. Although these coating applications are simple and 

inexpensive, they are possible contaminants of soil and groundwater, and chromium 
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(VI) species is considered to be highly toxic in nature and carcinogenic (Qian et al., 

2009). Sol-gel coatings are usually thin and porous, which lower their mechanical 

integrity. To achieve a dense microstructure at high sintering temperature, sol-gel 

coatings develop cracks due to thermal expansion coefficients and potential chemical 

reactions at the interface. Synthesizing hybrid coating is the key to obtaining dense 

sol-gel coating. And by incorporating inhibitors, the micropores are sealed to prevent 

corrosion species such as Cl-, H2O and O2 from reaching the mild steel surface. 

The most significant form of corrosion in iron and alloys is rust, which is 

typically unavoidable. The traditional techniques for rust removal, such as 

sandblasting, require a lot of energy and equally time-consuming (Nasrazadani, 1997). 

Therefore, the use of rust converter has become essential for corrosion mitigation 

(Collazo et al., 2010a). Corrosion inhibitors that are rich in polyphenolic compounds 

such as tannins have been considered as excellent rust converters because they can 

convert active rust to harmless adherent protective compounds on which overcoat 

painting is feasible (Merino et al., 2017). This occurs when the hydroxyl groups of the 

aromatic rings of the tannin molecules react with ferric ions to form highly crosslinked 

network of blue-black ferric tannate, which forms a passivation against further 

corrosion (Mei et al., 2015). 

Dryobalanops is a unique genus of Dipterocarpaceae plant as only seven 

species exist worldwide, namely, Dryobalanops aromatica, Dryobalanops 

oblongifolia, Dryobalanops lanceolata, Dryobalanops beccarii, Dryobalanops rappa, 

Dryobalanops keithii, and Dryobalanops fusca (Harada et al., 2018;  Dwiyanti et al., 

2015). Most of these species are found in tropic regions of Peninsular Malaysia, 

Sumatra, and Borneo (Rachmayanti et al., 2006). The trees of Dipterocarpaceae are 

distinct and well-known in the tropics as they stand tall in some of the earth's majestic 
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forest formation (Juliana et al., 2018). Their overwhelming presence led to them being 

referred to as dipterocarp forests. A group of large trees of these species forms a high 

uniform canopy that gives rise to structural differences compared to other dipterocarp 

forest types (Norafida et al., 2018).  

1.2 Problem statements 

The problem of corrosion is like “cancer” to steel since it cannot be totally 

eliminated, but can only be minimized or managed (Fan and Zhao, 2011). 

Unfortunately, the most effective corrosion inhibitors with long standing history are 

extremely toxic and very expensive. The use of inorganic inhibitors such as red lead 

and zinc chromate have been regulated by law, due to their carcinogenicity on humans 

and harmful potential to the environment. 

The use of hybrid sol-gel coating on metal substrates also provide protection 

against corrosion attack. However, the coating may be characterized by some 

micropores and microcracks through which aggressive corrosion agents could get to 

the surface of the substrate been protected thereby, rendering the coating ineffective. 

Likewise, rust converters which act by converting active rust substance to protective 

compounds are mostly synthesized with hazardous and unsafe chemicals which are 

environmentally unfriendly.  

Due to the popular demand for the wood of camphor tree, the bark constitutes 

a huge agricultural waste after the trees are logged (Ritonga et al., 2018). Additionally, 

the continuous falling of the trees to make way for oil palm plantation poses serious 

threat to Dryobalanops aromatica species. According to Kuspradini et al. 2007, 

Dryobalanops aromatica tree bark contains tannin. Tannins possess heteroatoms with 
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lone pairs of electrons, pi-electrons of aromatic rings and phenolic hydroxyl groups 

that confer the ability to inhibit corrosion (Gambier et al., 2018). 

1.3  Research objectives 

The goal of this study is to explore the suitability of Dryobalanops aromatica 

bark tannin extracts as a green inhibitor for mild steel in acidic medium, to provide a 

safer alternative for toxic inorganic inhibitors and costly synthetic organic inhibitors, 

that are widely used in industrial processes. After the extraction and characterization 

of the bark extracts, the work was set to achieve the following objectives: 

1. To explore the potential of Dryobalanops aromatica bark tannin extracts 

as green inhibitor of mild steel corrosion in hydrochloric medium, using 

electrochemical techniques, surface analyses and, to propose possible 

mechanism. 

