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KAEDAH PENJELMAAN PEMBEZAAN MULTI-LANGKAH DIUBAHSUAI 

UNTUK PERSAMAAN PEMBEZAAN SEPARA HIPERBOLIK 

ABSTRAK 

Dalam tesis ini, kami menggabungkan Adomian polinomial bersama pendekatan multi- 

langkah untuk mempersembahkan teknik baharu yang dikenali sebagai Kaedah Pengurangan 

Transformasi Pembezaan Multi-langkah Diubahsuai (KPTPMD). Teknik yang dicadangkan 

mempunyai kelebihan menghasilkan penghampiran analitik dalam urutan penumpuan yang 

pantas dengan bilangan pengiraan yang dikurangkan. KPTPMD dipersembahkan dengan 

beberapa pengubahsuaian Kaedah Pengurangan Transformasi Pembezaan (KPTP) dengan 

pendekatan berbilang dan ungkapan tak linear digantikan oleh polinomial Adomiannya. Oleh 

itu, masalah nilai awal tak linear dapat diselesaikan dengan mudah bersama pengurangan 

langkah pengiraan. Di samping itu, pendekatan multi-langkah menghasilkan penyelesaian 

dalam siri penumpuan yang pantas yang menghasilkan penyelesaian dalam kawasan masa yang 

luas. Dalam kajian ini, tiga jenis persamaan yang menghuraikan gelombang tunggal 

dipertimbangkan: persamaan tak linear Schrödinger (TLS), persamaan tak linear Korteweg-de 

Vries (TKdV) dan persamaan tak linear Klein-Gordon (TKG). Persamaan-persamaan ini 

diselesaikan dengan menggunakan KPTPMD. Selain itu, kami juga menyelidik 

kebolehlaksanaan penggunaan KPTPMD untuk persamaan pecahan TLS, persamaan pecahan 

TKdV dan persamaan pecahan TKG. Untuk menunjukkan kepersisan dan kejituan kaedah, kami 

menggunakan KPTPMD untuk menyelesaikan persamaan TLS, persamaan TKdV dan 

persamaan TKG dengan ketidaklinearan yang berbeza. Selain itu, kami menggunakan 

KPTPMD untuk menyelesaikan aplikasi persamaan TLS bersama daya yang memodelkan 

perambatan optik tunggal dalam gentian optik dan bersama-sama dengan kehilangan gentian. 

KPTPMD juga digunakan untuk mendapatkan penyelesaian persamaan TKdV yang 

mempunyai daya dalam gelombang air untuk yang diaplikasi bagi memahami Tsunami dengan 

ungkapan daya yang berlainan. Persamaan KdV yang mempunyai daya ini boleh digunakan 
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sebagai model matematik yang mudah yang dapat menggambarkan pemodelan gelombang 

Tsunami. Akhir sekali, aplikasi persamaan TKG yang mempunyai daya dalam teori bidang 

kuantum juga telah diselesaikan dengan menggunakan teknik baru ini. Hasil penghampiran 

analitik yang diperoleh untuk menyelesaikan beberapa masalah yang mempunyai pintalan, 

gelombang tunggal dan dua gelombang tunggal menunjukkan bahawa kaedah ini mempunyai 

ketepatan yang tinggi. Daripada keputusan yang diperoleh ditemui bahawa terdapat 

kemungkinan untuk mendapatkan keputusan yang tepat atau penyelesaian yang tepat dengan 

menggunakan KPTPMD. Untuk menggambarkan penyelesaian dan menunjukkan kesahihan 

dan ketepatan KPTPMD, hasil grafik dimasukkan dalam bab masing-masing. Kesimpulannya, 

KPTPMD yang dibentangkan dalam tesis ini untuk menyelesaikan persamaan pembezaan 

separa hiperbolik tak linear yang menggambarkan gelombang tunggal telah terbukti lebih jitu 

dan persis berbanding KPTP. Teknik baru ini juga tidak memerlukan penglinearan, pendiskritan 

atau pengusikan. KPTPMD adalah ringkas, mudah digunakan, dan urutan penumpuan yang 

pantas dengan bilangan pengiraan yang dikurangkan.   
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MULTI-STEP MODIFIED DIFFERENTIAL TRANSFORM METHODS FOR 

HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS  

ABSTRACT 

In this thesis, we combined the Adomian polynomials with the multi-step approach to 

present a new technique called Multi-step Modified Reduced Differential Transform Method 

(MMRDTM). The proposed technique has the advantage of producing an analytical 

approximation in a fast converging sequence with a reduced number of calculated terms. The 

MMRDTM is presented with some modification of the Reduced Differential Transformation 

Method (RDTM) with multi-step approach and its nonlinear term is replaced by the Adomian 

polynomials. Therefore, the nonlinear initial value problem can easily be solved with less 

computational effort. Besides that, the multi-step approach produces a solution in fast 

converging series that converges the solution in a wide time area. In this study, three types of 

equations that describe solitary waves are considered: nonlinear Schrödinger (NLS) equation, 

nonlinear Korteweg-de Vries (NKdV) equation and nonlinear Klein-Gordon equation (NKG) 

equation. These equations are solved by using the MMRDTM. Besides that, we investigated the 

feasibility of applying the MMRDTM for the fractional NLS equations, fractional NKdV 

equations and fractional NKG equations. For demonstrating the precision and accuracy of the 

method, we applied the MMRDTM to solve the NLS equations, NKdV equations and NKG 

equations with different nonlinearity. Next, we implemented the MMRDTM to solve forced 

NLS equation that models the propagation of optical solitons in optical fiber and together with 

the fiber loss. Then, the MMRDTM is used to solve the forced NKdV equation with the 

application in water wave for understanding Tsunami with different forcing terms. Forced KdV 

equation can be used as a simple mathematical model that could describe the modelling of the 

Tsunami waves. Lastly, forced NKG equation application in quantum field theory also has been 

solved by using this new technique. Approximate analytical results that are obtained for solving 

several problems possessing kinks, single and double-soliton waves show that the method has 
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high accuracy.  From the results, it was found that it is possible to obtain highly accurate results 

or exact solutions by using the MMRDTM. For illustrating  the solution and to show the 

accuracy of the MMRDTM, graphical results are included in each chapters respectively. In 

conclusion, the proposed MMRDTM for solving nonlinear hyperbolic partial differential 

equations (PDEs) that describe solitary waves have been shown to be more accurate and precise 

than the MRDTM. There is no linearization, discretization or perturbation required in the 

proposed technique. The MMRDTM is conceptually simple, easy to use and a fast converging 

sequence with a reduced number of calculated terms. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

 Nonlinear Evolution Equations (NLEEs), i.e. partial differential equations (PDEs) 

with time derivatives are useful tools to describe the science and engineering in natural 

phenomena. In the study of nonlinear physical phenomena, investigating traveling wave 

solutions of NLEEs plays a significant role. Studying NLEEs traveling wave solutions plays 

an important role in investigating the internal mechanism of complicated physical phenomena. 

