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PENYELESEAIAN HAMPIRAN ANALITIK BERBILANG PERINGKAT BAGI 

SISTEM PERSAMAAN BIASA TAK LINEAR 

ABSTRAK

Persamaan pembeza adalah alat penting untuk memodelkan banyak masalah da-

lam sains, kimia, fizik dan ekonomi. Sistem persamaan pembeza boleh dibahagikan

kepada dua jenis: autonomi dan tak autonomi. Objektif penyelidikan ini adalah untuk

membangunkan suatu teknik penyelesaian sistem pembezaan tak linear bukan autono-

mi yang berasaskan Transformasi Pembeza Piawai (DTM) dan Transformasi Pembeza

Pelbagai Peringkat (MsDTM). Analisis perbandingan antara penyelesaian kaedah yang

dibangunkan dan kaedah Runge-Kutta akan dibincangkan. Simulasi contoh-contoh

berangka dijana menggunakan Perisian Maple 16 bagi menganalisis kaedah yang di-

cadangkan. Keputusan berangka menunjukkan bahawa kaedah Transformasi Pembeza

Peringkat (MsDTM) memberikan anggaran yang tepat dibandingkan dengan kaedah

berangka Runge-Kutta bagi penyelesaian sistem pembeza tak linear tidak autonomi.

Di samping itu, batasan penumpuan pada selang masa yang besar dapat diatasi dengan

teknik yang dicadangkan. Ini memastikan kebolehpercayaan dan kecekapan untuk ske-

ma ini. Selain itu, teknik yang dicadangkan akan menyediakan penyelesaian baru bagi

pelbagai fenomena dalam kehidupan sebenar, serta mencari penyelesaian bagi pelbagai

masalah sebenar yang dimodelkan sebagai sistem ODE tak linear bukan autonomi.
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MULTISTAGE APPROXIMATE ANALYTICAL SOLUTION OF NON- 

AUTONOMOUS NONLINEAR ORDINARY DIFFERENTIAL SYSTEMS 

ABSTRACT

Differential equations are an important tool for modeling many problems in sci-

ence, chemistry, physics and economics. Differential equations system can be divided

into two kinds: autonomous and non-autonomous system. The objective of this re-

search is to develop a technique for solving non-autonomous nonlinear differential sys-

tems which is based on the standard Differential Transform Method (DTM) and Mul-

tistage Differential Transform method (MsDTM). A comparative analysis between the

solutions that were obtained by the proposed methods and Runge-Kutta method will

also be discussed. The numerical examples were simulated using the Maple 16 soft-

ware to analyze the proposed methods. The numerical results showed that the MsDTM

gives accurate approximation as compared to the Runge-Kutta numerical scheme for

the solutions of non-autonomous nonlinear ordinary differential systems. In addition,

the limitation of the convergence at large intervals is overcomed by the proposed tech-

nique. This ensures reliability and efficiency to the scheme. Moreover, the proposed

technique will provide new solutions for many various phenomena in real life, and find

solutions for many real problems which are modelled as non-autonomous systems of

nonlinear ODEs.
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CHAPTER 1

INTRODUCTION

1.1 Research Introduction

Differential Equations (DEs) have grown in parallel with the development of math-

ematics from the time of Newton until now (Grimshaw, 2017) due to their central

role of the wide variety of their applications in different areas of physics, engineer-

ing, chemistry and other phenomena (El-Zahar, 2015; Gökdoğan, Merdan, & Yildirim,

2012c; Mohyud-Din, Usman, Wang, & Hamid, 2018). Ordinary Differential Equations

(ODEs) can be classified into linear and nonlinear equations, and many linear and non-

linear equations can be divided into autonomous and non-autonomous groups. In this

research, a new technique for solving non-autonomous nonlinear ODEs will be pro-

posed.