2. To evaluate the efficacy of incorporating Dryobalanops aromatica bark 

tannin extract in hybrid sol-gel coating for mild steel corrosion protection 

through electrochemical technique, surface analyses and, to propose the 

possible mechanism. 

3. To ascertain the potential of Dryobalanops aromatica bark tannin extract 

in rust transformation by varying the reaction conditions (Concentration, 

pH, and time) and, to propose the possible mechanism. 

1.4  Scope of the research 

This research work includes studying the dried bark of Dryobalanops 

aromatica collected from Kepong Selangor as a possible green inhibitor for mild steel 

corrosion. The crude plant extracts obtained by maceration were qualitatively and 
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quantitatively characterized before been used in three (3) application studies. Firstly, 

inhibition study in 0.5 M HCl medium by varying concentrations (10 ppm – 1000 ppm) 

and temperatures (303 K – 333 K) to achieve best conditions for the inhibition. 

Secondly, sol-gel coating study by varying the mixing ratios (1:1, 1:2, 1:3, 2:1, 3:1) of 

precursors to obtain the most appropriate mixture. The different concentrations of 

inhibitor as in the inhibition study (50 ppm – 1000 ppm) was doped to the hybrid sol-

gel coating deposited on mild steel. Thirdly, rust converter study which involves 

treatment of salt spray produced rust at varying concentrations (0.5 % - 8 %), pH (2 – 

8), and contact time (1/2 – 14 days), to obtain the best conditions of the rust 

transformation. Following these three application studies, the mild steels from the first 

two studies were characterized by electrochemical measurements (Electrochemical 

impedance spectroscopy, Potentiodynamic polarization and Electrochemical noise 

techniques), and surface analyses (Scanning electron microscope, Energy disperse X-

ray and water contact angle measurement). While the rust powder (treated and 

untreated) from the last study was characterized by Fourier transformed spectroscopy 

and X-ray diffraction. The mechanisms for each of these three studies were then 

proposed. 

1.5 Limitation of the research 

The Electrochemical noise analysis could not be carried out for hybrid sol-gel 

coating application study due to the breakdown of the potentiostat as at the time of the 

study. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1  Dryobalanops aromatica (Dipterocarpaceae) 

 

Figure 2.1: Camphor tree (Dryobalanops aromatica) (Kamariyah et al., 2012) 

 

Camphor tree is a woody plant that grows up to 70 meters tall when fully 

matured and spreads widely across these dipterocarp forests (Yahya and Gardingen, 

1999; Kamariyah et al., 2012). Other names of the tree with regards to geographical 
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location are Sumatra camphor, Malay camphor, and Borneo camphor tree. The species 

name “aromatica” refers to the fragrant smell of a white resinous substance (the “true 

camphor”), which is released from the different parts of the tree. Dryobalanops 

aromatica is essentially outbreeding and pollinated by insects. Due to its winged fruits, 

the seeds are dispersed by gravity or gyration (Harada et al., 2018). The stem is a good 

source of camphor oil (camphor essential oil), which finds application in oral and 

topical medications (Kamariyah et al., 2012). The oil of camphor tree has been 

reported with various biological activities, including antioxidant properties, anti-

cancer and anti-HIV (Le et al., 2016). 

The tree of Dryobalanops aromatica is famous for its high-quality timber with 

trade name “kapur”, which predominated the international tropical wood market and 

played a vital role in many Southeast Asian countries (Appanah et al., 1998). The wood 

is usually used for heavy construction purposes and, in the past, was used as rail 

sleepers. The exciting feature of Dryobalanops aromatica is the peeling of its flaky 

bark from the trunk, which sometimes resembles a scroll of papers used to weave 

baskets and make walls of huts by surrounding dwellers in olden days (Corlett and 

Primack, 2005). Nowadays, after Dryobalanops aromatica trees are harvested in the 

forest to make timbers, piles of the trees’ bark are left wasted. The tree of 

Dryobalanops aromatica has been classified as endangered in the 2017 IUCN red list 

of threatened species of dipterocarp forests (Rachmayanti et al., 2006), where Malaysia 

is a member of IUCN. Over the years, there is an increase in human activities of 

incessant logging of the trees for construction purposes as well as the forests 

conversion into oil palm plantations for commercial purposes (Susilowati et al., 2018). 