Many physical phenomena such as fluid and quantum mechanics, optical fibers, electricity, 

plasma physics, chemical kinematics and propagation of shallow water waves can be modelled 

by nonlinear evolution equation, and the appearance of solitary wave solutions in nature is 

somewhat frequent (Islam et al., 2015). 

 However, nonlinear processes are one of the biggest challenges and not simple to 

control because the nonlinear characteristic of the system abruptly changes due to some small 

changes of parameters including time. The problem therefore becomes more complicated, 

wherever possible analytical solutions are desired. Thus, studying analytical solutions of 

NLEE plays a crucial role in understanding the physical mechanism of nonlinear phenomena. 

Exact analytical solution are often difficult to obtain and oftentimes, we need to resort to 

approximate analytical solution. Advanced nonlinear techniques are important in solving 

inherent nonlinear problems, especially in dynamical systems and related areas. Significant 

improvements have been made in recent years in finding analytical solutions for NLEEs (Islam 

et al., 2015). 
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 There are many effective and powerful methods for approximate analytical solution 

that have been developed and improved. For instance, the Adomian Decomposition Method 

(ADM), Homotopy Perturbation Method (HPM), Homotopy Analysis Method (HAM), 

Variation Iteration Method (VIM), Hirota’s Bilinear Method, Balance Method, Inverse 

Scattering Method, and Differential Transform Method (DTM). 

 In this thesis, three types of equations that describe solitary waves such as the 

nonlinear Schrödinger (NLS), nonlinear Korteweg-de Vries (NKdV) and nonlinear Klein-

Gordon (NKG) equations are considered. In mathematics and physics, a soliton is a self-

reinforcing solitary wave. That means, it is, a wave packet or a pulse that retains its shape 

while traveling at constant velocity. Solitons are produced by an exact cancellation of 

nonlinear and dispersive effects in the medium. The term “dispersive effects” relates to a 

property of some systems where the velocity of the waves differs by frequency (Abazari, 

2014). Solitons emerge as the solutions of a widespread class of weakly nonlinear dispersive 

partial differential equations (PDEs) that describe physical systems. John Scott Russell (1808-

1882) first described the solitary phenomenon and observed a solitary wave at the Union Canal 

in Scotland. In a wave tank, he reproduced the phenomenon which is referred to as the "Great 

Wave of Translation" (Russell, 1844). 

 The NLS equation is an example of a universal nonlinear model describing various 

nonlinear physical systems. It can be used in the areas of hydrodynamics, nonlinear optics, 

nonlinear acoustics, quantum condensates, plasma physics, heat pulses in solids and various 

other nonlinear instability phenomena. In the propagation of optical pulses, the NLS equation 

was used to describe a variety of effects. In the context of optical communications, a pulse that 

propagates in an optical fibre with Kerr-law nonlinearity can form an envelope soliton. This 

pulse propagation behaviour offers the potential to understand pulse transmission over very 

long distances. The significance of studying optical solitons arises from the fact that they have 

potential  applications in optical transmission and all-optical processing (Seadawy, 2012). 
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 The Korteweg-de Vries (KdV) equation has gained significant attention in other 

physical contexts as ion-acoustic waves, plasma physics, collision-free hydromagnetic waves, 

lattice dynamics, stratified internal waves, etc. (Fung, 1997). The KdV model was applied in 

the field of quantum mechanics to explain certain theoretical physics phenomena. It is used as 

a model for shock wave formation, solitons, turbulence, boundary layer behaviour, and mass 

transport in fluid dynamics, aerodynamics, and continuum mechanics. The KdV equation also 

describes the shallow water waves (Akhmediev, 2018). 

 The Klein-Gordon (KG) equation is significant NLEE that emerges  in relativistic 

quantum mechanics and quantum field theory, which is also very important for the physics of 

high energy particles and is applied to model various forms of phenomena including the 

propagation of dislocations in crystals and the behaviour of elementary particles (Hafez et al., 

2014). The NKG equation appears in many forms of nonlinearities. This equation has thrived 

in the study of solitons and condensed matter physics, in the investigation of solitons 

interaction in collision-less plasma, the recurrence of initial states, in lattice dynamics and in 

the examination of nonlinear wave equations. The KG equation plays an important part in 

many scientific applications, including solid state physics and nonlinear  optics theory 

(Dehghan et al. 2009). 

 Apart from that, this study also considered the fractional NLS equation, fractional 

NKdV equation and fractional NKG equation. Due to their different applications in the fields 

of physics and engineering, considerable interest in fractional differential equations has been 

stimulated in recent years. The fractional calculus is used for modeling physical and 

engineering problems which are best described in the fractional differential equations (Ray, 

2013). 

 This interest of fractional PDEs is due to various concepts of fractional derivatives 

and integrations involving these models such as Grunwald-Letnikov’s definition, Riemann-

Liouville’s definition, Caputo’s definition, and Riesz’s definition. Fractional order derivatives 



4 

and integrations include the whole function history in a weighted form, called the memory 

effect. Specifically, fractional PDEs have attention and popularity due to tremendous use in 

electrical circuits, quantum, viscoelasticity, electrochemistry and others. However, their non-

local property is the main benefit of using fractional differential equations. It is well known 

that the differential operator for integer order is a local operator, but the differential operator 

for fractional order is non-local. This implies that the next state of a system depends not only 

on its present state, but also on all its historical states (Momani et al., 2016). 

1.2 Problem Statement  

 Solving nonlinear problems can be difficult for researchers to find the exact analytical 

solution and therefore it can guide researchers to use numerous approximate analytical 

methods. Perturbation method is one of the most established methods of solving nonlinear 

equations, whereby it is based on the existence of a small parameter using the common 

perturbation method. Consequently, several new techniques have been recently introduced in 

order to eliminate the small parameter, such as Parameter Expansion Method (PEM), 

Variational Iteration Method (VIM), Homotopy Perturbation Method (HPM), Adomian 

Decomposition Method (ADM), Differential Transformation Method (DTM) and Reduced 

Differential Transform Method (RDTM). These methods are called as approximate analytical 

methods (sometimes called as semi-analytical methods). 

 The RDTM provides an alternative approach to overcome the demerit of complicated 

classical DTM calculation. Although it is powerful, several equations remain difficult to 

solve by RDTM. One of the obtacles is to find a simple and effective way to obtain the 

differential transforms of nonlinear components. The RDTM expands these nonlinearities in 

an infinite series and would probably achieve its transformed nonlinear functions by one of its 

equivalent series. The computational difficulties in determining the transformed function of 

this infinity series will inevitably arise if using this approach. 
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 On the other hand, the solution of existing methods also diverges in wide time area. 

That means, the solution of existing methods only converges in small time region. Besides 

that, the PDEs with complicated nonlinearity is hard to solve by the existing method due to its 

nonlinearity term. Therefore, we implement Multi-step Modified Reduced Differential 

Transform Method (MMRDTM) to overcome above mentioned shortcomings and to increase 

the interval of convergence for these series solutions. 