1.2 Non-autonomous Nonlinear System of ODEs

A non-autonomous nonlinear system of ODEs can be defined in the following

form:

du(t)
dt

= f (u(t), t), (1.1)

where u ∈ Rn, t ∈ [a,b], with initial conditions,

u1(t0) = u1(0),u2(t0) = u2(0), ...,un(t0) = un(0). (1.2)
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1.3 Motivation of Research

Efficient and reliable approximate techniques for solving initial value problems

of non-autonomous nonlinear system had evolved in finding the exact solutions for

some cases of DEs (Alvarez-Parrilla, Frías-Armenta, López-González, & Yee-Romero,

2012; Sun, Chen, & Nieto, 2012); nevertheless, when the DEs are nonlinear there are

limited general techniques of solutions (Fatoorehchi & Abolghasemi, 2013; He, 2000).

Therefore, many approximate solution methods have been developed to solve these

equations (Ramdani, Meslem, & Candau, 2009; Tatari & Dehghan, 2009). Approx-

imation technique can be divided into two categories, numerical and semi-analytical

schemes. Numerical methods such as Runge-Kutta give numerical values of the so-

lution at certain points only (Ahmadian, Salahshour, & Chan, 2015; Dehghan & Mo-

hammadi, 2017; Hussain, Ismail, & Senu, 2016; Kalogiratou, Monovasilis, Psihoyios,

& Simos, 2014; Yang & Shen, 2015), whereas semi-analytical methods such as Dif-

ferential Transform Method (DTM), Homotopy Perturbation Method (HPM) (Ayati,

Biazar, & Ebrahimi, 2014; Biazar, Asadi, & Salehi, 2015; Filobello-Nino et al., 2015;

Liu, Adamu, Suleiman, & He, 2017; Rao & Begum, 2017) and Adomian Decomposi-

tion Method (ADM) (Hosseinzadeh, Jafari, Gholami, & Ganji, 2017; Rach, Wazwaz,

& Duan, 2015; Wazwaz, Rach, & Duan, 2015) give approximate analytical solutions

on sub intervals, which can be differentiated or integrated. Although analytical ap-

proximate methods have been widely applied to solve ODEs, many drawbacks of these

methods were reported by several researchers. For example, some of methods require

discretization or perturbation and linearization. For instance, DTM does not give a

satisfactory approximation for a large time interval (Benhammouda & Vazquez-Leal,

2015; Khader & Megahed, 2014; Mohyud-Din et al., 2018; Nourifar, Sani, & Keyhani,

2



2017). These drawbacks are presented and discussed vastly in Chapter 2. Therefore,

the motivation of this thesis is to overcome these disadvantages, by decreasing the size

of computational work and make the computations easier and faster.

1.4 Problem Statement

The exact analytical solution of a non-autonomous system of ODEs for initial value

problems is not available, especially for nonlinear systems because of its complexity.

Therefore, many analytical approximate methods such as DTM and their modifica-

tions were utilized to provide analytical approximate solutions for this type of non-

linear systems of ODEs. However, this method still suffers from the drawbacks in

convergence limitations which subsequently affect the accuracy and efficiency of the

solutions (Nourifar et al., 2017; Odibat, Bertelle, Aziz-Alaoui, & Duchamp, 2010).

Hence, the aim of this study is to develop a new technique which provides analyti-

cal approximate solutions for non-autonomous system of a large number of nonlinear

ODEs, furthermore increasing convergence limits and thus reducing the number of

arithmetic operations introduced by the standard method.

1.5 Research Objectives

The objectives of this study are:

1. To modify MsDTM for solving non-autonomous nonlinear ordinary differential

system.

2. To perform convergence analysis to the proposed technique.

3. To compare the effectiveness and accuracy of the MsDTM with other analytical

approximate methods.
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1.6 Significance of The Study

The results of the study will be of great benefit to the following:

• The study will enhance new techniques for solving non-autonomous systems

of high order nonlinear ODEs. Consequently, it will provide new solutions for

many various phenomena in real life.