These expose Dryobalanops aromatica species to the risk of complete extinction, with 

very few of the sub-population remaining in forest reserve (Ritonga et al., 2018). 
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Only a few information is available on the potentials of the tree of 

Dryobalanops aromatica. Most of the chemical constituents isolated were from the 

bark of the plant. The bark of Dryobalanops aromatica was previously reported to 

contain terpenoid and flavonoid (Bate-Smith and Whitmore, 1959), steroid and 

saponin (Carrick et al., 1968). The triterpenes from the resin of the bark of 

Dryobalanops aromatica tree have been characterized (Cheung and Wong, 1972; Le 

et al., 2017). Wibowo et al. (2012) and Manshoor et al. (2015) have reported the 

isolation and characterization of some oligostilbenes from the bark of Dryobalanops 

aromatica. These are complex polyphenolic compounds known as resveratrol (4,3,5’-

trihydroxystilbenes) oligomers, with excellent antioxidant activity (Wang and Yao, 

2016). According to Kuspradini et al. 2007, the phenolic compounds of Dryobalanops 

aromatica bark extract constitutes tannins, mainly ellagitannins; therefore, they could 

be a potential inhibitor for corrosion protection. 

2.2  Tannins 

Tannins are polyphenolic secondary metabolites of higher plants, widely 

distributed in many plant species and found in wood, bark, leaves, seeds, and fruits. 

They are derivatives of galloyl ester, in which their galloyl moieties are attached to a 

core centre made of catechin, polyol or triterpenoid (Abdulmajid et al., 2019). Based 

on their structural and chemical properties, tannins can be divided into four (4) 

significant classes; Gallo tannins, ellagitannins, complex tannins, and condensed 

tannins as given in Figure 2.2.  
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Figure 2.2: Classification of tannin (Saxena et al., 2013) 

 

(i) Gallotannins are tannins in which different catechin, polyols, or 

triterpenoid units are bonded to galloyl units or their derivatives. 

(ii) Tannins with two galloyl units bound to each other by C-C bonds are 

ellagitannins and do not contain a glycosidic catechin bonding unit. 

(iii) Ellagitannin and gallotannin units that are glycosidically bonded to a 

catechin form complex tannins. 

(iv) Condensed tannins are oligomeric and polymeric proanthocyanidins 

formed by coupling one catechin monomer to C-4 and another catechin 

monomer to C-8 or C-6. 

The basic structure of condensed tannins is based on the repeating units of 

flavonoid, primarily flavan-3-ol repeating units (Figure 2.3), whose derivatives are 

namely: (+)-catechin, (-)-epicatechin, (+)-gallocatechin, (-)-epigallocatechin and (-)-

epigallocatechin gallate (Koleckar et al., 2008). 
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Figure 2.3: Catechin monomer (Flavan-3-ol unit) (Adopted from Enomoto et al., 

2020) 

 

Condensed tannins are found in a substantial amount in the wood and bark of 

several trees, such as black wattle, melaleuca, acacia, larch, oak, pine, and mangrove. 

Extensive research on tannins has led to a broad range of industrial applications being 

developed. These include use in tanneries, wood adhesives, manufacture of inks, 

dyeing of textiles, flocculant for water treatment, dispersants, antioxidants, corrosion 

inhibitors, rust converters, and so on (Pizzi, 2019).  

The development of corrosion inhibitors from waste materials is sustainable, 

as they are being recycled instead of discarded. Plant wastes such as bark, fruit, peels, 

seeds have high antioxidant properties and are rich in phytochemicals which can be 

solvent-extracted and use as corrosion inhibitor. 