  In weak nonlinear systems, most of them have excellent convergences and 

effectiveness, but some of them are not good for strong nonlinear systems. For example, weak 

nonlinearity is seen in wave drift forces, which are the nonlinear effect by which waves 

produce constant forces on floating bodies (Rainey, 2007). Wave drift forces are usually 

proportional to the wave height square, and can be measured with a perturbation scheme 

(Stokes' expansion). Strong nonlinearity is most clearly in wave breakage and related effects 

of wave impact. These can not be analyzed by the Stokes perturbation scheme, as shown 

conclusively by the fact that the surface of the water overturns and therefore can not be 

described as a Fourier series (Rainey, 2007). Strong nonlinearities are known in acoustics, 

optics, mechanics and in quantum field theory.  

1.3 Motivation of study 

 Ray (2013) proposed a modification on the fractional RDTM and implemented it to 

find solutions of fractional KdV equations. In this approach, the adjustment included the 

substitution of the nonlinear term by related Adomian polynomials. Therefore, the solutions 

of the nonlinear problem can be obtained in a simpler way with reduced calculated terms. 

Furthermore, Al-Smadi et al., (2017) introduced a multi-step approach for solving one-

dimensional fractional heat equations. It produces the solution in a rapid convergent series 

which results in the solution converging in wide time area. 

 The principal benefit of the method highlights the fact that it elegantly provides 

explicit approximate analytical solution as well as numerical solution. There are two 



6 

advantages of the new technique. Firstly, there is no discretization required. Secondly, 

linearization or small perturbation is not required. As a result, we executed the MMRDTM to 

solve NLS equations, NKdV equations and NKG equations which describe solitary waves. 

Furthermore, the benefit of analytical approximation is that it allows a broad 

understanding of the nature and quality of nonlinear equations. Hence, analytical methods of 

these equations may not always be feasible. In such cases, approximate analytical solutions 

that yield series solutions are used. Approximate analytical methods are based on finding the 

other terms of the series for the problems being considered from the given initial conditions 

and boundary value conditions. 

1.4 Aim 

 The aim of this study is to develop new approximate analytical methods based on 

modified fractional RDTM and multi-step fractional RDTM for solving nonlinear hyperbolic 

PDEs. We want to investigate the feasibility of MMRDTM for solving nonlinear hyperbolic 

partial differential equations. The word feasibility means capable of being done or carried out. 

1.5 Objectives 

The objectives of this study are as the following: 

1) to develop approximate analytical solution of the MMRDTM, 

2) to investigate the feasibility of applying MMRDTM for solving NLS equations, 

NKdV equations and NKG equations, 

3) to investigate the feasibility of applying MMRDTM for the fractional NLS 

equations, fractional NKdV equations and fractional NKG equations, 

4) to investigate MMRDTM for solving NLS equations, NKdV equations and NKG 

equations and fractional counterparts with different nonlinearities, and 

5) to apply MMRDTM for solving application of forced NLS equations, forced 

NKdV equations and forced NKG equations. 
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1.6 Scope of Study 

 We consider one-dimensional PDEs problems such as one-dimensional NLS 

equations, NKdV equations and NKG equations. We study nonlinear and fractional of NLS 

equations, NKdV equations and NKG equations. Then, we study NLS equations, NKdV 

equations and NKG equations with different nonlinearities and also their fractional form. To 

show our new method is feasible, we also apply our method to solve forced NLS equations, 

forced NKdV equations and forced NKG equations. Besides that, we only consider PDEs with 

initial conditions in this study. 

1.7 Methodology 

• In this study, we solve the NLS equations, NKdV equations and NKG equations by 

using the MMRDTM. In the proposed scheme, we develop numerical algorithm of 

MMRDTM. 

• Then apply to hyperbolic wave type equations which arise in solitary wave such as 

NLS equations, NKdV equations and NKG equations. The differential equation and 

associated initial conditions are transformed into a recurrence relation that ultimately 

leads as coefficients of a power series solution to the solution of an algebraic equation 

system. 

• The nonlinear term is replaced in this new approach by its Adomian polynomials. In 

addition, we apply multi-step scheme to transformed functions of differential equation 

and related initial conditions. The transformation of equation is based on theorem of 

the RDTM. 

• Then we will analyse convergence and error estimate of MMRDTM. The solution of 

MMRDTM is in the form of polynomials in series solution. Then we make analysis 

on error with exact solutions and compare the results of nonlinear hyperbolic PDEs 

by MMRDTM, classical RDTM and exact solutions.  
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• We also apply MMRDTM for solving NLS equations, NKdV equations and NKG 

equations with different nonlinearity and solving fractional NLS equations, fractional 

NKdV equations and fractional NKG equations with different nonlinearity.  

• Finally, we apply our method to problems of forced NLS equations, forced 

NKdV equations and forced NKG equations in order to proof our method is also 

feasible in solving real world problems. 

• Mathematical software Maple 18 has been used as the main tool to carry out all the 

numerical tasks. 

1.8 Thesis Organization 

 This thesis contains nine chapters. In Chapter 1, a brief introduction of the research 

background is given. Other than that, the problem statement, motivation, scopes of study, aims 

of the study, objectives, and methodology of the research are also described in this chapter. 

 In Chapter 2, the rudiments of PDE are  discussed. Brief descriptions of NLS equation, 

NKdV equation and NKG equation are given. The basic theory of fractional calculus such as 

fractional derivatives and fractional integral is also described. Some methods such as 

Differential Transform Method (DTM), Two-dimensional DTM, RDTM, Modified Fractional 

Reduced Differential Transform Method (MFRDTM) and Multi-step Fractional Reduced 

Differential Transform Method (MsFRDTM) are also described. 

 In Chapter 3,  some of related literatures are reviewed. The histories of Reduced 

Differential Transform Method (RDTM), Modified Differential Transform Method (MDTM), 

Multi-step Differential Transform Method (MsDTM), Multi-step Reduced Differential 

Transform Method (MsRDTM) and others related to RDTM.  Some literatures of nonlinear  

hyperbolic wave type equations such as NLS equation, NKdV equation and NKG equation are 

also reviewed. 
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 In Chapter 4, MMRDTM based on modified RDTM and multi-step RDTM is 

developed. In addition, fractional MMRDTM is also developed. In Chapter 5, we presented 

the application of MMRDTM to solve NLS equation and fractional NLS equation. Besides 

that, we also presented solutions of NLS equation of power law nonlinearity and cubic-quintic 

nonlinearity and solutions of fractional NLS equation of Power Law nonlinearity and cubic-

quintic nonlinearity. 

  In Chapter 6, the application of MMRDTM to solve NKdV equation and fractional 

NKdV equation is presented. Other than that, solutions of NKdV equation with different 

nonlinearity and solutions of fractional NKdV equation with different nonlinearity are also 

presented. In Chapter 7, the application of MMRDTM to solve NKG equation and fractional 

NKG equation are performed. Next, solutions of NKG equation with different nonlinearity 

and solutions of fractional NKG equation with different nonlinearity are also performed. 