• Finding solutions for many real problems which are modelled as a non-autonomous

system of nonlinear ODEs.

• The results of the study will help researchers to apply this method to include

other areas, such as partial and fractional systems of ODEs in the future.

1.7 Methodology

In this research, standard DTM and MsDTM will be used to solve non-autonomous

nonlinear ordinary differential systems. The two methods are investigated to analyze

and understand the behavior of the approximate analytical solutions of non-autonomous

nonlinear ordinary differential systems. The proposed solutions are then compared

with exact solutions such as Runge-Kutta method. Convergence analysis is then per-

1.8 Thesis Outline

This thesis is divided into six chapters. Figure 1.1 presents the flow chart of the

study. The literature reviews of previous studies are considered in Chapter 2. Chap-

4

formed by the proposed method. All computations are performed using Maple 16

software.



ter 3 offers the basic concepts and definitions, that are related to the study of non-

autonomous systems of nonlinear ODEs. The chapter displays a brief depiction of the

essential definitions of the approximate analytical methods that will be investigated

in this study. Chapter 4 presents multistage analytical approximate solution of non-

autonomous system of nonlinear ODEs. The numerical examples are tested in this

chapter. The follows by Chapter 5 which considers the convergence analysis for the

MsDTM method. The discussion of the numerical results and comparisons between

DTM, MsDTM and RK4 are highlighted. Finally, Chapter 6 concludes the main re-

sults of the study and future work.
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Figure 1.1: Flow Chart of the thesis
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Over the past two decades, linear and nonlinear system of differential equations

have become a focus of interest for scientists and researchers. Many of the devel-

oped and presented analytical approximate and numerical methods are reviewed in

this chapter. In this chapter, recent studies, that aim to find analytical approximate

solutions for non-autonomous systems of nonlinear ODEs using standard DTM and

MsDTM method, are briefly reviewed. Advantages and modifications of these meth-

ods are also presented in this chapter.

2.2 Differential Transform Method (DTM)

Differential Equations (DEs) are basic tools to model many phenomena in various

fields related to real life problems such as physics, chemistry, engineering and other

areas. In spite of that, continuous development of mathematics in parallel with the

ongoing growing of DEs over past decades, DEs have retained their basic role. The

technological development helps in understanding and analysis of DEs, which are con-

sequently represented to real life problems. In the literature, approximation techniques

are classified into two types, numerical methods and semi analytical methods. DTM

is a numerical method that depends on Taylor expansion. This method builds an ana-

lytical solution in the form of a polynomial. The concept of DTM was first presented

and applied to find the approximate solution of linear and nonlinear initial problems in
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electric circuit analysis by Zhou (1986). Two boundary value problems were solved

by Chen and Liu (1998) using the two-dimension DTM.

Ayaz (2004) successfully applied DTM for analytical solution of linear and nonlinear

systems of Partial Differential Equations (PDEs). Four examples with initial conditions

from the literature are presented. Furthermore, similar systems are solved by ADM

method. The results obtained by these two methods are compatible. The DTM can

then be applied to several complex linear and nonlinear PDEs and system of PDEs and

does not need discretization, linearization or perturbation.

Arikoglu and Ozkol (2007), applied Fractional Differential Transform method (FDTM)

for solving Fractional DEs. The numerical solutions obtained by the proposed tech-

nique showed that the DTM is easy to handle, but still suffers from drawbacks such as

convergence limitation over a large time interval.

The DTM was then employed by Kanth and Aruna (2009) to solve KdV and mKdV

equations. The DTM method is applied directly without using bilinear forms, Wron-

skian, or inverse scattering method. The obtained results by DTM method is demon-

strated to show the reliability of the proposed technique and gives a vast applicability

to nonlinear evolution equations.