2.3 Extraction and solubility of plant extract used as corrosion inhibitor 

Extraction method greatly influences the composition of plants extracts 

(Arbenz and Avérous, 2015). The phytochemical constituents such as tannins, 

flavonoid, saponins and other polyphenolic compounds involved in corrosion 

inhibition can be extracted from either fresh or dried plant material (Miralrio and 
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Vázquez, 2020). One of the common traditional methods of extraction, that is simple, 

easy, and affordable is maceration (Uysal et al., 2019). In maceration, cut, crushed, or 

powdered plant material is immersed in a selected extraction solvent, inside a 

stoppered container for a period of at least three (3) days under constant agitation, at 

room temperature (Nn, 2015). The solvent also plays a key role in the extraction 

method, since it is responsible for the solubilizing of the compounds when it diffuses 

through the plant tissues, making their extraction possible (Miralrio and Vázquez, 

2020). Extraction solvents have shown to affect the physical, chemical and antioxidant 

properties of extracts that are obtained. Therefore, various solvents including polar 

(water and alcohols), intermediate (ethyl acetate) and non-polar (hexane) are used to 

achieve the desired concentration of the phytochemicals of the plant extract. The 

solvent is separated from the mixture by decanting, filtering, and vacuum evaporating. 

The concentrated dried crude extract is obtained preferably by freeze drying, which is 

the best method for preserving the structure of the phenolic compounds and the molar 

masses of condensed tannin (Arbenz and Avérous, 2015).  

2.4  Qualitative and Quantitative analyses of plant extract inhibitor 

Qualitative analysis is carried on the plant extract to test for the presence of 

phytochemicals, usually the polyphenolic compounds that possess hydroxyl groups 

and heteroatoms such as O, N, S, P, which are required to be present for the inhibition 

process to take place. These compounds include tannin, flavonoid, saponin, terpenoid, 

glycoside and coumarin. The analysis is mostly carried out using solutions of salts and 

acids. For instance, ferric chloride solution used to test for the presence of tannin. An 

indication of positive test is usually observed by colour change of the reaction solution 

or precipitate formed. 
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Quantitative measurements are carried out to check the amount of 

phytochemical constituent in a plant extract. Some of the common measurements 

include total phenolic content (TPC), total flavonoid content (TFC) and total tannin 

content (TTC). In most cases, the analysis involves addition of certain reagents, salt, 

and acid solutions. The use of a standard compound is sometimes required. After 

developing the colour of both the standard and sample solutions (incubation), the 

solutions are then measured spectrophotometrically. A standard calibration graph is 

obtained for the standard solution at various concentration, and concentration of the 

sample is calculated. For instance, measurement of TPC with gallic acid standard using 

Folin-Ciocalteau reagent and Na2CO3 salt solution. The Prussian blue colour of the 

solutions is measured at 765 nm using UV-VIS spectroscopy. 

2.5 Corrosion process 

The term corrosion was derived from the Latin word ‘corrodere’ which means 

“to gnaw to pieces” (Davis, 2000). Corrosion is usually the degradation through 

chemical reaction of materials such as metals, plastics, ceramics, polymers, cement, 

and wood, with their surrounding environment (Landolt, 2007). Nevertheless, in most 

cases, the term corrosion refers to metals' destructive attack by chemical or 

electrochemical reaction with the environment (Zaki, 2006). All metals are usually 

found in nature as ores, but during manufacturing processes with energy input, these 

ores are converted into pure metals, as illustrated in Figure 2.4. However, when 

corrosion occurs, the added energy is released, and the metal returned to its original 

oxide state in which is thermodynamically stable. 
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Figure 2.4: Corrosion and energy changes in steel and iron (Sahan et al., 2018) 

 

Corrosion in an aqueous medium is an electrochemical process. In a corroding 

device (Bradford and Bradford 1993), the following components are required: the 

anode (the metal corroding); the cathode (a metal or other electronic conductors whose 

surface becomes reaction sites for the medium); and the electrolyte (the aqueous 

environment which provides an ionic link path between the anode and the cathode). 