  In Chapter 8, we apply MMRDTM to solve forced NLS equation application in 

optical fibers, forced NKdV equation application in water wave for understanding Tsunami 

and forced NKG equation application in quantum field theory. In Chapter 9, we conclude this 

study and make remarks on possible future work. References, appendix and list of publications 

are provided at the end of this thesis. 
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CHAPTER 2 

BASIC CONCEPTS, THEORY AND METHODS 

2.1 Introduction 

  It is well known that PDEs can describe many phenomena that occur in mathematical 

physics and engineering fields. In physics for example, PDEs describe heat flow and wave 

propagation. In ecology, PDEs govern most population models. PDEs also characterize the 

dispersion of a chemically reactive material. Moreover, most physical phenomena of fluid 

dynamics, quantum mechanics, electricity, plasma physics, the propagation of shallow water 

waves and many other models are governed by PDEs (Wazwaz, 2009).  

 In recent years, fractional calculus has become more popular. This is because certain 

phenomena can better be modelled using fractional derivatives rather than the traditional 

integer derivative. Numerical methods in the form of approximate analytical methods such as 

ADM, VIM, HPM and DTM have been used widely. This chapter will review some basic 

concepts and theory related to PDEs, Fractional Calculus and Differential Transform Methods 

(DTMs). 

2.2 Rudiments of Partial Differential Equation (PDE) 

 An equation that contains at least one partial derivative is a PDE. Examples include (Wazwaz, 

2009), 

  𝑢𝑡𝑡 = 𝑐
2𝑢𝑥𝑥,                                                                              (2.1) 

 

𝑢𝑡𝑡 = 𝑐
2(𝑢𝑥𝑥 + 𝑢𝑦𝑦),                                                          (2.2) 

 

𝑢𝑡𝑡 = 𝑐
2(𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧),                                              (2.3) 

 

describing the propagation of waves in one dimensional space, two-dimensional space, and 

three-dimensional space respectively. In addition, the unknown functions in Equation (2.1), 

Equation (2.2), and Equation (2.3) are defined by 𝑢 =  𝑢(𝑥, 𝑡), 𝑢 =  𝑢(𝑥, 𝑦, 𝑡), and 𝑢 =

 𝑢(𝑥, 𝑦, 𝑧, 𝑡) respectively. 
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 Any function which satisfies the equation is a PDE solution. It is frequently the core 

that solutions fulfilling certain boundary and initial conditions are sought.  For example, the 

equation 

4𝑢𝑥 + 3𝑢𝑦 + 𝑢 = 0                                                          (2.4) 

has the solution (O’Neil, 2008)  

𝑢(𝑥, 𝑦) = 𝑒−
𝑥
4𝑓(3𝑥 − 4𝑦), 

in which 𝑓 can be any differentiable functions of a single variable. This can be confirmed by 

replacing the PDE with 𝑢(𝑥, 𝑦).  

 A PDE is linear if it is linear in the unknown function and its partial derivatives. An 

equation that is not linear is nonlinear. For instance (O’Neil, 2008), 

𝑥2𝑢𝑥𝑥 − 𝑦𝑢𝑥𝑦 = 𝑢 

is linear whereas  

𝑥2𝑢𝑥𝑥 − 𝑦𝑢𝑥𝑦 = 𝑢
2, 

(𝑢𝑥𝑥)
1
2 − 4𝑢𝑦𝑦 = 𝑥𝑢 

are nonlinear because of the 𝑢2 and (𝑢𝑥𝑥)
1

2 terms. 

 In its general form, a second order linear PDE is given in two independent variables 

𝑥 and 𝑦 (Wazwaz, 2009), 

𝐴𝑢𝑥𝑥 +𝐵𝑢𝑥𝑦 + 𝐶𝑢𝑦𝑦 + 𝐷𝑢𝑥 + 𝐸𝑢𝑦 + 𝐹𝑢 = 𝐺,                                (2.5)  

where 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, and 𝐺 are constants or functions of the variables 𝑥 and 𝑦. A PDE of 

second order Equation (2.5) is usually classified into three basic equation classes, namely: 

1. Parabolic equation is an equation that satisfies the property  

𝐵2 − 4𝐴𝐶 =  0. 

Examples of parabolic equations are heat flow and diffusion processes equations. The heat 

transfer equation 

𝑢𝑡𝑡 = 𝑘𝑢𝑥𝑥. 
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2. Hyperbolic equation is an equation that satisfies the property 

𝐵2 − 4𝐴𝐶 >  0. 

Examples of hyperbolic equations are wave propagation equations. The wave equation 

𝑢𝑡𝑡 = 𝑐
2𝑢𝑥𝑥. 

3. Elliptic equation is an equation that satisfies the property 

𝐵2 − 4𝐴𝐶 <  0. 

Examples of elliptic equations are Laplace’s equation. The Laplace equation in a two- 

dimensional space 

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0. 

2.3 Boundary and Initials Conditions 

  In general, there are infinitely many solutions to PDEs. To obtain a unique solution, 

additional conditions must be added to the equation. There are generally two types of 

conditions, boundary value conditions and initial conditions. Boundary conditions are function 

and space variable constraints, whereas initial conditions are constraints on the unknown 

function and time variable (Adzievski and Siddiqi, 2014). 

 Consider a second order linear PDE, 

𝐿𝑢 = 𝐺(𝑡, 𝐱),    𝐱 ∈ Ω ,                                                      (2.6) 

where 𝐿 is a second order linear differential operator (partial derivatives are involved in 𝐿𝑢 up 

to the second order). The following terms are presented in relation to the differential equation 

(2.6): 

Boundary conditions are a set of constraints describing the nature of the unknown function 

𝑢(𝑡, 𝐱),    𝐱 ∈ Ω, on the boundary 𝜕Ω of the domain Ω. There are three major types of boundary 

conditions (Adzievski and Siddiqi, 2014): 
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a) Dirichlet Conditions. These conditions determine prescribed values 𝑓(𝑡, 𝐱),    𝐱 ∈

𝜕Ω, of the unknown function function 𝑢(𝑡, 𝐱) on the boundary 𝜕Ω. Write these 

conditions in the form 

𝑢(𝑡, 𝐱)|𝜕Ω = 𝑓(𝑡, 𝐱).                                              (2.7) 

b) Neumann Conditions. With these conditions, the value of the normal derivative 

𝜕𝑢(𝑡,𝐱)

𝐧
 on the boundary 𝜕Ω is indicated. Symbolically, write as 

𝜕𝑢(𝑡, 𝐱)

𝐧
|
𝜕Ω

= 𝑔(𝑡, 𝐱).                                                    (2.8) 

c) Robin (Mixed) Conditions. These conditions are linear combinations of the 

Dirichlet and Neumann Conditions: 

                                                𝑎 𝑢(𝑡, 𝐱)|𝜕Ω + 𝑏 
𝜕𝑢(𝑡,𝐱)

𝐧
|
𝜕Ω
= ℎ(𝑡, 𝐱),                                     (2.9) 

for some nonzero constants or functions 𝑎 and 𝑏 and a given function ℎ, defined on 

𝜕Ω.  