In addition, Biazar and Eslami (2010) have used the DTM method for solving quadratic

Riccati differential equation. The numerical solutions obtained by the presented tech-

nique indicated that the proposed method is easy to apply. The size of computations

8



was small as compared to numerical methods

Despite the aforesaid advantages, DTM does not provide accurate results for time in-

terval. Based on DTM literature, the secheme was utilized by authors to find analytical

approximate solution for specific types of differential systems, such as fractional and

partial systems, but not to ordinary differential systems and this happened at the level

of system of consisting of two or three equations at most. To overcome these dis-

advantages, a new algorithm will be presented and discussed in Chapter 3 to solve

non-autonomous system of nonlinear ODEs.

2.3 Multistage Differential Transform Method (MsDTM)

MsDTM was developed by Odibat (2010) to solve non-Chaotic or Chaotic systems.

The new algorithm of DTM was named multistage DTM, which increased the interval

of convergence for series solution. The proposed technique is then applied to solve

Lotka-Volterra, Chen and Lorenz systems. The numerical results obtained by the pre-

sented technique indicate that the method is effective in enlarging convergence time

interval and to minimize size of computations. Moreover, it is worth to mention that

the method is applicable to many other nonlinear models and promising as compared

with other methods.

Gökdoğan, Merdan, and Yildirim (2012a) has developed the multi-step method into

a new method that it was named adaptive multi-step DTM. The proposed secheme is

applied to a number of nonlinear DEs, such as Duffing equation and Quadratic Raccati

equation. The numerical results obtained by adaptive MsDTM show that a remarkable
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improvement in convergence interval for the series solution, and, the computations

time is decreased.

The multistage with Spectral method is applied by Motsa, Dlamini, and Khumalo

(2013). They named this scheme Multistage Spectral Relaxation Method (MSRM) and

has been applied to solve famous chaotic systems such as Lorenz, Chen, Liu, Gens-

esio-Tesi and Arneodo-Coullet chaotic systems. The MSRM results were in agreement

with Runge-Kutta and Adams-Bashforth-Moulton results.

Khader and Megahed (2014) successfully utilized the DTM for solving PDEs, which

were transformed into a system of coupled nonlinear ODEs with appropriate boundary

conditions for various physical parameters, such as flow and heat of a Newtonian fluid.

The results obtained by the DTM method show the DTM in its general form gives

a reasonable calculation, easy to use, and can carry out the differential equation in

general form.

The adaptive MsDTM method is then employed by El-Zahar (2015) to find the analyt-

ical approximate solution for Singular Perturbation Initial Value Problems (SPIVPs).

The proposed method was applied to four practical problems in various disciplines of

science and engineering. The results obtained by presented method show that the ac-

curacy of the method is independent of the perturbation parameter ε and the method

works successfully in handling the SPIVPs with minimum size of computations and a

wide interval of convergence.
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Nourifar et al. (2017) presented a new modified version of DTM which, is named Ef-

ficient Multi-step Differential Transform Method (EMsDTM), to solve nonlinear dif-

ferential equations of oscillatory systems such as Duffing (with and without damping),

Van der Pol and Rayleigh equations. Based on the obtained results by EMsDTM, it is

evident that EMsDTM solution in each example matches very well with Finite Differ-

ence Method (FDM) solution. Moreover, it is observed that the EMsDTM performance

is significantly better than the MsDTM.

According to Ndii, Anggriani, and Supriatna (2018), they employed MsDTM method

to solve system of nonlinear differential equation for dengue transmission mathemat-

ical model. the numerical results obtained by the proposed method show that the an-

alytical and numerical solution of DTM are in good agreement with the RK4 method.

Furthermore, the DTM allows to write analytical solutions of dengue mathematical

model, which is not easily derived. It is worth to mention that the method can be alter-

native approach for solving nonlinear system including disease transmission models.