The absence of any one of these components will imply that the electrochemical 

corrosion will not occur. Thus, analysis of the corrosion cell may provide a hint on 

how to stop the corrosion process. Two half-cell reactions, the anode reaction, and the 

cathode reaction, as illustrated in Figure 2.5, are involved in the iron or steel corrosion 

process.  
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Figure 2.5: Corrosion half-cell reactions (Salunkhe and Rane, 2016) 

 

The reaction of the anode includes the corroding of the anode metal, which 

goes into the electrolyte solution as metal ions. If we consider mild steel (mainly iron) 

for the anode reaction:  

𝐹𝑒 →  𝐹𝑒2+  +  2𝑒−                    Eq. (2.1) 

The cathode reaction consumes the electrons produced at the anode. If not, the 

anode becomes so charged with electrons so that all the reactions cease immediately. 

Otherwise, at the cathode, some reducible species in the electrolyte become adsorbed 

and pick up electrons to be reduced in a reduction process, although the cathode itself 

does not react (Bradford and Bradford 1993). Since the corrosive medium reacts at the 

cathode, several cathode reactions are possible, and different corrosives may attack 

metals. All environments are corrosive to some extent, and these include natural, 

urban, marine, and industrial atmosphere; fresh, distilled, salt and marine water; air 

and humidity; soil, bases, and acids (Zaki, 2006). The most popular reaction occurs in 

nature and neutral or alkaline solutions with dissolved oxygen (Bradford and Bradford 

1993). That is: 
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𝑂2  + 2𝐻2𝑂 +  4𝑒−  →  4𝑂𝐻−      Eq. (2.2) 

But in acidic solution (de-aerated), the cathodic reaction is: 

2𝐻+  +  2𝑒−  →  𝐻2        Eq. (2.3) 

If no further oxidation or reduction reaction occurs, the overall corrosion reaction will 

be the combination of the anode and cathode half-cell reactions, which gives an 

insoluble iron (II) hydroxide known as green rust (Zaki, 2006). That is: 

𝐹𝑒2+  +  2𝑂𝐻−  →  𝐹𝑒(𝑂𝐻)2         Eq. (2.4) 

The iron (II) ions, which are usually unstable, may be further oxidized to stable iron 

(III) ions, 

4𝐹𝑒2+  +  8𝐻+  +  2𝑂2  +   4𝑒− →  4𝐹𝑒3+  +  4𝐻2𝑂   Eq. (2.5) 

The iron (III) ions react with hydroxide ions to give hydrated iron (III) hydroxide, 

which is the common reddish-brown rust (ferric hydroxide). 

𝐹𝑒3+  +  3𝑂𝐻−  →  𝐹𝑒(𝑂𝐻)3         Eq. (2.6) 

When iron contacts with a hydrochloric acid solution, only ferrous chloride salt, and 

hydrogen gas can be detected, 

𝐹𝑒 + 2𝐻𝐶𝑙 →  𝐹𝑒𝐶𝑙2  +  𝐻2         Eq. (2.7) 

The ferrous chloride could also be oxidized to ferric hydroxide, 

𝐹𝑒𝐶𝑙2  +  1/4𝑂2  + 5/2𝐻2𝑂 →  𝐹𝑒(𝑂𝐻)3  +  2𝐻𝐶𝑙     Eq. (2.8) 

Moreover, with aging, ferric hydroxide dehydrates even in the presence of water to 

give oxyhydroxides. 
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𝐹𝑒(𝑂𝐻)3  → 𝐹𝑒𝑂𝑂𝐻 + 𝐻2𝑂        Eq. (2.9) 

Oxidation and hydrolysis of ferric hydroxide may lead to the formation of all kinds of 

corrosion products, which include lepidocrocites (γ-FeOOH), goethite (α-FeOOH), 

akaganite (β-FeOOH) and magnetite (Fe3O4) and so on (Tamura, 2008). 