           Note that different portions of the boundary 𝜕Ω can have different types of boundary 

conditions. In situations where PDE involves the time variable 𝑡, the initial (Cauchy) 

conditions must be considered. These conditions determine the value of the unknown function 

at the initial time 𝑡 = 𝑡0 and its higher-order derivatives. If in Equations (2.7), (2.8) and (2.9), 

the functions 𝑓(𝑡, 𝑥), 𝑔(𝑡, 𝑥) and ℎ(𝑡, 𝑥) are identically zero in the domain, then the boundary 

conditions  are homogeneous; otherwise the boundary conditions are non-homogeneous. 

            The boundary and initial conditions decision depend on the given partial differential 

equation and the physical problem described by the equation. Consider a vibrating string, for 

example, described by the one space-dimensional wave equation (Adzievski and Siddiqi, 

2014), 

𝑢𝑡𝑡 − 𝑢𝑥𝑥 = 0. 
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            In the domain (0,∞) × (0, 𝑙), the initial conditions are specified by specifying the 

initial position and speed of the string. The boundary conditions, can be for example 

(Adzievski and Siddiqi, 2014), 

𝑢(0) = 𝑢(𝑙) = 0, 

which implies that the two ends 𝑥 = 0 and 𝑥 = 𝑙 of the string are fixed. 

2.4 Nonlinear Hyperbolic Wave Type Equations 

 Three main equations are considered in this thesis: nonlinear Schrödinger (NLS) 

equation, nonlinear Korteweg-de Vries (NKdV) equation and nonlinear Klein-Gordon (NKG) 

equation. These equations are chosen because they are nonlinear wave type equations that 

describe solitary waves.  

2.4.1 Nonlinear Schrodinger Equation 

 In the propagation of optical pulses, the NLS equation can be used to explain a variety 

of effects. The balance between self-phase modulation and group velocity dispersion, as is 

well known, results in the so-called soliton solutions for the NLS equation. Solitary wave 

solutions in a variety of nonlinear and dispersive media have been known to exist for many 

years. A pulse propagating in an optical fiber with Kerr-law nonlinearity can form an envelope 

soliton in the context of optical communications. This pulse propagation behaviour offers the 

potential for pulse transmission over very long distances. Just as the balance between self-

phase-modulation and group-velocity dispersion can lead to the formation of temporal solitons 

in single-mode fibers, diffraction and self-focusing can make up for one another and an 

analogous spatial soliton can also be found (Seadawy, 2012).  

 Studying optical solitons is important because they have potential applications in 

optical transmission and all-optical processing. Since analytical solutions are known for just a 

few cases, analyses of the properties of solutions are usually carried out numerically using 
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such approaches. However, an analytical model that describes the dynamics of pulse 

propagation in a fiber is often desirable (Seadawy, 2012). 

 In this thesis, consider the NLS equation of the form (Seadawy, 2012),  

𝑖𝑢𝑡 + 𝑢𝑥𝑥 + 𝛾|𝑢|
2 = 0,           𝑖 = √−1, 

𝑢(𝑥, 0) = 𝑔(𝑥), 

where 𝛾 is a constant and 𝑢(𝑥, 𝑡) is a complex function. 

 

2.4.2 Nonlinear Korteweg-de Vries Equations 

 The Korteweg-de Vries (KdV) equation used to model the evolution and interaction 

of nonlinear waves for a wide range of physics phenomena. The development of the KdV 

equation began in 1844 with the experiments of Scott Russell (Russell, 1844).  It was derived 

as an evolution equation that governs a long-surface gravity wave of one-dimensional, small-

amplitude, propagating in a shallow water channel. 

 In studying long waves, tides, solitary waves, and related phenomena the generalized 

KdV equation defined in Drazin (1989) is as follows: 

𝑢𝑡 + (𝑝 + 1)(𝑝 + 2)𝑢
𝑝𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 𝑔(𝑥, 𝑡),                              (2.10) 

where 𝑔(𝑥, 𝑡) is a given function and 𝑝 = 1,2,… with 𝑢, 𝑢𝑥 , 𝑢𝑥𝑥𝑥 → 0 as |𝑥| → ∞. If 𝑝 =

0, 𝑝 = 1 and 𝑝 = 2, Equation (2.10) becomes linearized KdV, nonlinear KdV, and modified 

KdV equation, respectively (Kaya, 2002; Momani et. al., 2007). In Equation (2.10), the first 

term is the evolution term, the second term represents nonlinearity, and the last term is the 

third-order dispersion term. Also, x and t are the independent variables that represent the 

spatial and temporal variables, respectively, and 𝑢(𝑥, 𝑡) is the dependent variable describing 

the wave pattern (Houria et al., 2017). Equation (2.10) will be considered in this thesis. 
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2.4.3 Nonlinear Klein-Gordon Equations  

 Klein-Gordon (KG) equation has been used in quantum field theory, relativistic 

physics, dispersive wave-phenomena, plasma physics, nonlinear optics and applied physical 

sciences. The equation was named after the physicists Oskar Klein and Walter Gordon who 

suggested describing relativistic electrons in 1926. 

 The KG equations which are written in the following form with quadratic nonlinearity 

(Dehghan and Shokri, 2009) 

𝑢𝑡𝑡(𝑥, 𝑡) − 𝛼𝑢𝑥𝑥(𝑥, 𝑡) + 𝛽𝑢(𝑥, 𝑡) + 𝛾𝑢
2(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), 

and with cubic nonlinearity 

𝑢𝑡𝑡(𝑥, 𝑡) − 𝛼𝑢𝑥𝑥(𝑥, 𝑡) + 𝛽𝑢(𝑥, 𝑡) + 𝛾𝑢
3(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), 

where 𝑢(𝑥, 𝑡) denotes the particle wave profile at any varied instances and 𝛼, 𝛽 and 𝛾 are 

known constants. The initial conditions 

𝑢(𝑥, 0) = 𝑓(𝑥), 

𝑢𝑡(𝑥, 0) = 𝑔(𝑥), 

will be considered in this thesis. This KG equation is useful for analyzing the propagation of 

the particle wave in relativistic quantum mechanics and the theory of the quantum field, which 

is also very important for the physics of high energy particles. Besides that, explaining the 

propagation of dislocations in crystals and the behavior of elementary particles is also useful. 

2.5 Fractional Calculus  

Fractional calculus is a branch of mathematical analysis that studies real or even 

complex numbers, powers of the differential operator (Haubold and Mathai, 2017), 

𝐷 =
𝑑

𝑑𝑥
, 

and the integration operator 𝐽 (usually 𝐽 is used in favour of 𝐼 to avoid with other 𝐼-like 

identities). 
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Powers in this context are referred to iterative application or composition, in the same 

sense as, 

𝑓2𝑥 =  𝑓(𝑓(𝑥)). 

For example, one might ask the question of meaningful interpretation, 

√𝐷 = 𝐷
1
2, 

as the square root of the differentiation operator (a half-iterate operator), that is, an expression 

for some operator which will have the same effect as differentiation when applied twice to a 

function. More generally, the question of defining can be considered, 

𝐷𝑆, 

for real number values of 𝑠, the usual power of 𝑛-fold differentiation is recovered for 𝑛 >  0, 

and the 𝑛-th power of 𝐽 when for 𝑛 <  0. 