Based on a review of previous MsDTM and DTM literature, the following issues were

observed. First, the MsDTM and DTM were widely implemented in solving several

types of DEs. However, the concentration was only on specific types of fractional as

well as partial systems such as Lorenz, Chen, Liu and Gensio system. In most cases the

differential equations were autonomous nonlinear with initial conditions. Second, the

MsDTM were used by several researchers (Gökdoğan et al., 2012c; Odibat et al., 2010)

to enlarge the convergence interval of analytical approximate solutions of linear and

nonlinear systems. Non-autonomous nonlinear of ODEs were not considered. In this
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context, the present study will highlight non-autonomous nonlinear systems of ODEs

with initial conditions. Therefore, a new algorithm will be presented and discussed

in Chapter 4 and Chapter 5 to solve non-autonomous system of a large number of

nonlinear ODES with initial conditions.

2.4 Summary

In this chapter, the literature on DTM and MsDTM methods with their modifi-

cations, which were implemented to solve many types of differential equations and

systems are reviewed. The current study will focus on the properties of DTM and its

modifications to solve non-autonomous systems of ODEs. Depending on a review of

previous searches in this chapter, specific issues are handled as follows:

• Many researchers presented the MsDTM to obtain solution for different types of

fractional and partial differential equations with initial conditions as a system of

nonlinear DEs. In this light, a new algorithm will be presented and discussed in

Chapter 4 to solve non-autonomous system of a large number of nonlinear ODEs

with initial value problems.

• MsDTM was used by many authors to solve special and famous systems of DEs

such as chaotic systems (linear and nonlinear). To overcome this disadvantage in

solving special systems, a new algorithm will be used in Chapter 4 to solve non-

autonomous system of nonlinear ODEs, which will be more general technique.

• In most of cases, which many researchers studied, focus was given on solving

system of two or three ODES (Gökdoğan et al., 2012c; Thongmoon & Pusjuso,

2010). Therefore, a new technique ,which is presented in chapter 4, will solve
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several non-autonomous system of nonlinear ODES.
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CHAPTER 3

BASIC CONCEPTS AND TECHNIQUES

3.1 Introduction

Numerical and semi-analytical methods are both used to solve non-autonomous

nonlinear ordinary differential systems. Some researchers could benefit from the dif-

ferences between numerical and semi-analytical methods for their goals and investigate

these variations in their researches. In this chapter, some basic concepts between nu-

merical and semi-analytical methods, autonomous and non-autonomous systems, and

linear and nonlinear ordinary differential systems will be briefly explained. In addition,

basic concepts of the DTM and the MsDTM will also be presented.

3.2 Basic Concepts

There are some basic definitions related to ODEs that should be stated.

3.2.1 Analytical and Numerical Methods

Many approximate solution methods have been developed to solve nonlinear ODEs

(Chang & Chang, 2008; Duan & Rach, 2015; El-Zahar, 2013; Gökdoğan et al., 2012a).

From these techniques, numerical methods and semi-analytical methods are identified.

Numerical methods, such as Runge-Kutta, give numerical values of the solution at

certain points only, whereas semi-analytical methods such as DTM, HPM and ADM

give approximate analytical solutions on sub intervals, which can be differentiated or

integrated (Ayati et al., 2014; Biazar et al., 2015; Filobello-Nino et al., 2015; Hossein-
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zadeh et al., 2017; Liu et al., 2017; Rach et al., 2015; Rao & Begum, 2017; Wazwaz et

al., 2015).

3.2.2 Autonomous and Non-Autonomous Ordinary Differential Equations

An autonomous system or an autonomous differential equation is a system of

ODEs which does not explicitly depend on the independent variable. Non-autonomous

system is a system of ODEs which explicitly depends on the independent variable

(Chicone, 2006). The autonomous system is represented by the following form (Kloe-

den & Schmalfuß, 1997):

du(t)
dt

= f (u(t)). (3.1)

The non-autonomous system is represented by the following form (Kloeden & Ras-

mussen, 2011):

du(t)
dt

= f (u(t), t), (3.2)

where u ∈ Rn .