2.6 Consequences of corrosion 

Generally, the progression of corrosion shortens the life span of any metallic 

structure and this leads to structural deterioration, leakage, product degradation and 

environmental pollution. The corrosion problem in oil field applications, accounts for 

a significant proportion of the overall costs for oil and gas generating companies 

globally each year (Finšgar and Jackson, 2014). It occurs at all stages, from downhole 

to surface equipment and processing facilities, leading to serious problems, such as 

loss of life, adverse social effects, contamination of water supplies and the 

environment. It can also occur as leaks in tanks, casting, tubing, pipelines, and other 

equipment. Corrosion issues are commonly associated with operational problems and 

maintenance of equipment, leading to a repeated partial and even complete shutdown 

of the process resulting in significant economic losses (Finšgar and Jackson, 2014). 

In the past, several disastrous incidences have been reported because of corrosion 

failures. One example is the sewer explosion in April 1992 in Guadalajara, Mexico, 

which took the lives of over 200 people. (Popoola et al., 2013). The series of 

explosions, in addition to the deaths, destroyed 1,600 buildings and wounded 1,500 

people. The explosion was discovered to be due to the installation of a water pipe by 

a contractor many years before the explosion that spilled water onto a fuel line below. 

In turn, the deterioration of the gasoline pipeline caused the gasoline to spill into the 
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sewer. Moreover, corrosion is linked to almost all pipeline failures due to their long-

term service and exposure to the aggressive environment (Hou et al., 2016). 

2.7 Economic cost of corrosion 

The economic cost of corrosion is projected to be in the range of 1% - 5% of 

developed countries’ gross national product, which include countries like United 

States, United Kingdom, Japan, Australia, Kuwait, Germany, Finland, Sweden, India, 

and China (Gerhardus et al., 2016). In 2016, a NACE report found that the estimated 

global cost of corrosion is at $2.5 trillion yearly, an equivalent of about 3.4 percent of 

the global GDP (McMahon et al., 2019). While in Malaysia alone, the cost of corrosion 

amounts to about RM6.7 billion, which accounts for RM 207.4 billion of the country’s 

GDP (Saupi et al., 2015). But between 15% - 35% of global savings will be achieved 

if current available, corrosion mitigation practices are implemented (Gerhardus et al., 

2016).  

2.8  Electrochemical corrosion monitoring techniques 

Since corrosion is an electrochemical method, the electrochemical 

characteristics of the metal-electrolyte interface, including corrosion potential and 

corrosion density, may suggest the appropriate corrosion monitoring technique. 

(Sastri, 2011). In monitoring corrosion processes, methods including electrochemical 

impedance spectroscopy, potentiodynamic polarisation, and electrochemical noise are 

widely employed. Complementary techniques used to classify the protective film 

formed on the metal surface, are surface analyses, such as scanning electron 

microscope coupled with energy dispersive X-ray, X-ray diffraction spectroscopy, and 

water contact angle analysis.  
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2.8.1  Electrochemical impedance spectroscopy (EIS) 

Electrochemical impedance spectroscopy, also known as AC impedance, is 

now a well-developed laboratory technique used at different alternating current 

excitation frequencies, to obtain the electrical impedance of the metal-electrolyte 

interface. (Schweitzer, 2007). Impedance measurements considers the effect sum of 

resistance, capacitance, and inductance. Also, AC impedance can characterize the 

corrosion interface more comprehensively. Accurate corrosion interface tests can be 

performed with high quality equipment in a lower conductivity solution or under high-

resistivity coatings. (Britton, 1979). Impedance measurements have many advantages, 

including the use of chemical inhibitors and protective coatings to predict corrosion 

rates, characterize systems under study and evaluate the resistance of alloys in certain 

environments (Schweitzer, 2007). Electrochemical impedance dependence on 

frequency and is the complex-valued proportionality factor ∆E/∆I between the applied 

potential (or current) and the response current (or potential) in an electrochemical cell 

(Groysman, 2010).  

Resistance R, from the DC theory, is given by Ohm's law as,  

𝐸 = 𝐼𝑅         Eq. (2.10) 

where I is the current (in amperes, A), and E is the potential (in volts, V). Using Ohm’s 

law and applying a DC potential to a circuit, the resulting current can be measured and 

from which the resistance be calculated. 

while from AC theory, 

𝐸 = 𝐼𝑅         Eq. (2.11) 

 



19 

Where Z is the impedance, the AC equivalent of resistance. Impedance 

magnitude contains elements of equivalent circuit such as capacitors and inductors. 