2.5.1 The Fractional Integral 

 Based on the Riemann-Liouville approach to fractional calculus, the notion of the 

fractional integral of order 𝛼 (𝛼 > 0) is a natural consequence of the well-known formula 

(usually attributed to Cauchy) which reduces the computation of the 𝑛−fold primitive of 

function 𝑓(𝑡) to a single integral of the convolution type. The Cauchy formula reads in our 

notation (Carpinteri and Mainardi, 1997), 

𝐽𝑛𝑓(𝑡) = 𝑓𝑛(𝑡) =
1

(𝑛 − 1)!
∫ (𝑡 − 𝜏)𝑛−1
𝑡

0

𝑓(𝜏)𝑑𝜏 , 𝑡 >  0 , 𝑛 ∈ ℕ,         (2.11) 

 

where ℕ is the set of positive integers. We note that 𝑓𝑛(𝑡) vanishes at 𝑡 =  0 with its 

derivatives of order 1, 2, . . . , (𝑛 −  1) from this definition. 

 We require 𝑓(𝑡) and henceforth 𝑓𝑛(𝑡) to be a causal function for convention, i.e. to 

disappear identically for 𝑡 < 0. By using the Gamma function, the above formula is naturally 

extended from positive integer index values to any positive real values. In fact, note that (𝑛 −
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 1)! =  𝛤(𝑛), and the introduction of an arbitrary positive real number 𝛼, the Fractional 

Integral of order 𝛼 > 0 is defined, 

𝐽𝛼𝑓(𝑡) =
1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝑓(𝜏)𝑑𝜏
𝑡

0

, 𝑡 > 0, 𝛼 ∈ ℝ+,                 (2.12) 

where ℝ+ is the set of positive real numbers. Define complementarity 𝐽0 = 𝐼 (identity 

operator), whereby 𝐽0𝑓(𝑡) = 𝑓(𝑡) . Furthermore, 𝐽𝛼𝑓(0+) is set as the limit (if it exists) of 

𝐽𝛼𝑓(𝑡) for 𝑡 →  0+; this limit may be infinite. Note the semi group property (Carpinteri and 

Mainardi, 1997) 

          𝐽𝛼𝐽𝛽 = 𝐽𝛼+𝛽𝑓𝑜𝑟 𝛼, 𝛽 ≥  0,                                             (2.13) 

which implies the commutative property 𝐽𝛼𝐽𝛽 = 𝐽𝛼+𝛽 , and the effect of our operators 𝐽𝛼 on 

the power functions 

𝐽𝛼𝑡𝛾 =
Γ(𝛾)

Γ(𝛾 + 1 + 𝛼)
𝑡𝛾+𝛼, 𝛼 > 0, 𝛾 > −1, 𝑡 > 0.               (2.14) 

              Naturally, when a positive integer is the order, the properties (2.13) and (2.14) are a 

natural generalization of those known. The evidence is based on the properties of Euler's two 

integrals, i.e. Gamma and Beta functions, (Carpinteri and Mainardi, 1997), 

Γ(𝑧) = ∫ 𝑒−𝑢𝑢𝑧−1 𝑑𝑢, Γ(𝑧 + 1) =  𝑧Γ(𝑧), Re{𝑧}
∞

0

> 0,                     (2.15) 

𝛽(𝑝, 𝑞) = ∫(1 − 𝑢)𝑝−1𝑢𝑞−1 𝑑𝑢 =
Γ(𝑝)Γ(𝑞)

Γ(𝑝 + 𝑞)
= 𝛽(𝑞, 𝑝),   Re{𝑝, 𝑞} > 0.          (2.16) 

The following causal function may be convenient 

Φ𝛼(𝑡) =
𝑡+
𝛼+1

Γ(𝛼)
 , 𝛼 > 0,                                                    (2.17) 

where the suffix + only indicates that the 𝑡 < 0 function disappears. This function is 𝛼 > 0; it 

turns out to be completely integrable locally in ℝ+. Now, recall the notion of Laplace 

convolution, i.e. the integral convolution with two causal functions, read in a standard notation 

𝑓(𝑡) ⋇ 𝑔(𝑡) = ∫ 𝑓(𝑡 − 𝜏)𝑔(𝜏)𝑑𝜏 = 𝑔(𝑡) ⋇ 𝑓(𝑡).
𝑡

0
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Then note from Equation (2.12) and Equation (2.17) that the fractional integral of 

order 𝛼 > 0 may be regarded as convolution of Laplace between Φ𝛼(𝑡) and 𝑓(𝑡) , i.e. 

𝐽𝛼   𝑓(𝑡) = Φ𝛼(𝑡) ⋇ 𝑓(𝑡), 𝛼 > 0.                                       (2.18) 

In addition, according to the Eulerian integrals, one proves the composition rule 

                                      Φ𝛼(𝑡) ⋇ Φ𝛽(𝑡) = Φ𝛼+𝛽(𝑡), 𝛼, 𝛽 > 0,                                 (2.19) 

which can be used to re-obtain Equation (2.13) and Equation (2.14).  

 Introducing the transformation of the Laplace through notation, 

𝐿{𝑓(𝑡)} = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡 = 𝑓(𝑠)
∞

0

, 

where 𝑠 ∈  ℂ, and using the sign ÷ to denote a Laplace transform pair, i.e. 𝑓(𝑡) ÷ 𝑓(𝑠). 

 Note the following rule for the transformation of the fractional integral in Laplace 

(Carpinteri and Mainardi, 1997), 

𝐽𝛼𝑓(𝑡) ÷ 
𝑓(𝑠)

𝑠𝛼
,                                                       (2.20) 

which is simple generalization of the case with a repeated integral 𝑛-fold (𝛼 = 𝑛). In order to 

prove this, it is sufficient to recall the convolution theorem for Laplace transforms and note 

the pair Φ𝛼(𝑡) ÷
1
𝑠𝛼⁄ , with 𝛼 > 0. 

2.5.2 The Fractional Derivatives 

 The fractional derivative of order 𝛼 (𝛼 > 0) becomes a natural requirement after the 

notion of fractional integral, and one is attempted to replace 𝛼 with −𝛼 in the above formulas. 

This generalization, however, needs some care to ensure integral convergence and preserve 

the well-known properties of the ordinary integer order derivative (Carpinteri and Mainardi, 

1997). 
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Denoting by 𝐷𝑛 with 𝑛 ∈ ℕ , the operator of the derivative of order 𝑛 , first note that      

                                             𝐷𝑛𝐽𝑛 = 𝐼, 𝐽𝑛𝐷𝑛 ≠ 𝐼, 𝑛 ∈ ℕ ,                                        (2.21)    

i.e. 𝐷𝑛 is left-inverse (and not right-inverse) to the corresponding integral operator from 𝐽𝑛.  