An example for non-autonomous nonlinear system of three ordinary differential equa-

tions is given by (Biazar, Babolian, & Islam, 2004):



du1
dt = 2u2

2,

du2
dt = e−tu1,

du3
dt = u2 +u3.

(3.3)
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
du1
dt =−u1−8u2,

du2
dt = 8u1−u2.

(3.4)

The difference between equations (3.3) and (3.4) on the terms of the independent vari-

able where they can be shown explicitly in the former but it is not shown explicitly

in the latter. Furthermore, non-autonomous system represents a general form that

it includes autonomous system. There are several applications for autonomous and

non-autonomous as real problems in world such as Fabrikant system which is used to

model waves in non-equilibrium substances (Kolebaje, Ojo, Ojo, & Omoliki, 2014),

Hantavirus infection model (Gökdoğan et al., 2012c) and others.

3.2.3 Linear and Non-Linear Ordinary Differential Equations

A linear differential equation has only linear terms of unknown or dependent vari-

able and its derivatives. It has no terms with the dependent variable of power higher

than one or less than one and does not contain any multiple of its derivatives. It can not

have nonlinear function such as trigonometric functions, exponential functions, and

logarithmic functions with respect to the dependent variable. (Chicone, 2006).

In addition, nonlinear differential equation has nonlinear terms of unknown variable

and its derivatives (Chicone, 2006).
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An example for nonlinear system of three ODEs is shown as (Biazar et al., 2004):



du1
dt = 2u2

2,

du2
dt = e−tu1,

du3
dt = u2 +u3.

(3.5)

An example of linear system of ODEs is shown below (Biazar et al., 2004):



du1
dt = u3− cos t,

du2
dt = u3− et ,

du3
dt = u1−u2.

(3.6)

3.2.4 Existence and Uniqueness of Solutions

In this section, the existence and uniqueness of solutions to a first order of nonlin-

ear n×n system of differential equations is investigated given by

dx
dt

= F(t,x), (3.7)

and x(t0) = x0. Assuming F is bounded and continuous on I×Ω, where I is an open

interval about t0 and Ω is an open subset of Rn, containing x0. Assume that F satisfies

Lipschitz condition in x (Taylor, 2011):

∥∥∥∥F(t,x)−F(t,y)

∥∥∥∥≤ L
∥∥∥∥x− y

∥∥∥∥ , (3.8)
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for all t ∈ I, x, y ∈Ω, with L ∈ (0,∞) that is called Lipschitz’s constant. Such an esti-

mate holds if Ω is convex and F is C1 in x and satisfies

∥∥∥∥DxF(t,x)

∥∥∥∥≤ L, (3.9)

for all t ∈ I, x ∈Ω.

Proposition:

Assume F : I×Ω→ Rn is bounded, continuous and satisfies the Lipschitz condition

(3.8). Let x0 ∈Ω, then there exists T0 > 0 and a unique C1 solution to (3.7) for |t−t0|<

T0. The first step in proving this is to rewrite equation (3.7) as an integral equation

(Taylor, 2011) as shown:

x(t) = x0 +
∫ t

t0
F(s,x(s))ds. (3.10)

The equivalence of equations (3.7) and (3.10) follows from the fundamental theorem

of calculus (Taylor, 2011). It suffices to find a continuous solution x to (3.10) on

[t0−T0, t0 +T0], since the right side of (3.10) will be C1 in t. A technique known as

Picard iteration will be applied to construct a solution to equation (3.10). By setting

x0(t) = x0 and define xn(t) inductively then

xn+1(t) = x0 +
∫ t

t0
F(s,xn(s))ds. (3.11)

It can be shown that equation (3.11) converges uniformly to a solution in equation

(3.10), for |t− t0| ≤ T0, if T0 is taken small enough. To get this, some hypotheses has