The opposition to the flow of AC is provided by capacitors and inductors, just as 

resistors produce the same effect for DC. AC currents and voltages are vector 

quantities. Impedance can be expressed as a whole number where the resistance is the 

real component and the combined capacitance and inductance, the imaginary 

component (Ahmad, 2006). The total impedance is given as, 

𝑍𝑡𝑜𝑡𝑎𝑙  =  𝑍′  + 𝑍′′𝑗        Eq. (2.12) 

where Z’ is the real impedance, Z’’ is the imaginary impedance and j is √(−1) . The 

expression for the absolute magnitude of impedance will be: 

|𝑍| =  √(𝑍′)2 +  (𝑍′′)2       Eq. (2.13) 

and, 

𝑡𝑎𝑛 𝜃 =  𝑍′ 𝑍′′⁄         Eq. (2.14) 

When the opposition to current flow is due to capacitive resistance, the current leads 

the applied voltage in phase angle. But when inductive reactance is responsible for the 

opposition to current flow, the current lags behind the voltage in phase angle (Ahmad, 

2006). The phase angle (θ) or phase shift is the difference between points on the x-axis 

where current and voltage curve amplitudes are zero (Figure 2.6). The electrochemical 

impedance expressions based on circuit components are given in Table 2.1. 
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Table 2.1: Electric circuit components in electrochemical impedance 

Circuit components Impedance 

Resistor, R Z = R 

Capacitor, C Z = -1/jωC 

Inductor, L Z = jωL 

 

 

 

Figure 2.6: EIS potential excitation and current response (Perez, 2004) 

 

Electrochemical impedance measurement produces numerical results that are 

presented in three (3) kinds of plots (Lasia, 2005): Nyquist plots, also called complex 

plane plots of imaginary Z’’ versus real impedance Z’ (Figure 2.7). There are two types 

of Bode plots; Bode magnitude |Z| versus the logarithm of frequency log ω and phase 

angle θ versus the logarithm of frequency log ω (Figure 2.8). 
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Figure 2.7: Nyquist plots (Perez, 2004) 

 

 

Figure 2.8: Bode plots (Berradja, 2019) 

 

From these plots, corrosion resistance of metal or alloy under electrochemical 

impedance analysis can be accurately estimated. Usually, a well-known Randles 

equivalent circuit (RC circuit), which describes many electrochemical electrode-

electrolyte characteristic interfaces, represents the impedance corresponding to a 

simple corrosion mechanism under activation control. A typical example of a Randle-
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type equivalent circuit is depicted in Figure 2.9. For a charge-transfer control (Figure 

2.9 a), only the solution resistance (Rs), polarization resistance (Rp), and capacitance 

C, corresponding to the double-layer capacitor (Cdl), are required in a simple circuit. 

Thus, the impedance for this circuit becomes, 

𝑍 =  𝑅𝑠  +  𝑅𝑝 1 + 𝑗𝜔𝐶𝑑𝑙𝑅𝑝⁄       Eq. (2.15) 

The double layer capacitance can be gotten from the expression, 

𝐶𝑑𝑙  =  1/2𝜋𝑓𝑚𝑎𝑥  × 1/𝑅𝑝       Eq. (2.16) 

Where fmax is the frequency at which the imaginary component of the Nyquist plot is 

maximum. 

In corrosion inhibition study, an increase in the polarization resistance and 

decrease in the double layer capacitance with increasing inhibitor concentration 

indicate that the inhibitor compound (s) inhibit the metal's corrosion rate via charge 

transfer mechanism (Perez, 2004). But when the electrochemical system is diffusion-

controlled (Figure 2.9 b), a diffusion impedance (ZD) known as Warburg impedance 

is introduced in the circuit. 