In fact, from Equation (2.21), 

𝐽𝑛𝐷𝑛𝑓(𝑡) = 𝑓(𝑡) −∑𝑓(𝑘)(0+)

𝑛−1

𝑘=0

𝑡𝑘

𝑘!
, 𝑡 > 0.                             (2.22) 

Consequently, expect that 𝐷𝛼 is defined as left-inverse to 𝐽𝛼. For this purpose, introducing the 

positive integer 𝑚 such that 𝑚 − 1 < 𝛼 ≤ 𝑚.   

Define the Fractional Derivative of order 𝛼 > 0: 

𝐷𝛼𝑓(𝑡) = 𝐷𝑚𝐽𝑚−𝛼  𝑓(𝑡) , 

namely 

𝐷𝛼𝑓(𝑡) =

{
 
 

 
 𝑑

𝑚

𝑑𝑡𝑚
[

1

Γ(m − α)
∫

𝑓(𝑡)

(𝑡 − 𝜏)𝛼+1−𝑚

𝑡

0

 𝑑𝜏 ] ;𝑚 − 1 < 𝛼 < 𝑚,

𝑑𝑚

𝑑𝑡𝑚
𝑓(𝑡);  𝛼 = 𝑚.                                                                       

         (2.23) 

Defining for complementation 𝐷0 = 𝐽0= 𝐼, then easily recognize that  

                                                           𝐷𝛼𝐽𝛼 = 𝐼, 𝛼 ≥  0,                                                        (2.24)  

and  

𝐷𝛼𝑡𝛾 =
Γ(𝛾 + 1)

Γ(𝛾 + 1 − 𝛼)
𝑡𝛾−𝛼 , 𝛼 > 0, 𝛾 > −1, 𝑡 > 0.                           (2.25) 

 Of course, when the order is a positive integer, the properties Equation (2.24) and 

Equation (2.25) are a natural generalization of those known. Since in Equation (2.25) the 

argument of the Gamma function in the denominator may be negative, it is necessary to 

consider the analytical continuation of Γ(z) in Equation (2.15) to the left half plane. 

The remarkable fact that the fractional derivative 𝐷𝛼𝑓 is not zero for the constant 

function 𝑓(𝑡) ≡ 1 𝑖𝑓 𝛼 ∉ ℕ . In fact, Equation (2.25) with 𝛾 = 0 teaches that (Carpinteri and 

Mainardi, 1997), 
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𝐷𝛼1 =
𝑡−𝛼

Γ(1 − 𝛼)
 ;  𝛼 ≥  0, 𝑡 > 0.                                           (2.26) 

Of course, this is 𝑓(𝑡) ≡ 0 for 𝛼 ∈ ℕ, due to the poles of the gamma function in the points 

0,−1,−2,….  

Now observe that the so-called Caputo Fractional Derivative of order 𝛼 > 0 is an 

alternative definition of fractional derivative, originally introduced by Caputo and Mainardi in 

the theory of Linear Viscoelasticity, 

𝐷𝛼𝑓(𝑡) = 𝐽𝑚−𝛼𝐷𝑚 𝑓(𝑡),  

with 𝑚 −  1 <  𝛼 ≤  𝑚,  namely 

𝐷𝛼 ∗ 𝑓(𝑡) =

{
 
 

 
 [

1

Γ(m − α)
∫

𝑓(𝑚)(𝜏)

(𝑡 − 𝜏)𝛼+1−𝑚

𝑡

0

 ] ; 𝑚 − 1 < 𝛼 < 𝑚

𝑑𝑚

𝑑𝑡𝑚
𝑓(𝑡) ;  𝛼 = 𝑚.                                                     

                 (2.27) 

Naturally, this definition is more restrictive than Equation (2.23), in that the derivative of order 

𝑚 requires absolute integrability. We assume that this condition is satisfied if we use the 

operator 𝐷𝛼 . It is easy to recognize that in general, 

               = 𝐷𝑚𝐽𝑚−𝛼𝑓(𝑡)

𝐷𝛼𝑓(𝑡) ≠ 𝐽𝑚−𝛼𝐷𝑚𝑓(𝑡)

        = 𝐷𝛼 ∗ 𝑓(𝑡)
 },                                                   (2.28) 

unless the function 𝑓(𝑡) along with its first 𝑚 −  1 derivatives vanishes at 𝑡 =  0+. In fact, 

assuming that the passage of the 𝑚-derivative under the integral is legitimate, one recognizes 

that, for 𝑚 −  1 < 𝛼 < 𝑚 and 𝑡 > 0, 

𝐷𝛼𝑓(𝑡) = 𝐷𝛼 ∗ 𝑓(𝑡) + ∑
𝑡𝑘−𝛼

Γ(𝑘 − 𝛼 + 1)

𝑚−1

𝑘=0

𝑓(𝑘)(0+),                            (2.29) 

and therefore, recalling the fractional derivative of the power functions Equation (2.25) 

(Carpinteri and Mainardi, 1997), 

𝐷𝛼 (𝑓(𝑡) − ∑
𝑡𝑘−𝛼

Γ(𝑘 − 𝛼 + 1)

𝑚−1

𝑘=0

𝑓(𝑘)(0+)) = 𝐷𝛼 ∗ 𝑓(𝑡).                       (2.30) 
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 For the fractional derivative, the alternative definition Equation (2.27) thus 

incorporates the initial values of the function and its lower-order integer derivatives. The 

Taylor polynomial subtraction of degree 𝑚 − 1 at 𝑡 =  0+ from 𝑓(𝑡)  means a kind of 

regularization of the fractional derivative. In particular, according to this definition, it is easy 

to recognize the relevant property for which the fractional derivative of a constant remains 

zero , i.e.  

                                                                    𝐷∗
𝛼1 ≡ 0, 𝛼 > 0.                                                 (2.31) 

 Now examine the most significant differences between the two fractional derivatives 

of Equations (2.23) and (2.27). To distinguish this from the standard Riemann-Liouville 

fractional derivative Equation (2.23),  agree to denote Equation (2.27) as the Caputo fractional 

derivative. Looking again at Equation (2.25), we observe that 

                               𝐷𝛼𝑡𝛼−1 ≡ 0, 𝛼 > 0,      𝑡 > 0.                                           (2.32) 

 From Equation (2.32) and Equation (2.31) we thus recognize the following statements 

about functions which for 𝑡 >  0 admit the same fractional derivative of order 𝛼 , with 𝑚 −

1 <  𝛼 ≤  𝑚,𝑚 ∈  ℕ. 