18



been made as shown in equations (3.8) and (3.9). Assume

BR(x0) = {x ∈ Rn :
∥∥∥∥x−x0

∥∥∥∥≤ R} ⊂Ω, (3.12)

where BR(x0) is an open ball around xo of radius R, M ∈ (0,∞)< L and

∥∥∥∥F(s,x)

∥∥∥∥≤M, ∀s ∈ I, x ∈ BR(x0). (3.13)

Clearly, x0(t) = x0 takes values in BR(x0) for all t. Suppose that xn(t) has been con-

structed, by taking values in BR(x0), and xx+1(t) is defined by equation (3.11), then

have

∥∥∥∥xn+1−x0

∥∥∥∥≤ ∫ t

t0

∥∥∥∥F(s,xn(s))

∥∥∥∥≤M|t− t0|, (3.14)

so xn+1(t) also takes values in BR(x0) provided that |t− t0| ≤ T0 and

T0 ≤
R
M
. (3.15)

As long as equation (3.15) holds and [t0−T0, t0 +T0] ⊂ I, an infinite sequence of xn,

related to equation (3.11) will be obtained. By producing one more constraint on T0,

thus is guaranteed that convergence is achieved. Note that, for n≥ 1,
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∥∥∥∥xn+1−xn

∥∥∥∥= ∥∥∥∥∫ t
t0[F(s,xn(s))−F(s,xn−1(s))]ds

∥∥∥∥ (3.16)

≤
∫ t

t0

∥∥∥∥F(s,xn(s))−F(s,xn−1(s))

∥∥∥∥ds (3.17)

≤ L
∫ t

t0

∥∥∥∥xn(s)− xn−1(s)

∥∥∥∥ds, (3.18)

the last inequality by (3.8). Hence

max|t−t0|≤T0

∥∥∥∥xn+1(t)−xn(t)

∥∥∥∥≤ LT0 max|t−t0|≤T0

∥∥∥∥xn(s)−xn−1(s)

∥∥∥∥ . (3.19)

The additional constraint on T0 is given by

T0 ≤
1

2L
. (3.20)

Noting that

max|t−t0|≤T0

∥∥∥∥x1(t)−x0(t)

∥∥∥∥≤ R, (3.21)

it shows that

max|t−t0|≤T0

∥∥∥∥xn+1(t)−xn(t)

∥∥∥∥≤ 2−nR. (3.22)
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Consequently, the infinite series are given by

x(t) = x0 +
∞

∑
n=0

(xn+1(t)− xn(t)) (3.23)

which is absolute and uniformly convergent for |t− t0| ≤ T0, with a continuous sum,

satisfying

max|t−t0|≤T0

∥∥∥∥x(t)−xn(t)

∥∥∥∥≤ 21−nR. (3.24)

It follows that

∫ t

t0
F(s,xn(t))ds→

∫ t

t0
F(s,x(s))ds, (3.25)

then equation (3.10) will follow equation (3.11) in the limit n→ ∞. To complete the

proof of the proposition, condition of uniqueness is being established. Suppose y(t)

also satisfies equation (3.10) for |t− t0| ≤ T0, then

∥∥∥∥x(t)−y(t)

∥∥∥∥= ∥∥∥∥∫ t
t0[F(s,x(s))−F(s,y(s))]ds

∥∥∥∥ (3.26)

≤
∫ t

t0

∥∥∥∥F(s,x(s))−F(s,y(s))

∥∥∥∥ds (3.27)

≤ L
∫ t

t0

∥∥∥∥x(s)− y(s)

∥∥∥∥ds, (3.28)
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and hence

max|t−t0|≤T0

∥∥∥∥x(t)−y(t)

∥∥∥∥≤ T0L, max|s−t0|≤T0

∥∥∥∥x(s)− y(s)

∥∥∥∥ . (3.29)

As long as (3.15) holds, T0L≤ 1
2 , thus equation (3.29) implies max|t−t0|≤T0

∥∥∥∥x(t)−y(t)

∥∥∥∥=
0, which gives the asserted uniqueness.