For a coating system, the use of a different equivalent circuit containing 

parallel arrangement of resistors and capacitors with coating resistance Rcoat and 

coating capacitive element CPEcoat as additional circuit components is employed.   
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Figure 2.9: Common electrochemical circuits used in corrosion studies  

(Perez, 2004)  

 

2.8.2  Potentiodynamic polarization (PD) 

This is mainly a popular electrochemical laboratory technique used to study 

corrosion phenomena, particularly pitting, (Britton, 1979). The working electrode, 

which acts as the sensing part, is typically polarised using a three-electrode corrosion 

probe.  The current response is measured as potential is varied from the free-corrosion 

potential. This technique is useful in estimating the anodic and cathodic Tafel slopes. 

The polarisation technique includes the use of mathematical models to describe the 

kinetics of charge transfer process in an electrochemical environment, according to 

Perez (2004). The electrode reactions are presumed to induce equilibrium deviations 

because of the flow of electric current through an electrochemical cell, which causes a 

change in the potential of the working electrode (WE). Consequently, a difference 

between the electrical potential of the polarized and unpolarized (equilibrium) 

electrode potential, known as the overpotential (η) is produced. The electrochemical 

and chemical reaction rates due to anodic or cathodic overpotentials can usually be 

predicted with the respective equations of Faraday (Eq. 2.17) and Arrhenius (Eq. 2.18)  

(Perez, 2004), 
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𝑅𝐹  =  𝑖𝐴𝑤𝑗 𝑧𝐹⁄         Eq. (2.17) 

 

𝑅𝐴  =  𝛾𝑎 exp (−∆𝐺∗ 𝑅𝑇)⁄        Eq. (2.18) 

For where i is the applied current density (A cm-2), Awj is the atomic weight of 

species j (g mol-1), z is the state of oxidation or number of valency, γa is the chemical 

reaction constant, and ∆G* is the activation energy or free energy change (J mol-1). 

At equilibrium, Faraday’s equation equals Arrhenius rate equation (RF = RA) 

then, the current density becomes, 

𝑖 =  𝛾𝑎 exp(−∆𝐺∗ 𝑅𝑇⁄ )       Eq. (2.19) 

Otherwise, if an overpotential polarizes an electrode under steady-state 

conditions, the reaction rates will not be equal (RF ≠ RA). Hence, the forward (if 

cathodic) and reverse (ir anodic) current densities components will have to be defined 

in terms of free energy change ∆G, as deduced from Figure 2.10, where k’f and k’r is 

the forward and reverse reaction rates, respectively. Thus, 

 𝑖𝑓  =  𝑘𝑓
′ exp  (−∆𝐺𝑟

∗ 𝑅𝑇)⁄  (cathodic)     Eq. (2.20) 

 

 𝑖𝑟  =  𝑘𝑟
′ exp  (−∆𝐺𝑟

∗ 𝑅𝑇)⁄  (anodic)      Eq. (2.21) 

 

and, 

 

∆𝐺𝑓
∗  =  ∆𝐺𝑓  −  𝛼𝑧𝐹𝜂𝑐       Eq. (2.22) 

 

∆𝐺𝑟
∗  =  ∆𝐺𝑟  + (1 − 𝛼)𝑧𝐹𝜂𝛼       Eq. (2.23) 
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Figure 2.10: Schematic activation free energy distribution (Perez, 2004) 

 

Where α is the symmetry coefficient, F is the Faraday’s constant, and η is the 

overpotential reaction or polarization for both anodic and cathodic reactions. In the 

cathodic case, the net current is i = if – ir and the overpotential is ηc. The net current 

density is given in a general form by substituting equations (2.20) and (2.21) into this 

expression gives. That is, 

𝑖 = 𝑘′ exp(−𝐺𝑓
∗ 𝑅𝑇⁄ ) exp(𝛼𝑍𝐹𝜂 𝑅𝑇⁄ ) − 𝑘𝑟 

′ exp(−∆𝐺𝑟
∗ 𝑅𝑇)exp (−(1 − 𝛼)⁄         

𝑧𝐹𝜂 𝑅𝑇⁄          Eq. 2.24 

From this equation (2.24), the exchange current density is deduced as: 

𝑖𝑜  =  𝑘𝑓
′ exp(−∆𝐺𝑓

∗ 𝑅𝑇⁄ )  =  𝑘𝑟 
′ exp (−∆𝐺𝑟

∗ 𝑅𝑇)⁄     Eq. (2.25) 

 