𝐷𝛼𝑓(𝑡) = 𝐷𝛼𝑔(𝑡) ⟺ 𝑓(𝑡) = 𝑔(𝑡) +∑𝑐𝑗

𝑚

𝑗=1

𝑡𝛼−𝑗,                               (2.33) 

𝐷∗
𝛼𝑓(𝑡) = 𝐷∗

𝛼𝑔(𝑡) ⟺ 𝑓(𝑡) = 𝑔(𝑡) +∑𝑐𝑗

𝑚

𝑗=1

𝑡𝑚−𝑗.                             (2.34) 

The 𝑐𝑗 coefficients in these formulae are arbitrary constants. Note that, incidentally, Equation 

(2.32) provides an instructive example of how 𝐷𝛼 is not right-inverse to 𝐽𝛼, since 

                      𝐽𝛼𝐷𝛼𝑡𝛼−1 ≡ 0, but 𝐷𝛼𝐽𝛼𝑡𝛼−1 = 𝑡𝛼−1,           𝛼 > 0,        𝑡 > 0.                  (2.35)         

 We also note a difference with respect to the formal limit as 𝛼 → (𝑚 − 1)+ for the 

two definitions. We obtain from Equations (2.23) and (2.27), respectively, 

                         𝛼 → (𝑚 − 1)+ ⇒ 𝐷𝛼𝑓(𝑡) ⟶ 𝐷𝑚𝐽𝑓(𝑡) = 𝐷𝑚−1𝑓(𝑡),                           (2.36) 

             𝛼 → (𝑚 − 1)+ ⇒ 𝐷∗
𝛼𝑓(𝑡) ⟶ 𝐽𝐷𝑚𝑓(𝑡) = 𝐷𝑚−1𝑓(𝑡) − 𝑓(𝑚−1)(0)+.             (2.37) 
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 We now consider the Laplace transform of the two fractional derivatives. For the 

standard fractional derivative 𝐷𝛼 the Laplace transform, assumed to exist, requires the 

knowledge of the (bounded) initial values of the fractional integral 𝐽𝑚−𝛼 and of its integer 

derivatives of order 𝑘 =  1, 2,… , (𝑚 −  1). The corresponding rule reads, in our notation, 

𝐷𝛼𝑓(𝑡) ÷ 𝑠𝛼𝑓(𝑠) − ∑ 𝐷𝑘𝐽𝑚−𝛼
𝑚−1

𝑘=0

𝑓(0+)𝑠𝑚−1−𝑘,     (𝑚 − 1) ≤ 𝛼 ≤ 𝑚.             (2.38) 

 The Caputo fractional derivative appears more suitable to be treated by the Laplace 

transform technique in that it requires the knowledge of the (bounded) initial values of the 

function and of its integer derivatives of order 𝑘 =  1, 2, … , (𝑚 −  1), in analogy with the case 

when 𝛼 =  𝑚. In fact, by using Equation (2.20) and noting that 

          𝐽𝛼𝐷∗
𝛼𝑓(𝑡) =  𝐽𝛼  𝐽𝑚−𝛼𝐷𝑚𝑓(𝑡) =  𝐽𝑚𝐷𝑚𝑓(𝑡) = 𝑓(𝑡) − ∑ 𝑓(𝑘)(0+)

𝑡𝑘

𝑘!

𝑚−1

𝑘=0

.             (2.39) 

 We easily prove the following rule for the Laplace transform, 

𝐷∗
𝛼𝑓(𝑡) ÷ 𝑠𝛼𝑓(𝑠) − 𝑓(𝑘)(0+)𝑠𝛼−1−𝑘,     (𝑚 − 1) ≤ 𝛼 ≤ 𝑚.                           (2.30) 

In fact, the outcome (2.30) first reported by Caputo with the theorem Fubini-Tonelli in 1969 

appears to be the most "natural" generalization of the corresponding result well known for 𝛼 =

 𝑚. 

 It now appears that both (2.23) and (2.27) definitions for the fractional derivative of 

𝑓(𝑡) can at least formally be derived by the convolution of Φ−𝛼(𝑡) with 𝑓(𝑡), in a kind of 

fractional integral analogy with Equation (2.18). For this reason, consider that (with proper 

interpretation of the quotient as a limit if 𝑡 = 0) from the treatise on generalized functions by 

Gel'fand and Shilov. 

                                       Φ−𝑛(𝑡) ≔
𝑡+
−𝑛−1

Γ(−𝑛)
= 𝛿(𝑛)(𝑡),    𝑛 = 0,1,…                                    (2.31) 

where 𝛿(𝑛)(𝑡) denotes the generalized derivative of order n of the Dirac delta distribution.  
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 The Equation (2.31)  offers an interesting (not very well known) representation of 

𝛿(𝑛)(𝑡), which is useful for our subsequent treatment of fractional derivatives. Indeed,  notice 

that the derivative of order 𝑛 of a causal function 𝑓(𝑡) can be formally obtained through the 

(generalized) convolution between Φ−𝑛 and 𝑓, 

𝑑𝑛

𝑑𝑡𝑛
𝑓(𝑡) = 𝑓(𝑛)(𝑡) = Φ−𝑛(𝑡) ∗ 𝑓(𝑡) = ∫ 𝑓(𝜏)𝛿(𝑛)(𝑡 − 𝜏)𝑑𝜏

𝑡+

0−
,    𝑡 > 0,           (2.32) 

based on the well-known properties 

∫ 𝑓(𝜏)𝛿(𝑛)(𝜏 − 𝑡)𝑑𝜏 = (−1)𝑛𝑓(𝑛)(𝑡),  𝛿(𝑛)(𝑡 − 𝜏) = (−1)𝑛𝛿(𝑛)(𝜏 − 𝑡).         (2.33)
𝑡+

0−
 

 According to a common convention, the limits of integration are extended in 

Equations (2.32-2.33) to take into account the possibility of extreme-centered impulse 

functions. Then, the fractional derivative of order α could be formally defined; 

Φ−𝛼(𝑡) ∗ 𝑓(𝑡) =
1

Γ(−𝛼)
∫

𝑓(𝜏)

(𝑡 − 𝜏)1+𝛼 
𝑑𝜏

𝑡+

0−
,      𝛼 ∈ ℝ+. 

 The formal character is obvious in that it turns out that the kernel Φ−𝛼(𝑡) is not 

completely integrable locally and therefore the integral is generally divergent. To obtain a 

definition that is still valid for classical functions, the divergent integral must be regularized 

in some way. Consider the integer 𝑚 ∈ ℕ such that (𝑚 − 1) < 𝛼 < 𝑚 and write −𝛼 = −𝑚 +

(𝑚 − 𝛼) or − 𝛼 = (𝑚 − 𝛼) −𝑚. Then, we obtain 

   [Φ−𝑚(𝑡) ∗ Φ𝑚−𝛼(𝑡)] ∗ 𝑓(𝑡) = Φ−𝑚(𝑡) ∗ [Φ𝑚−𝛼(𝑡) ∗ 𝑓(𝑡)] = 𝐷
𝑚 𝐽𝑚−𝛼𝑓(𝑡),       (2.34) 

or 

[Φ𝑚−𝛼(𝑡) ∗ Φ−𝑚(𝑡)] ∗ 𝑓(𝑡) = Φ𝑚−𝛼(𝑡) ∗ [Φ−𝑚(𝑡) ∗ 𝑓(𝑡)] =  𝐽
𝑚−𝛼𝐷𝑚𝑓(𝑡).      (2.35) 

 Therefore, derive two alternative definitions corresponding to (1.13) and (1.17), 

respectively, for the fractional derivative. In these formulas, the singular behavior of Φ−𝑚(𝑡)  

is reflected in the non-commutativity of convolution.  