3.3 Differential Transform Method (DTM)

This section will present a review on DTM (Arikoglu & Ozkol, 2007; Ayaz, 2004;

Benhammouda & Vazquez-Leal, 2015; Biazar & Eslami, 2010; Chang & Chang, 2008;

Chen & Liu, 1998; El-Zahar, 2013; Gökdoğan et al., 2012a; Kangalgil & Ayaz, 2009;

Kanth & Aruna, 2008, 2009; Lal & Ahlawat, 2015; Odibat, 2010; Zhou, 1986) to find

solutions of the ODEs.

Definition 1 (Arikoglu & Ozkol, 2007; Zhou, 1986) If a function u(t) is analytical

with respect to t in the domain of interest, then

U (k)=
1
k!

[
dku(t)

dtk

]
t=t0

, (3.30)

is the transformed function of u(t).

Definition 2 (Arikoglu & Ozkol, 2007; Zhou, 1986) The differential inverse transforms

of the set {U(k)} n
k=0 is defined by

u(t)=
∞

∑
k=0

U (k)(t−t0)
k . (3.31)
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Substituting equation (3.30) into equation (3.31), it can be deduced that

u(t)=
∞

∑
k=0

1
k!

[
dku(t)

dtk

]
t=t0

(t−t0)k. (3.32)

From Definition (1) and Definition (2), it shows that the concept of the DTM is ob-

tained from the power series expansion. To illustrate the application of the proposed

DTM for solving systems of ordinary differential equations, consider the following

nonlinear system

du(t)
dt

= f (u(t) , t) , t≥t0, (3.33)

where f (u(t) , t) is a nonlinear smooth function and initial condition

u(t0) =u0. (3.34)

By using DTM, the solution of equation (3.33) can be written as

u(t)=
∞

∑
k=0

U (k)(t−t0)
k, (3.35)

where U (0) ,U (1) ,U (2) , . . . are unknowns of equation (3.35) determined by the DTM.

Applying the DTM to the initial conditions (3.34) and (3.33) respectively, the trans-

formed initial conditions is obtained

U (0)=u0, (3.36)
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with the recursion system

(1+k)U (k+1)=F (U (0) , . . . ,U (k) ,k) , k= 0,1,2, . . . , (3.37)

where F(U (0) , . . . ,U (k) ,k) is the differential of f (u(t) , t) .

By using equations (3.36) and (3.37), the unknown U (k) ,k= 0,1,2, . . . can be de-

termined. The differential inverse transformation of the values {U(k)} m
k=0 gives the

approximate solution

u(t)=
m

∑
k=0

U (k)(t−t0)
k, (3.38)

where m is the approximation order of the solution. Equation (3.35) gives the exact

solution for problem (3.33)-(3.34).

If U (k) and V (k) are the differential transforms of u(t) and v(t) respectively, then

the main operations of the DTM are shown in Table (3.1) (Benhammouda & Vazquez-

Leal, 2015).

Table 3.1: Main Operation of DTM.

Function Differential transform
αu(t)±βv(t) αU (k)±βV (k)
u(t)v(t) ∑

k
r=0U (r)V (k−r)

u(t)v(t)w(t) ∑
k
r=0 ∑

r
l=0U (l)V (r−l)W (k−r)

dn

dtn [u(t) ] (k+1) . . .(k+n)U(k+n)

eλ t λeλ t0
k!

sin(ωt) wk

k! sin
(
ωt0+πk

2

)
cos(ωt) wk

k! cos
(
ωt0+πk

2

)

By applying the differential transform to initial conditions (3.34) and (3.33) the recur-

sion system for unknowns U (0) ,U (1) ,U (2) , . . ., the solution series can be obtained
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